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Abstract. B-automata are automata that can compute functions from words to non-negative integers
or infinity. In this paper we give another semantics to the hierarchical variant of these automata. This
new semantics is equivalent to the classical one in the terminology of cost functions: functions com-
puted are equivalent up to a polynomial factor. We provide three applications of this technique.
In our first application we provide a deterministic streaming algorithm (it reads an input word from left
to right) for evaluating a fixedB-automaton which uses logarithmic memory only. A similar evaluation
would require polynomial memory when using the original semantics.
Our second theorem shows that for games with hB -quantitative objectives, there are memoryless strate-
gies that are uniformly optimal, i.e., optimal from any starting point.
Finally, we introduce a new form of history-determinism that is uniform in the sense that translation
strategies are independent from bounds. While it is known that uniform history-determinism cannot be
enforced for usual B-automata, we disclose new forms of (equivalent) automata that have this property.

1 Introduction

Regular cost functions provide a quantitative extension to the notion of regular languages [9, 11]. One way
to understand it is as a framework in which classical qualitative questions such as “Is it true that all inputs
satisfy some property?” have a natural quantitative counterpart, namely “Is it true that for some n all inputs
satisfy some property, within a resource constraint of n?”. Cost functions provide several formalisms for
describing such resource constrained properties. A typical such model is the one of B-automata, where a
specific action executed during a transition can consume some resource, and another action can refill the
resource. Another example is cost monadic logic, which is a logic formalism extending monadic second
order logic, that can furthermore constrain the cardinality of the quantified sets.

The specificity of cost functions compared to other quantitative notions of regularity is that the functions
are considered modulo a “mutual boundedness equivalence” (denoted ≈). Two functions are ≈-equivalent
if and only if they are bounded over the same sets of inputs. To understand the interest of using such an
equivalence relation, let us recall Krob’s undecidability result [20]: the problem of deciding whether two
functions recognized by distance automata (a subcase ofB-automata) are equal is undecidable. This means
that the above models seem difficult to effectively manipulate while keeping all the precision. Considering
functions modulo “mutual boundedness ≈” allows to circumvent this difficulty, ant the equivalence of two
B-automata up to ≈ turns out to be a decidable problem.

An interesting aspect of the theory of regular cost functions is that it provides results that are, in many
ways, as robust as the theory of regular languages but extend them. In particular such models have been
used for solving the star-height problem for words [16, 19] and for trees [12], the finite substitution problem
[1, 18] or the boundedness of fixpoint over words and trees [2, 3]. Deciding the level in the nondeterministic
Mostowski hierarchy – a problem that is still open in general – of a language of infinite trees also reduces
to such questions [13, ?].

B-automata are nondeterministic finite state automata that possess several counters. At each transition,
the automaton can leave a counter unchanged, increment it by one, or reset it to zero. The value computed
by the automaton is the minimum over all accepting runs of the maximum value assumed by a counter
during the run. Its hierarchical variant, hierarchical B-automata (hB -automata), furthermore constrain the
use of counters with a nesting policy. HierarchicalB-automata play a particularly important role as the hB -
condition is particularly well-behaved, comparable to how parity condition is related to Muller condition:
both are equally expressive but the former is usually simpler to handle than the latter.



Contributions. The question we address in this work is the one of uniformization. In the following we
informally state what we mean by that. The semantics of B-automata can be stated in the following way.
One first chooses a minimal n and tests whether the input can be accepted by a run in which none of
the counters exceed the value n. By this definition, for knowing the cost of an input, one first needs to
guess the correct n and only then run the automaton. This way to model semantics is in fact shared by
all models of computation involved in the theory of cost-functions, be it logical, algebraic, automata- or
game-theoretic. However this is inconvenient in several situations, for instance to efficiently compute the
value of an automaton running over an input.

By uniformization we mean the generalizations of known results to situations when the bound n cannot
be guessed advance. In this paper we instantiate this approach in three different ways. The heart of the
contribution is a new definition of the value computed by an hB-automaton. This value is different from
the usual semantics, but is equivalent to it up to “mutual boundedness ≈”. This makes this new semantics
as good as the original one as far as cost functions are concerned. Based on this new semantics, we present
three new results.

Efficient deterministic streaming algorithm for evaluation. For each hB-automaton (that we assume as
fixed) that computes a function f we concern ourselves with the question of computing the value f(u)
for an input word u. We furthermore want the algorithm to be deterministic and “streaming” in the sense
that it reads the input word only once from left to right. We show that with the usual semantics of (h)B-
automata, such an algorithm requires memory polynomial in |u|, but with the new semantics, logarithmic
space suffices.

Uniform memoryless strategies in hB-games. Memoryless determinacy (a.k.a. the existence of mem-
oryless strategies in determined games) is an important notion in automata theory. It means that there is
no need to possess any information for playing optimally in a game of a given objective. It is known that
for the hB-winning condition, and up to “mutual boundedness”, we have for each n that if the first player
wins the condition Wn = {u | no counter exceeds the value n when executing u}, she achieves this by
using a memoryless strategy [12]. We show a uniform version of this result which can be stated as follows.
In every hB-game, there exists a memoryless strategy such that whatever is the chosen initial position, if
the first player can win the game with condition Wn for some n then the memoryless strategy is winning
for Wn. Hence, we are able to synthesize a uniform strategy that is not tied to a specific resource bound.
To this end, we prove a generic proposition for proving memoryless determinacy; it can be seen to unify
standard techniques for proving determinacy and can be of independent interest.

Uniform history-deterministic automata. History-deterministic automata are an important tool in the
context of games and are automata that compose correctly with games (these are also known as “good for
solving games” [17] in the Boolean setting). This notion was not so much investigated in the Boolean setting
because every language is recognized by a deterministic automaton, which is an even stronger notion. The
situation is different in the context of cost functions where automata cannot be made deterministic, even up
to “mutual boundedness”, but can be made history-deterministic [9]. For this reason, history-determinism
plays a central role in the proofs concerning cost-functions over trees [14, 21].

We are interested here in the natural uniform version of history-determinism. We show that hB -automata
cannot be made uniformly history-deterministic. Thus we consider an extension of them, max-automata.
These have the same expressive power as hB -automata, and further can be transformed into uniformly
history-deterministic max-automata.

Related work. The theory of regular cost functions is of course related to weighted automata, and more
specifically automata weighted over the tropical semiring [22, 23]. However, the viewpoint of considering
functions up to “mutual boundedness” makes all the results of very different nature. This notion of mutual
boundedness takes its root in the limitedness (which is a variant of boundedness) results of Hashiguchi [15].
Distance automata were extended to nested distance desert automata (i.e., hB -automata here) by Kirsten in
[19]. These were combined with works on the logic MSO+U over infinite words [5] to yield the theory of
regular cost functions, first for finite words in [11], then for finite trees [14], and for infinite trees for weak
logics [8, 21].

2



1.1 Structure of the paper

The remaining of this paper is organized as follows.

2 Preliminaries

In this section we successively present the notion of cost functions, B-automata, and hB-automata that
will be used throughout the rest of this paper.

As usual Z is the set of integers and N is the set of non-negative integers. For each i, j ∈ Z we denote
by [i, j] the set {i, i+ 1, . . . , j} if i ≤ j and ∅ otherwise. For any set X and any τ = (x1, . . . , xk) ∈ Xk,
we set πi(τ) = xi the projection of τ to the ith component of τ , for each i ∈ [1, k]. The latter is extended
to a homomorphism πi from (Xk)∗ to X in the usual way. For all x ∈ X , we denote by xk the k-
tuple (x, . . . , x). We set N∞ to be N ∪ {∞}. We take the convention that inf ∅ = min ∅ = ∞ and
sup ∅ = max ∅ = 0. Given two sets A and B we let BA denote the set of all functions from A to B.

Let Σ be a finite alphabet. The set of words over Σ is Σ∗. The length of a word w is |w|.

Cost functions. Let us fix ourselves a set X (that will be in practice Σ∗ for some finite alphabet Σ). Our
object of interest are functions from X to N∞. Given two such functions f, g, we say that g dominates f ,
denoted f 4 g, if all Y ⊆ X , if g is bounded over Y (meaning sup(g(Y )) < ∞), then f is also bounded
over Y . The functions f and g are cost-equivalent, in notation f ≈ g, if both f 4 g and g 4 f .

Another presentation, equivalent, of this relation is as follows. A correction function is an increasing
function α : N → N. We extend α to the domain N∞ by setting α(∞) = ∞. For any set X , and given
two functions f, g from X to N∞, we write f 4α g whenever f(x) ≤ α(g(x)) for each x ∈ X . We write
f ≈α g in case f 4α g and g 4α f . It is an easy exercice to show that f 4 g if and only f 4α g for some
correction function α (see for instance [9]).

A cost function (over X) is an equivalence class of ≈ over (N∞)
X . We denote by [f ] the equivalence

class of f ∈ (N∞)
X .

Example 1. LetX be the set N×N. Consider the following functions from N×N to N, + : x, y 7→ (x+y)
and max : x, y 7→ max(x, y). These two functions are cost-equivalent since max(x, y) ≤ x + y ≤
2 ·max(x, y). Whereas the functions max and min : x, y → min(x, y) are not cost-equivalent since on the
set of pairs {(1, 0), (2, 0), . . .} the function min is bounded but not the function max.

Example 2. Let Σ = {0, 1}. Consider the function b : Σ∗ → N such that b(w) = n if w is a binary
representation of n (possibly with a trail of zeros on the left). For instance b(0011010) = 26. Let f :
Σ∗ → N be the function defined as

f(w) = |w| − |u|, where u is the largest prefix of w which is in 0∗.

The functions b and f are cost-equivalent. To see this, consider the correction function α(i) = 2i. It is easy
to show that f(w) ≤ |w| ≤ b(w) ≤ α(f(w)).

Regular cost functions. A class of cost functions which form the analog of regular languages over words
is the class of regular cost functions. Like regularity on words this class also enjoys many good properties;
they are closed under the operations min and max (which are the analogue of intersection and union)
and projections. They are also defined by a variety of equivalent formalisms; cost monadic second order
logic, stabilization monoids, B-automata, S-automata (and their hierarchical versions) and cost regular
expressions [11]. The most interesting aspect, however, is that the boundedness (given f , is f 4 0 ? where
0 is the constant zero function) and even domination (given f and g, is f 4 g ?) problems are decidable
for regular cost functions. In the following we introduce B-automata and its hierarchical form.

B-automata. A B-automaton is a nondeterministic finite state automaton extended with a finite set of
counters Γ = {1, . . . , k} with counter operations ic (increments the counter), r (resets the counter) and
ε (does nothing). Formally it is a tuple B = (Q,Σ, Γ, qI , ∆, F ), where Q is a finite set of states, Σ is the
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input alphabet,∆ ⊆ Q×Σ×{ic, r, ε}Γ ×Q is the set of transitions, qI ∈ Q is the initial state and F ⊆ Q
is the set of final states.

Initially all the counters of the automaton are set to zero. A run ρ on a word w = a1 · · · an is a
sequence of transitions (q0, a1, σ1, q1)(q1, a2, σ2, q2) . . . (qn1

, an, σn, qn) ∈ ∆∗. A run is successful if it
ends in a final state. For every counter i ∈ Γ the run ρ defines a sequence of counter operations σ1 · · ·σn ∈
{ic, r, ε}∗ and in turn a sequence of values c1, . . . , cn. Let vali(ρ) be the set {c1, . . . , cn} for each i ∈ Γ
and let val(ρ) be the set

⋃
i∈Γ vali(ρ).

The cost of the run ρ is defined as cost(ρ) = sup val(ρ). The value of B on w is defined as [[B]](w) =
inf{cost(ρ) | ρ is a successful run of B on w}.

Example 3. Let Σ = {a, b}. We note that each word in Σ∗ has a unique decomposition of the form
an0ban1 · · · bank , where ni ∈ N for each i ∈ [0, k], possibly k = 0. The cost function SL : Σ∗ → N∞,
given such a word, computes the second largest number in the sequence (ni)i∈[0,k]. Note that SL(w) can be
the largest number also, if it occurs twice or more. Formally SL (an0ban1 · · · bank) is max{min{ni, nj} |
i, j ∈ [0, k] : i 6= j}. Note that according to this definition, the value is 0 when k = 0.

q0 q1 q2

a : ic

b : r

b : r

a : ε

b : r

a : ic

b : r

Fig. 1. B-automaton in the Example 3.

The function SL is computed by aB-automaton (shown in Figure 1) with one counter c in the following
way. We refer to the maximal consecutive a-positions as a-blocks. While reading the wordw the automaton
increments c on all a-blocks except for a nondeterministically chosen possibly empty a-block and resets c
on all b positions. Hence for a given run ρ, the value of the run corresponds to the maximum of the lengths
of all a-blocks except the excluded a-block. Since the cost SL(w) is the minimum among values of all runs,
it is obtained when the largest a-block is excluded which in turn corresponds to the length of the second
largest a-block in the word w.

Hierarchical B-automata. A hierarchical B-automaton (hB-automaton for short) is a B-automaton in
which a stack-like discipline is imposed on the counters, i.e. whenever a counter γi with i > 1 is incre-
mented or reset, the counters γ1, . . . , γi−1 are reset. With this restriction the possible counter operations
reduces to the set AΓh

= {R0, IC1, R1, . . . , ICk, Rk} where Ri resets all counters up to i (as a pathological
case, R0 has no effect), and ICi increments counter i and resets all counters up to i − 1. Hence the set of
transitions of a hierarchical B-automaton is of the form ∆ ⊆ Q×Σ ×AΓh

×Q.
We now formally define the semantics of counter operations. For each σ ∈ AΓh

and each v =
(n1, . . . , nk) ∈ Nk the operation val(σ, v) is defined as follows:

val(σ, v) =

{
(0, . . . , 0, nj+1, . . . , nk) if σ = Rj

(0, . . . , 0, nj + 1, nj+1, . . . , nk) if σ = ICj

The operation val is extended to A∗Γh
inductively by val(ε, v) = v and val(uσ, v) = val(σ, val(u, v)) for

each u ∈ A∗Γh
, each σ ∈ AΓh

and each v ∈ Nk. For any u ∈ A∗Γh
and any v ∈ Nk we define

costhB (u, v) = max{πi(val(u′, v)) | i ∈ [1, k], u′ is a prefix of u}

and costhB (u) = costhB (u, 0̄k).
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As above, a run ρ defines a sequence of counter operations u = σ1 · · ·σn ∈ A∗Γh
. We define the cost

of the run ρ as cost(ρ) = costhB (u) and the cost of the word w is defined as [[B]](w) = inf{costhB (ρ) |
ρ is a successful run of B on w}.

Every B-automaton is equivalent to an hB-automaton up to ≈ (consult [9] and [14] for an efficient
construction).

3 A cost-equivalent semantics for counter actions

The core contribution of the paper is to introduce a variant of the semantics of hB-automata. This new
semantics evaluates a sequence of actions on the counters differently. We will prove this approach to be
correct in the sense that this change has no effect as far as cost functions are concerned, i.e., the values
of automata using the original semantics are ≈-equivalent to the ones with the new semantics. This idea
extends methods used in [12]. The notions related to this new semantics are annotated with ∗.

The new semantics for hB-automata. From now, k is the number of counters of some hB -automaton.
We set V = Nk+1 to be the set of all (k + 1)-tuples (n1, . . . , nk, N) over N satisfying ni ≤ N for each
i ∈ [1, k]. The informal idea is that the components from 1 to k will take care of the counters from 1 to
k, and that the component k + 1 carries the highest value seen so far. However, the way the counters are
updated is not as we defined above for the hB -condition, but follows a technique of carry propagation as
introduced in [12]. Let us define how a tuple of V evolves when one of the actions fromAΓh

is encountered.
The Rj action is similar to the classical evaluation of the hB -semantics. The idea behind the action

ICj is that the jth counter is incremented, and, if it exceeds N , then it is reset, and the counter j + 1 is
incremented, thus this behavior is propagated to higher counters. It may happen that this carry propagation
reaches the component k+ 1 to exceed N , which gets incremented in this case, but propagation stops. This
is the sole case that can entail an increase of N . We define the semantics formally below.

For each σ ∈ AΓh
and each v = (n1, . . . , nk, N) ∈ V the operation val∗(σ, v) is defined as follows:

val∗(σ, v) =



v if σ = R0

(0
i
, ni+1, . . . , nk, N) if σ = Ri for some i = 1 . . . k

(0
`
, n` + 1, n`+1, . . . , nk, N) if σ = ICi for some i = 1 . . . k,

ni = . . . = n`−1 = N and n` < N where ` ∈ [i+ 1, k]

(0
k
, N + 1) if σ = ICi for some i = 1 . . . k, and ni = . . . = nk = N

Example 4. Let us assume k = 2.Then,

(0, 0, 0)
IC1−→ (0, 0, 1)

IC1−→ (1, 0, 1)
IC1−→ (0, 1, 1)

IC2−→ (0, 0, 2).

The definition of val∗ is extended to the domain A∗Γh
× V inductively as val∗(ε, v) = v and val∗(uσ, v) =

val∗(σ, val∗(u, v)) for each u ∈ A∗Γh
, σ ∈ AΓh

and v ∈ V .
An important reason why this new way to evaluate runs has good properties is that it satisfies certain

monotonicity properties. The order involved there is the reverse lexicographic ordering, the definition of
which we recall now. For v = (n1, . . . , nk, N) and v′ = (n′1, . . . , n

′
k, N

′) two vectors from V we write
v <rlex v

′ if either

– N < N ′ or
– N = N ′ and for some i we have ni < n′i and nj = n′j for all j ∈ [i+ 1, k].

We set now v ≤rlex v
′ to hold if either v = v′ or v <rlex v

′. The monotonicity property we mentioned
above reads as follows.

Lemma 5 (monotonicity). Let v, v′ ∈ V and u ∈ A∗Γh
. Then v ≤rlex v

′ implies val∗(u, v) ≤rlex val
∗(u, v′).
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Proof. The proof is by induction on the length of u and it is enough to verify the claim for each σ in AΓh
.

Let us consider some v = (n1, . . . , nk, N) ≤rlex v
′ = (n′1, . . . , n

′
k, N

′). We make a case distinction on σ.
Case σ = Ri is immediate. Indeed,

val∗(Ri, v) = (0, . . . , 0, ni+1, . . . , nk, N) ≤rlex (0, . . . , 0, n′i+1, . . . , n
′
k, N

′) = val∗(Ri, v
′).

Case σ = ICi. Assume first that N = N ′ = b. Then, the action ICi can be seen as performing the action
Ri−1 and then adding 1 to the ith component of v (resp. v′) seen as integer written in base b+ 1 (the latter
means adding (b+ 1)i to it). Of course this operation is also monotonic. Hence val∗(σ, v) ≤rlex val∗(σ, v′).

Otherwise we have N < N ′. In this case, remark that the component N ′ can only increase by perform-
ing action ICi and the result of performing action ICi on v is that

– either N is unchanged and we have val∗(σ, v) <rlex val∗(σ, v′) by just looking at the (k+ 1)th compo-
nent,

– orN is incremented and in this case n1, . . . , nk are all reset and once more it is the case that val∗(σ, v) ≤rlex
val∗(σ, v′).

This establishes the inductive step. ut

When evaluating a run using the new semantics, only the last component matters. This is formalized
with the definition cost∗hB (u, v) = πk+1(val∗(u, v)) and cost∗hB (u) = cost∗hB (u, 0̄k+1). A second impor-
tant fact is that our new semantics is equivalent to the standard one. A consequence of the monotonicity
lemma reads as follows.

Corollary 6. Let x, v, y ∈ A∗Γh
then cost∗hB (v) ≤ cost∗hB (xvy).

Proof. Let u = xvy. First observe that due to 0
k+1 ≤rlex val∗hB (x, 0

k+1
) it follows val∗hB (v, 0

k+1
) ≤rlex

val∗hB (v, val∗hB (x, 0
k+1

)) by Lemma 5. The latter reads as val∗hB (v, 0
k+1

) ≤rlex val∗hB (xv, 0
k+1

). It follows
that cost∗hB (v) ≤ cost∗hB (xv). Clearly cost∗hB (xv) ≤ cost∗hB (xvy) = cost∗hB (u) since the counter actions
in y cannot decrease the last component. Finally we have cost∗hB (v) ≤ cost∗hB (u) by transitivity. ut

Let us finally prove the equivalence of the new and old semantics. The proof is inspired from [12].

Lemma 7 (Equivalence). There is a correction function α such that for all sequences of counter actions
u ∈ A∗Γh

we have costhB (u) ≈α cost∗hB (u).

Proof. For the first direction, let us prove that for all u ∈ A∗Γh
we have cost∗hB (u) ≤ costhB (u) thus

working with the identity as correction function. Assume that costhB (u) = M . Let us define v0 = (0
k
,M).

Let us argue that in case val(u, v0) = (n1, . . . , nk,M) we have val∗(u, v0) = (n1, . . . , nk,M). Indeed,
the only moment the new semantics differs from the old one is when a propagation of the carry occurs. This
only happens when some counter exceeds the value M . But, because of the assumption that costhB (u) =
M , this never happens. By applying the Lemma 5, we get

cost∗hB (u) = πk+1(val∗(u, 0
k+1

)) ≤ πk+1(val∗(u, v0)) ≤M = costhB (u) .

For the converse direction, we need to prove that there is some correction function α such that for
each sequence of counter actions u ∈ A∗Γh

we have costhB (u) ≤ α (cost∗hB (u)). We will say that a
sequence of counter actions u ∈ AΓh

is an m-increase, if, for all v ∈ V satisfying πk+1(v) ≥ m we have
πk+1(val∗(u, v)) > m. In other words a sequence of counter actions is an m-increase if it forces the carry
to propagate to the last component starting from any configuration that has its last component at least m.
Remark that if some infix of a word is an m-increase, then the same holds for the word itself.

We claim that for each i ∈ [1, k] we have

(ICi)
mk

is an m-increase. (?)

Let us assume some v ∈ V such that πk+1(v) = m; the case πk+1(v) > m is obvious. Indeed, the
effect of executing ICi on v is to increment by 1 the components [i, k] as if they were encoding a number of
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k− i+1 digits in basem. Hence, afterm(k−i+1) such increments, an overflow eventually occurs, resulting
in an increment of the (k + 1)th component. Thus πk+1(val∗(u, v)) > m. The claim (?) is established.

Our second claim is that for the sequence u = IC
α(n)
i with α(n) =

∑n
m=1m

k we have cost∗hB (u) >

n. Note that u can be decomposed into u0u1 · · ·un such that um = ICm
k

i . One can now prove that
πk+1(val∗(u0 · · ·um, 0

k+1
)) > m holds for each m ∈ [0, n] by induction: in the induction step one

applies (?) and the monotonicity Lemma 5. Thus we can deduce πk+1(val∗(u, 0
k+1

)) > n.
Consider now the case of some sequence of counter actions u ∈ A∗Γh

that contains α(n) occurrences
of ICi, while all the other actions are from the alphabet A′ = {R0, IC1, R1, . . . , ICi−1, Ri−1} (i.e., none of
the other actions is reseting the counter i). In this case, let us remark that for each action σ ∈ A′ and each
v ∈ V it holds val∗(ICi, v) ≤rlex val∗(ICiσ, v), and val∗(ICi, v) ≤rlex val∗(σICi, v) (in particular, if, for
instance, σ is a reset of some counter j < i, since ICi is reseting this counter in any case, this is harmless).
In combination with the monotonicity Lemma 5, we directly obtain that

val∗(IC
α(n)
i , 0

k+1
) ≤rlex val∗(u, 0

k+1
) .

From the latter we obtain cost∗hB (IC
α(n)
i ) ≤ cost∗hB (u), which combined with the previous case yields

cost∗hB (u) > n.
Consider now some sequence of counter actions u ∈ A∗Γh

such that costhB (u) > α(n). This means that
there exists an infix v of u and some counter i ∈ [1, k] such that ICi occurs α(n) times in v, while all the
other actions in v are from the alphabet {R0, IC1, R1, . . . , Ri−1}. By the previous case and the Monotonicity
Lemma, we immediately get cost∗hB (v) > n. Using Corollary 6, one obtains cost∗hB (u) > n. Hence it
follows by contraposition that if cost∗hB (u) ≤ n then costhB (u) ≤ α(n) which proves the claim. ut

4 Efficient streaming evaluation of regular cost functions

Our first, immediate, application of the new semantics is to evaluate the cost of a word w with respect to
a fixed hierarchical B-automaton B. Given a computable function f which takes as input w ∈ Σ∗ and
outputs a value f(w) ∈ N∞, we say f computes [[B]] exactly if f = [[B]] and we say f computes B up to ≈
if f ≈ [[B]].

Let us first argue that for every fixed automaton B the problem of computing [[B]](u) exactly is in
nondeterministic logspace. Indeed, it suffices to guess n and a successful run for deciding if f(u) ≤ n and
use the fact that nondeterministic logarithmic space is closed under complement for the converse inequality.

Proposition 8. For each fixed B-automaton B computing the function B : Σ∗ → N∞ exactly can be done
in nondeterministic logarithmic space.

Proof. For every input u it is either the case that [[B]](u) = ∞ or [[B]](u) ∈ [0, |u|]. First observe that for
a given n ≤ |u| one can test whether [[B]](u) ≤ n in nondeterministic logspace. This is achieved easily
by guessing a run on the fly and checking that its cost is at most n. Analogously one can test (i) for a
given n ≤ |u| if [[B]](u) > n and (ii) whether [[B]](u) = ∞. The former holds since nondeterministic
logspace is closed under complement, the latter can even be achieved in deterministic logspace. Hence,
a nondeterministic logspace machine can compute [[B]](u) as follows: (a) test whether [[B]](u) = ∞, if
applicable, terminate and output∞, otherwise (b) guess some n ≤ |u| and (b1) check that [[B]](u) ≤ n and
(b2) check that [[B]](u) > n− 1. We do not know if a deterministic logspace algorithm exists for such kind
of evaluation. ut

However, in this section we are interested in deterministic streaming algorithms, that have to process
the input from left to right only once, and for this reason have to keep in their memory all the information
concerning the prefix read so far. Hence, such a machine can be seen as a memory (the size of which will
change as the word is getting longer), together with a transition function that takes the current memory, and
combines it with the current letter.

Proposition 9. There exists a one-counter hB -automaton B such that every deterministic streaming algo-
rithm that exactly computes [[B]] requires memory Ω(

√
|u|) on input u.
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Proof. Consider the function f : {a, b, $}∗ → N∞ defined as

f(u) =

{
min{max(mi, ni + n) | i ∈ [1, k − 1]} if u = am1bn1 . . . amkbnk$bn,

∞ otherwise.

The function f can be represented easily by a hB-automaton with one counter. Let us prove that any
deterministic streaming algorithm that computes f exactly requires memory Ω(

√
|u|). The idea is to use

the technique of Myhill-Nerode equivalence. Two words u, v ∈ {a, b, $}∗ are equivalent (with respect
to f ) if for all w ∈ {a, b, $}∗ we have f(uw) = f(vw). If two words are not equivalent, this means that a
machine that has processed the input needs to remember in its memory some information concerning the
difference between the two words. If there are many equivalence classes for words of a given length, this
means that an important memory is required. Let us count the equivalence classes corresponding to the
above function f .

Fix n, and consider some subset X ⊆ [1, n]. One constructs the word uX as follows

uX =
∏
i∈X

a2n−ibi,

where the product can be made in any order, this will not change for what follows. Clearly, the length of
such a word is at most 2n2. Let us prove that none of these words belong to the same equivalence class.
Indeed, consider two distinct subsets X,Y ⊆ [1, n]. This means, (without loss of generality) that there
exists some i ∈ X \ Y . Let w = $b2(n−i). Clearly, the factor a2n−ibi in uX is a witness that f(uXw) ≤
2n − i since i + 2(n − i) = 2n − i. However, no such factor exists in uY . Consider some other factor
a2n−jbj for some j 6= i. Then the corresponding term in the computation of f is max(2n−j, j+2(n−i)).
But, if j < i, 2n − j > 2n − i, and if j > i then j + 2(n − i) > 2n − i. Thus f(uY w) > 2n − i. This
proves that uX and uY are not equivalent. Thus, there are 2n such non-equivalent words that are all of
length at most 2n2. Hence, for processing inputs of length 2n2, the memory should separate at least 2n

situations, which thus must contain at least n bits. Hence, for words of length n, a memory of Ω(
√
n) is

necessary. ut

We can highly improve this if we use the new semantics, which would provide an answer up to ≈.

Theorem 10. For every B-automaton B there exists a deterministic streaming algorithm that computes
[[B]] up to ≈ and uses memory O(log n) on inputs of length n.

Proof. Since working up to ≈ we can replace every fixed B-automaton with an equivalent (up to ≈)
hB -automaton B = (Q,Σ, Γ, qI , ∆, F ) by [11]. We emphasize that B is assumed to be fixed from now
on. Let us assume an input word x ∈ Σ∗. Our deterministic streaming algorithm will compute a value
B(x) ∈ N∞ and works by operating on the counters in the new semantics and doing an on-the-fly power
set construction. During the simulation we store the reachable configurations of B by a partial function
s : Q → Nk+1. Initially we start with the partial function s = {

(
qI , 0̄

k+1
)
}. Assume that after reading a

prefix of w we reached the set of configurations s = {(q1, v1) , . . . , (qi, vi)}. On a letter a we update the
set of reachable configurations by executing all possible transitions and retaining the smallest vector for
each reachable state q. Formally the new set of reachable configurations s′ is defined as follows, for each
q ∈ Q:

s′(q) =


undefined if {v′ ∈ V | (p, a, σ, q) ∈ ∆, (p, v) ∈ s, val∗(σ, v) = v′} = ∅
v̂ X = {v′ ∈ V | (p, a, σ, q) ∈ ∆, (p, v) ∈ s, val∗(σ, v) = v′} 6= ∅

and v̂ = min(X),

where the minimum is computed with respect to the order ≤rlex. On reaching the end of our input word x
with set of configurations s we output eventually

B(x) = cost∗hB (min{v | (q, v) ∈ s, q ∈ F})

which is the cost of the least tuple associated with a final state.
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Next we need to show that B ≈ [[B]]. It is straightforward to see that for all words x ∈ Σ∗ we have
[[B]](x) = ∞ if and only if there is no successful run of the automaton B on x, that is to say B(x) = ∞.
If B(x) = n then there is a successful run ρ of the automaton B on x such that n = cost∗hB (u), where
u ∈ A∗Γh

is the sequence of counter actions performed in ρ. Hence it is clear from the Equivalence Lemma
(Lemma 7) that there is a correction function α such that for all x ∈ Σ∗ we have [[B]](x) ≤ costhB (u) ≤
α(cost∗hB (u)) ≤ α(B(x)).

It remains to show that there is a correction function α such that for all words x ∈ Σ∗ we have
B(x) ≤ α([[B]](x)). Recall that for every u ∈ A∗Γh

it holds cost∗hB (u) ≤ costhB (u). Therefore if there is a
run ρ (with associated sequence of counter actions u) of the automaton B on x, then there is a configuration
(q, v) in the set of reachable configurations s of the procedure such that B(x) ≤ πk+1(v) ≤ costhB (u). In
particular, this is the case for the run ρ which computes [[B]](x) and hence B(x) ≤ [[B]](x). This shows that
our procedure is correct.

In the above procedure the set of configurations s : Q→ Nk+1 requires space O(k · log |x|), where the
factors |Q| and k are fixed since we assume B to be fixed. ut

The algorithm maintains for each state q a (k + 1)-tuple m̄q of integers, or ∞. The meaning is that
mq is the least value∗ for ≤rlex that can have a run of the automaton starting from some initial state and
reading the input seen so far. This information is encodable in logarithmic space, and is easy to update by
implementing the evaluation of the new semantics. The essential idea behind is that the order ≤rlex allows
to keep track of only one run of the automaton for each final state.

5 Uniform memoryless winning strategies in hB-games

In this section we study the question of uniformization for the existence of memoryless strategies in hB-
games. We first start by providing some definitions concerning games, and develop a generic technique for
constructing memoryless strategies. We then apply this technique to hB-games.

5.1 Games and memoryless strategies

We consider two players (Eve and Adam) playing a turn-based game of infinite duration on a possibly
infinite arena. An arenaA = (VA, E) has a set VA = VEve ]VAdam of vertices that is partitioned into those
of the Eve and those of Adam, and a set E ⊆ VA × VA of moves. We assume, as classical, that for all
vertices v there exists an outgoing move (v, w) ∈ E. Under this assumption, there are infinite paths in A
(seen as a graph), that are called plays. We denote by Π the set of plays.

A strategy (tree) for the player Eve from position v is a (possibly infinite) tree Σv equipped with a
labeling ` that maps nodes to vertices in the arena, and such that (a) the label of the root is v, (b) for
all nodes x, if `(x) ∈ VEve, then x has exactly one child y such that (`(x), `(y)) ∈ E, and (c) for all
nodes x if `(x) ∈ VAdam, then all children have different labels, and the set of labels of the children is
{v ∈ VA | (`(x), v) ∈ E}. A branch in a strategy is a sequence of nodes x0x1 · · · where x0 is the root,
and xi+1 is a child of xi. By definition of a strategy, it is a play in the arena.

A memoryless strategy is a mapping Σ from vertices x of Eve to vertices such that (x,Σ(x)) ∈ E.
Given a vertex v, the memoryless strategy induces a unique strategy Σ[v] in the above sense, which is the
sole one starting in v and such that for all nodes x, if `(x) ∈ VEve then x has one child y which is labeled by
`(y) = Σ[v](`(x)). A game is a pair G = (A,W), whereA is an arena and W ⊆ Π is a winning condition.
A strategy is winning if all its plays (branches) belong to W. If there is a strategy from v that is winning,
then Eve is said to win the game from v.

We are interested in results of the form “if Eve wins the game from v, then there is a winning memo-
ryless strategy from v”. Not all winning conditions do satisfy these kind of properties. We introduce below
the notion of a signature scheme. It is a generalization of the signature technique of Emerson and Streett
[24] that was originally developed for parity conditions. In the below description, more winning conditions
can be seen to have memoryless winning strategies.
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Definition 11. We call a tuple S = (S,v, (λe)e∈E) a signature scheme for an arena A = (VA, E) if
(S,v) is a well-ordered1 set that has a maximal element, and λe : S → S is a monotone function for all
e ∈ E.

Such a signature scheme can be used to evaluate strategies. A pre-signature over a strategy (tree) Σ (for
the signature scheme S = (S,v, (λe)e∈E)) is a mapping s from the nodes ofΣ to S such that for all nodes
x with child y we have s(x) w λ(`(x),`(y))(s(y)). The value of the pre-signature is the label of its root. A
winning condition W is S-compatible if there exists some t ∈ S such that for all strategy trees Σ it holds
that Σ is winning if and only if there exists a pre-signature over Σ of value strictly smaller than t with
respect to v (i.e. of value @ t).

Theorem 12. LetA be an arena and S be a signature scheme onA. There exists a memoryless strategy Σ
such that for all winning conditions W that are S-compatible and all vertices v we have that if Eve wins
the game (A,W) from v, then Σ[v] is winning from v.

Proof. The main point is to construct the memoryless strategy Σ. For all vertices v, we set mv to be the
least value that a pre-signature over some strategy from v can have. Such a value exists since S is a well-
order and has a maximal element. We further set Σv to be the strategy witnessing the existence of mv . Our
memoryless strategy is defined for all vertices v of Eve by Σ(v) = w where w is the vertex reached by Σv
after its first move, i.e., it replicates the first move of Σv .

Consider now some winning condition W that is compatible with S and some vertex v such that Eve
wins the game (A,W) from v. This means that mv @ t, where t is the threshold witnessing that W is
S-compatible. Recall that Σ[v] is the strategy from v that is induced by Σ and let ` denote its labeling.
We claim that Σ[v] is also winning from v. For this, let s be the mapping which to each node x of Σ[v]
associatesm`(x). For the sake of contradiction, assume s is not a pre-signature ofΣ[v]. Then there is a node
x in Σ[v] such that either (i) `(x) ∈ VEve and for the unique child y of x we have s(x) @ λ(`(x),`(y))(s(y)),
or (ii) `(x) ∈ VAdam and for some child y of x we have s(x) @ λ(`(x),`(y))(s(y)). We only treat the case
(i) since case (ii) can be proven analogously. Consider a pre-signature s′ over some strategy Σ′ from v
of value mv . By definition of Σ we have that s′ and Σ′ exist. Let e = (`(x), `(y)). By the definition of
pre-signature we have

s′(x) w λe(s′(y)).

It follows that
λe(s

′(y)) v s′(x) v s(x) @ λe(s(y)),

hence λe(s′(y)) @ λe(s(y)). By monotonicity (Lemma 5) it follows s(y) 6v s′(y), thus s′(y) @ s(y) since
v is total. However, the latter contradicts the definition of s. Thus we have shown that s is a pre-signature
of Σ[v]. Finally, since the value of s is mv @ t we conclude that Σ[v] is winning. ut

5.2 Memoryless winning strategies for Eve in safety hB-games

We now use the technique of the previous section for proving the existence of memoryless optimal strate-
gies for Eve in (safety) hB -games (the situation is completely different if Eve has to satisfy simultaneously
a reachability condition, say). This results in Theorem 15.

A (safety) hB -game is given by a tuple G = (A, k, act), where A = (VA, E) is the arena on which
the game G takes place, k is the number of counters, and act : E → AΓh

labels each edge with an action
from AΓh

= {R0, IC1, R1, . . . , ICk, Rk}. Naturally the mapping act can be used to translate any infinite
play π in A into an infinite word act(π) ∈ AωΓh

. The idea is that the pair (k, act) defines a family of
accepting conditions (Wn)n∈N, such that π ∈Wn if costhB (act(π′)) ≤ n for all finite prefixes π′ of π. If
Eve wins the game (A,Wn) from v, then we say that Eve n-wins the game G = (A, k, act). Our goal is
to prove that there exists a memoryless strategy Σ such that if Eve n-wins from v whatever are n and v,
then following Σ[v] ensures Eve to n-win from v. This is not true as it stands, and we need to change the
family of winning conditions by an “equivalent” one to obtain such a result.

1 A binary relation v over S is a well-order if v is a total order (i.e. v is antisymmetric, transitive and total) and
every non-empty subset of S has a minimal element.
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Let us define W∗n to be the set of plays π such that cost∗hB (mirror(act(π′))) ≤ n for all π′ that are
finite prefixes of π (where mirror reverses the order of letters in a word). If Eve wins the game (A,W∗n)
from v, then we say that Eve n-wins∗ the game G = (A, k, act). Our first observation is that, up to ≈, the
notions of winning and winning∗ are equivalent.

Proposition 13. There exists a correction function α such that for all plays π and all n, if π ∈ Wn, then
π ∈W∗α(n), and if π ∈W∗n then π ∈Wα(n).

Proof. By Lemma 7 it suffices to show that for each u ∈ A∗Γh
and each n ∈ N we have that costhB (u) ≥ n

implies costhB (mirror(u)) ≥ n and thus costhB = costhB ◦ mirror. Indeed, if costhB (u) ≥ n, then
there exists an infix (ICi)

n of u which is also an infix of mirror(u). Hence costhB (mirror(u)) ≥ n. ut
It happens that the notion of n-winning∗ behaves much better, and in particular one can provide a

unique signature scheme that is compatible with W∗n for all n. Recall from Section 3 that V denotes the
set of all (k + 1)-tuples (n1, . . . , nk, N) over N satisfying ni ≤ N for each i ∈ [1, k] and each a ∈ AΓh

defines a monotone function λa on V by Lemma 5, where λa(v) = val∗(a, v). For this we define the
reverse lexicographic signature scheme as Srlex = (Srlex,vrlex, {λa | a ∈ AΓh

}), where the domain is
Srlex = V ∪ {∞} and the order vrlex on Srlex is the extension of ≤rlex on V by putting v vrlex ∞ for each
v ∈ Nk+1 and lifting the domain of λa to Srlex by setting λa(∞) = ∞. It is indeed a signature scheme
according to Lemma 5. Let us now prove compatibility of Srlex.

Proposition 14. For each n ∈ N we have that W∗n is Srlex-compatible.

Proof. We prove that for all n ∈ N and all strategies Σ we have that Σ is n-winning∗ if and only if there
is a pre-signature of value v over Σ, where v @ (0̄k, n+ 1).

Let r denote the root of Σ.
Let us first assume that there is a pre-signature s of value v over Σ, where v @ (0̄, n+ 1). For this, let

us fix an arbitrary finite branch π in Σ that ends in node x. To show that cost∗hB (mirror(act(π))) ≤ n
we prove val∗(mirror(act(π)), 0̄k+1) v s(r) @ (0̄, n + 1) holds. One can easily prove that we have
val∗(mirror(act(π)), s(x)) v s(r) by induction on |π|. We have

val∗(mirror(act(π)), 0̄k+1)
Lemma 5
v val∗(mirror(act(π)), s(x))

v s(r)

@ (0̄k, n+ 1)

Conversely assume that the strategy Σ with labeling ` is n-winning∗. We have to define a pre-signature s
of value v, where v @ (0̄k, n+ 1). To each node x of Σ we assign

s(x) = sup{val∗(mirror(act(π)), 0̄k+1) | π is a branch from x in Σ}

It remains to show that s is a pre-signature. For this we have to show that for each node x ofΣ and for each
child y of x we have

s(x) w λ(`(x),`(y))(s(y)).

In case `(x) ∈ VEve we have that y is the only child of x and moreover

s(x) w sup{val∗(mirror(act(π)), 0̄k+1) | π is a branch from x in Σ}
w sup{val∗(mirror(act(`(x), `(y)) · act(π′)), 0̄k+1) | π′ is a branch from y in Σ}
w val∗

(
act(`(x), `(y)), sup{val∗(act(π′), 0̄k+1) | π′ is branch from y in Σ}

)
= val∗(act(`(x), `(y)), s(y))

= λ(`(x),`(y))(s(y))

The case `(x) ∈ VAdam can be shown analogously. ut
At this point, by applying Theorem 12, we immediately obtain the following main result of the section.

Theorem 15. In each safety hB -game G there exists a memoryless strategy Σ such that for all vertices v
and all n ∈ N, if Eve is n-winning∗ from v then Σ[v] is n-winning∗.

This statement is uniform in the sense that this strategy is optimal regardless of both v and n. Previous
similar results were known for strategies that depended upon n [12].
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6 Uniform history-determinacy of max-automata

History-determinism, introduced in [17], is a notion of sequentiality which sits in between nondeterminism
and determinism. An automaton is history-deterministic if it is the homomorphic image of a deterministic
automaton with potentially infinitely many states. See [10], Section 5 for a general introduction. The im-
portance of this notion is from the fact that it allows to compose automata with games in a semantically
correct way. This is a crucial argument in the proof of decidability of cost monadic logic over finite trees
[14].

6.1 History-determinism

In the following, for any B-automaton B = (Q,Σ, Γ, q0, ∆, F ) and any run ρ ∈ ∆∗ we define cost(ρ)
as an abbreviation for cost(π3(ρ)), i.e. we take the cost of the counter actions that are induced by ρ.
Similar remarks apply to costhB , cost∗hB , val and val∗. We first recall the basic notions related to history-
determinism for B-automata. For each i ≥ 1 let Ai = (Qi, Σ, Γ, q

0
i , ∆i, Fi) be a B-automaton where Qi

is countable and possibly infinite. The definitions of run and cost can be naturally extended to the scenario
where Qi is infinite. Given a finite set Q and a map h : Qi → Q we define the homomorphic image of Ai
under h to be the automaton h(Ai) = (Qi, Σ, Γ, h(q0

i ), h(∆i), h(Fi)) where

h(∆i) = {(h(p), a, σ̄, h(q) | (p, a, σ̄, q) ∈ ∆i}.

Let B be a finite state B-automaton such that h(Ai) = B. We observe that the image under h of a run of
Ai on a word w is a a run of B on w. This implies that [[B]](w) ≤ [[Ai]](w).

Definition 16 (Variant 1). We say a B-automaton B = (Q,Σ, Γ, qI , ∆, F ) is a history-deterministic
automaton if there is a correction function α, a sequence (Ai)i∈N of deterministic B-automata with poten-
tially infinitely many states, and a sequence of maps (hi : Qi → Q)i∈N such that

– hi(Ai) = B,
– [[B]](w) ≤ i then [[Ai]](w) ≤ α(i).

An equivalent way to state the above definition is by using translation strategies, which we will be using
later. A translation strategy ζ is a function ζ : ∆∗ ×Σ → ∆ such that for each w ∈ Σ∗ a unique run ζ̃(w)
of B on w is defined in the following way: We require that the induced mapping ζ̃ : Σ∗ → ∆∗ defined
inductively as ζ̃(ε) = ε and ζ̃(wa) = ζ̃(w)ζ(ζ̃(w), a) for each w ∈ Σ∗ and each a ∈ Σ has only runs of
B in its range. Note that for every i ∈ N it is the case that [[B]](w) ≤ cost(ζ̃i(w)).

Definition 17 (Variant 2). The automaton B is history-deterministic automaton if there exists a correction
function α and a translation strategy ζi for every i ∈ N such that for all words w and all i ∈ N, if
[[B]](w) ≤ i then cost(ζ̃i(w)) ≤ α(i).

Let us verify that these two definitions are equivalent. Assume B is history-deterministic with respect
to the translation strategies (ζi)i∈N. For π ∈ ∆∗ we define in(π) and out(π) to be the start and end state
of π respectively with the convention that target(ε) = qI . Similarly let label(π) to be the projection of π
to the Σ component. Let Π be the set of all runs of B. We define Ai with the set of states Qi = Π , the
initial state q0

i = ε (the empty run), and set of final states Fi = {π ∈ Qi | target(π) ∈ F} and the set of
transitions

∆i = {(π, a, σ̄, π · (p, a, σ̄, q)) | π, πδ ∈ Π, ζi(π, a) = δ}.

Let hi : Qi → Q be the map which associates to π the state target(π). Assume [[B]](w) ≤ i. Then by
definition of Ai it follows that Ai(w) ≤ α(i) (Consider the path in Ai given by ζ̃i(w)). However hi(Ai)
may not be B (this happens when ζi is not surjective). But one can always add isolated states and transitions
to Ai without affecting the costs to make hi(Ai) to be B. The details are left to the reader.

For the other direction let B be history-deterministic according to Variant 1. Then we define the trans-
lation strategy ζi inductively as

– ζi(ε, a) = hi(δ0) where δ0 ∈ ∆i is the unique transition (q0
i , a, σ̄, q) for some q ∈ Qi and σ̄ ∈

{ic, r, ε}Γ ,
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– ζi(π, a) = hi(δ) where δ is the unique transition (p, a, σ̄, q) where p = ∆i(q
0
i , label(π)), q ∈ Qi and

σ̄ ∈ {ic, r, ε}Γ .

Let [[B]](w) ≤ i then we claim that cost(ζ̃i(w)) ≤ α(i). By Variant 1 [[Ai(w)]] ≤ α(i). Let π be the
unique accepting run ofAi witnessing the cost α(i). By definition of ζ and hi, it follows that cost(ζ̃i(w)) ≤
α(i).

It is known that everyB-automaton is equivalent (up to≈) to a history-deterministicB-automaton [11].
On the other hand deterministic and unambiguous B-automata are strictly weaker.

We can define a natural uniform variant of history-determinism as follows.

Definition 18 (Uniform history-determinism). An automaton B is uniform history-deterministic if there
exists a correction function α and a translation strategy ζ : ∆∗ × Σ → ∆ such that for all words w if
[[B]](w) ≤ i then cost(ζ̃(w)) ≤ α(i).

It is known that in general B-automata are not uniformly history-deterministic [14]. Then arises a nat-
ural question, whether there is a model of automata for regular cost functions which admits uniform
history-determinism? We answer this question positively by showing that uniform history deterministic
max-automata accept all (and only) regular cost functions. This is going to be the subject of the rest of the
paper.

6.2 max-Automata

We introduce the class of max-automata and min-automata as generalizations of B-automata and S-
automata (similar automata, in their deterministic form, were already used in the context of deciding the
satisfiability of WMSO+U and WMSO+R over infinite words in [4]). We show that max-automata recog-
nize only regular cost functions, and furthermore, every regular cost function is accepted by a uniformly
history-deterministic max-automaton.

A max-automaton is a finite state automaton equipped with a finite set of counters Γ = {c1, . . . , cn}.
Counter operations are of the form (c1 := e1, . . . , cn := en) where each ej is a max of some subset of
{c1, . . . , cn, c1 + 1, . . . , cn + 1}. Let AΓ denote the set of all possible counter operations.

Formally a max-automaton is a tuple (Q,Σ, Γ,∆, q0, F, cout), where Q is the finite set of states, Σ
is the finite input alphabet, Γ is the set of counters, ∆ ⊆ (Q×Σ ×AΓ ×Q) is the set of transitions,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and cout ∈ Γ is the output counter. On a word
w = a1 · · · an a successful run of the automaton is a sequence of transitions δ1 · · · δn starting in the initial
state, ending in a final state and such that successive transitions share a common state. The run ρ defines
the sequence of vectors v0, . . . , vn ∈ Nk, where v0 is the zero vector and each vi+1 is obtained from vi
by updating according to δi. The cost of the run ρ is defined to be the value of cout in the final counter
configuration vn. The cost of the word w is the infimum of costs of all successful runs on w.

By the following two propositions we prove that max-automata defines exactly the class of cost func-
tions.

Proposition 19. All regular cost functions are accepted by max-automata.

Proof. To show that all regular cost functions are accepted by max-automata it is enough to observe that B
automata as well as hierarchical B-automata are a natural special case of max-automata where the counter
actions AΓ are expressed using max-expressions. Let B be a hierarchical B-automaton with counters Γ =
{1, . . . , k}. We construct a max-automaton A with counters {c1, . . . , ck, czero , cout} which has the same
set of states as that of B. Moreover the initial state and final states of A are the same as that of B. The
counters {c1, . . . , ck} simulate the counters {1, . . . , k} of B. The counter czero is never incremented and
is used to perform the reset operations. The unique output counter cout holds value of the run so far.
The transitions of A are obtained by replacing the counter actions in the transitions of B by equivalent
max-expressions in the following way. To perform the operation Ri we use the max-expression c1 :=
czero , . . . , ci := czero . Similarly ICi is performed by the expression c1 := czero , . . . , ci−1 := czero , ci :=
ci+1. On every transition ofA, the maximum value obtained by any counter is stored in the counter cout by
the expression cout := max{cout , c1, . . . , cn}. It is straightforward to see that the automaton A simulates
B and computes the same cost function as that of B. ut
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Next we want to show the converse, namely all cost functions accepted by max-automata are regular.
We show a stronger result. For this purpose we define min-max-automata. These are identical to max-
automata except that the counter operations are of the form (c1 := e1, . . . , cn := en) where each e` is of
the form mini∈[1,k] maxj∈[1,li] fij where fij ∈ {c1, . . . , cn, c1+1, . . . , cn+1}. For notational convenience
we identify expression e` with the “clause” {{(c, ι) | fij = c+ ι, j ∈ [1, li]} | i ∈ [1, k]}.

The definition of a run of the automaton and cost are defined exactly in the same way.

Proposition 20. All cost functions accepted by min-max-automata are regular.

Proof. For a min-max-automaton A = (Q,Σ, Γ,∆, q0, F, cout) we construct an equivalent B-automaton
B. Let run(A) ⊆ ∆∗ be the set of all accepting runs of the automaton A. For a run ρ ∈ run(A) define
cost(ρ) to be the value of the output counter at the last position. Let R : ∆∗ → N∞ be the cost function

R(ρ) =

{
∞ if ρ 6∈ run(A)
cost(ρ) if ρ ∈ run(A)

We claim that it is enough to show thatR is regular. Assume it is the case. Let h : ∆→ Σ be the projection
which maps a transition to its Σ component. We can extend h naturally to the morphism h : ∆∗ → Σ∗.
Observe that the cost function [[A]] defined by the automaton A is the inf-projection of R under h in the
following sense;

[[A]](w) = inf
{
R(ρ) | ρ ∈ ∆∗, h(ρ) = w

}
.

It is a key property of regular cost functions that they are closed under inf-projections [11]. Hence it follows
that [[A]] is regular providedR is regular. We next show thatR is regular. Further observe that there is a finite
state automaton A1 which accepts the set run(A). Seen as a B-automaton A1 defines the cost function

[[A1]](ρ) =

{
∞ if ρ 6∈ run(A)
0 if ρ ∈ run(A)

Since regular cost functions are closed under the operation max it is enough to show that (†) there is a
B-automaton which given a run ρ ∈ run(A) outputs cost(ρ).

Assume f : Σ∗ → N∞ is a cost function. We define mirror(f) as the cost function (mirror(f))(u) =
f(mirror(u)). It is easy to see that if f is regular then mirror(f) is also regular. The reverse of a B-
automaton accepting f (obtained by reversing the transitions and exchanging initial and final states) accepts
the cost function mirror(f).

Therefore it suffices to show that there is a B-automaton which reads mirror(ρ) and outputs cost(ρ)
for every ρ ∈ run(A). We will construct an alternating distance automaton (defined below) which accepts
the function does the above. Since cost functions computed by alternating distance automata are regular
[12] it implies the claim (†).

We recall the definition of alternating distance automata. An alternating distance automatonD is a tuple
D = (Q,Σ, κ, q0, F ) where Q is the finite set of states, Σ is the alphabet, q0 is the initial state, F is the
set of final states and κ : Q×Σ → DNF+(Q× {0, 1}) is the set of transitions where DNF+(Q× {0, 1})
denotes the set of all positive boolean formulas over the literals Q×{0, 1} in disjunctive normal form. For
convenience we identify a formula

∨k
i=1

∧li
j=1 eij ∈ DNF+(Q× {0, 1}), where eij ∈ (Q× {0, 1}), with

the set {{eij | j ∈ [1, li]} | i ∈ [1, k]}. For a state p ∈ Q and a word u ∈ Σ∗ we define the distance of u
from p, in notation d(p, u) ∈ N∞, inductively as

d(p, u) =


∞ if w = ε, p 6∈ F
0 if w = ε, p ∈ F

inf
i∈[1,k]

{ sup
j∈[1,li]

{d(q, v) + ι | eij = (q, ι)}} if u = av, κ(p, a) =
∨k
i=1

∧li
j=1 eij .

The cost function defined by D is given by [[D]](w) = d(q0, w). It is known that cost functions defined
by alternating distance automata are regular. In fact cost functions defined by alternating B-automata are
regular [14]).
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Recall the min-max-automaton A = (Q,Σ, Γ,∆, q0, F, cout). Next we construct the alternating dis-
tance automaton D with the set of states Γ , input alphabet ∆, initial state cout and final states Γ . To
disambiguate nowonwards we use bold letters (like c`) to denote the states. On a state c` and input letter
δ = (p, a, 〈c1 := e1, . . . , cn := en〉, q) ∈ ∆ where e` = {{(cij , ιij) | j ∈ [1, li]} | i ∈ [1, k]}, the
transition κ(c`, δ) is defined as,

κ(c`, δ) =
∨

i∈[1,k]

∧
j∈[1,li]

(cij, ιij).

Let mirror(ρ), where ρ ∈ run(A), be an input word and let ρ′ be a prefix of ρ. Then we prove by
induction that value of a counter c` after the sequence of transitions ρ′ is same as the distance of mirror(ρ′)
from the state c`. When ρ′ is the empty prefix the claim holds trivially since the value of the counter c` is
zero as well as the distance d(c`, ε) since c` is a final state. For the inductive case assume the claim holds
for all counters c and the prefix ρ′. We need to show the claim for the counter c` and the prefix ρδ. After
executing the transition δ the value of c` is given by

c` = min
i∈[1,k]

{ max
j∈[1,li]

{cij + ιij}}.

By induction hypothesis,
c` = min

i∈[1,k]
{ max
j∈[1,li]

{d(cij, ρ) + ιij}},

which is by definition of the distance is same as c`. Hence the value of the output counter cout after the
sequence of transitions is exactly the same as the distance of mirror(ρ) from the input state cout . Hence
the automaton D computes cost(mirror(ρ)). ut

One can define the deterministic variant of max-automata naturally as the subclass of max-automata
where for any state p ∈ Q on a letter a ∈ Σ there is at most one transition in ∆. Like B-automata the
deterministic variant of max-automata is also strictly weaker. For instance the function f : w ∈ {a, b}∗ →
min(|w|a, |w|b), where |w|a (resp. |w|b) denotes the number of a’s (resp. b’s) in w, is not accepted by any
deterministic max-automaton. The proof involves an algebraic characterization of these automata using
stabilization semigroups and is beyond the scope of this exposition. However, next we show that uniform
history-deterministic max-automata accept all regular cost functions.

Theorem 21. For every hB -automaton B there is a cost-equivalent uniform history-deterministic max-
automaton B′.

Proof. Let us fix an hB -automaton B = (Q,Σ, Γ, q0, ∆, F ), where |Γ | = k. We will use a construction
similar to the on-the-fly evaluation of the hierarchical B-automata. The automaton B′ on reading a word
will do a subset construction. If two configurations with the same state are reachable then it will choose the
best configuration according to the new semantics with the help of the translation strategy.

The automaton B′ does the operations in AΓh
and simulates the new semantics. The semantics of Rj is

the same in both semantics and can be implemented by the max-expression c1 := max{czero}, . . . , cj :=
max{czero} (we identity this expression with the action Rj). But for the instruction ICj , since the max-
automaton has no way of comparing the values of two counters (necessary for performing addition with
carry) it will perform the update of the counters nondeterministically and will use the translation strategy to
resolve the nondeterminism. For this let ICj denote the max-expression which resets all the counters i < j
and increments the counter j and leaves all other counters unchanged (implemented by the max-expression
c1 := max{czero}, . . . , cj−1 := max{czero}, cj := max{cj + 1}). We denote by AΓmax

the set of max
expressions {R1, . . . , Rk, IC1, . . . , ICk+1}.

Next we give a description of the automaton B′ = (Q′, Σ, Γ ′, ∆′, q′0, F
′) whose states Q′ are precisely

the subsets ofQ and furthermore it has counters from the set Γ ′ = (Q× [1, k + 1])∪{czero , cout}, in other
words each counter of B′ stores for each state of B a (k + 1)-tuple of counters to be simulated. Intuitively,
each counter of the form (q, v) ∈ Q × [1, k + 1] aims at simulating the new semantics of runs of B that
end in q. In addition there is the output counter cout and the counter czero which always holds value 0. The
initial state q′0 of B′ is the set q′0 = {q0} and the set of final states F ′ are F ′ = {S ⊆ Q | S ∩ F 6= ∅}.

Recall that a state of B′ is of the form S ⊆ Q. A macro transition ∆S ⊆ ∆ from S on the letter a is a
subset of ∆ such that
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(1) all the transitions δ ∈ ∆S are on the letter a,
(2) all transitions in ∆S are transitions from a state in S, and
(3) if the state q is reached from a state in S on letter a (denoted as q ∈ ∆(S, a)) there is a unique transition

δ ∈ ∆S to q.

For a macro transition ∆S = {δ1, . . . , δm} of size m, the set of macro counter actions is the set of tuples,

A∆s

Γmax
=

{
(eδ1 , . . . , eδm) ∈ (AΓmax )

m

∣∣∣∣ ei = Rj if δi = (p, a, Rj , q)
ei ∈ {ICj , . . . , ICk+1} if δi = (p, a, ICj , q)

}
For a macro transition ∆S = {δ1, . . . , δm}, a macro counter action ē = (eδ1 , . . . , eδm) ∈ A∆s

Γmax
and

a transition δ ∈ ∆S to a final state qf ∈ F we denote by σ∆S ,ē,qf the counter operation (using max-
expressions) on Γ ′ which does the following.

(1) For each δi = (p, a, σ, q) ∈ ∆S the counters {q} × {1, . . . , k + 1} are obtained from the counters
{p} × {1, . . . , k + 1} by the max expression eδi . In addition we will also make sure that after update
the counter (q, k + 1) is holds the maximum value of any of the counters {q} × {1, . . . , k + 1}. One
can achieve this easily by modifying the max expression eδi . This step is crucial, since this ensures that
if the counters hold the least possible value only if it is updated correctly.

(2) Let δ = (p, a, σ, qf ) ∈ ∆S be the transition leading to state qf in ∆S . Then the output counter cout set
to be the value of the counter (p, k + 1) when evaluated by the max expression eδ .

(3) All remaining counters are kept unchanged.

Now the transitions of B′ (denoted by the set ∆′) are of the form (S, a, σ∆S ,ē,qf , S
′) such that ∆S is

macro transition on S and σ∆S ,ē,qf is as described earlier, and S′ is the set of states reachable from S on
letter a.

Next we define the translation strategy ζ : ∆′∗×Σ → ∆′. Let ρ′ = δ′1 · · · δ′n be a run of the automaton
B′ ending in the state S. Recall that each transition δ′i is of the form (Si, a, σ∆Si

,ē,qf , Si+1). To define
ζ(ρ′, a) it is enough to choose a macro transition ∆S of B on the letter a, a macro counter transition
ē ∈ A∆s

Γmax
and a final state (if there exists one) qf ∈ ∆(S, a). Choosing a macro transition ∆S amounts

to choosing for each state q ∈ ∆(S, a) a unique transition incident on q from a state in S. For each state
p in S, the run ρ′ defines a unique run ρp = δ1 · · · δn of B such that each δi ∈ ∆Si

and δn is the unique
transition to the state p in ∆Sn . The uniqueness follows from the fact that for each state in Si+1 there is
exactly one transition in ∆Si incident on it. Let q be a state that belongs to ∆(S, a) and let ∆Sq be the
set of transitions (p, a, σ, q) in ∆ such that p ∈ S. We choose the transition δ = (p, a, σ, q) ∈ ∆Sq such
that the value of the run π3(ρpδ) with the new semantics (namely val∗ (π3(ρpδ))) is minimal, to be part
of the macro transition ∆S . The max epxression eδi is chosen so that the vector val∗(π3(ρp)) is correctly
updated. Similarly qf is chosen to be a qf ∈ F ∩∆(S, a) such that the value val∗(π3(ρpδ)) of the run ρpδ
is minimal according to the new semantics.

We lift the translation strategy ζ : ∆′∗ × Σ → ∆′ to ζ̃ : Σ∗ → ∆′∗ as described previously. We need
to prove two things, namely

(1) the automatonB′ is history-deterministic, that is to say, there is anα such that cost(ζ̃(w)) ≤ α([[B′]](w))
for all w ∈ Σ∗, and

(2) the cost function computed by B and the cost function defined by the translation strategy are the same.

We prove (1), namely that cost(ζ̃(w)) ≤ α([[B′]](w)) for each w ∈ Σ∗. In fact we take α to be the
identity function. Let us first explain the complication here. Assume the translation strategy yields the
run ζ̃(w) = ρ′ and the value [[B′]](w) corresponds to the run ρ′′ witnessing the infimum cost among all
runs. From the construction of the automaton it is clear that the projection of the run ρ′ and ρ′′ yields the
same sequence of states (namely the set of reachable states of B on the corresponding prefix). It is only
in the update of the counters that the runs ρ′ and ρ′′ differ. We know that ρ′ updates each set of counters
{p} × {1, . . . , k + 1} correctly according to the new semantics, while ρ′′ may not. We want to argue that
if ρ′′ chooses an incorret update it will not have a smaller output value. For this it is enough to observe
that (as we noted before) if the set of counters {p} × {1, . . . , k + 1} is not updated correctly the resulting
tuple will be strictly bigger (with respect to ≤rlex) than the tuple obtained by a correct update. Therefore
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we can conclude that (we are assuming an implicit induction argument here) the following. Assume ρ′ and
ρ′′ finish in the state S. Let q ∈ S and (v′1, . . . , v

′
k+1) and (v′′1 , . . . , v

′′
k+1) be the values of the counters

(p, 1), . . . , (p, k + 1) after ρ′ and ρ′′. Then it is the case that (v′1, . . . , v
′
k+1) ≤rlex (v′′1 , . . . , v

′′
k+1). From

this it follows that the output of ρ′′ is at least as big as the output of ρ′.
For the correctness of the construction it remains to show that [[B]] ≈ cost ◦ ζ̃.
Let us first observe that for all w ∈ Σ∗ it is the case that

[[B′]](w) ≤ cost(ζ̃(w)). (?)

Let ρ′ be the unique run of the max-automaton B′ on the word w according to the translation strategy ζ̃.
The cost of the run ρ′ is the value of the counter cout at the end which in turn corresponds to the value of
a counter (qf , ck+1) (by definition). But the value of (qf , ck+1 ) is exactly the cost (in the new semantics)
of the unique run ρ of B on w ending in state qf ∈ F traced by the run ρ′. Using the correction function α
given by the Equivalence Lemma, this shows that

[[B]](w) ≤ costhB (ρ) (By definition of cost of a B-automaton)
≤ α (cost∗hB (ρ)) (By equivalence lemma)

≤ α
(
cost(ζ̃(w))

)
. (By (?))

Finally it is sufficient to show that cost(ζ̃(w)) ≤ [[B]](w). One can prove by induction on |w| that for
the unique run ρ′ = ζ̃(w) of B′ that ends in state S ⊆ Q the following holds:

for any run ρ of B on w ending in q : πk+1(val∗(π3(ρq))) ≤ πk+1(val∗(π3(ρ)))

This readily implies that

cost(ζ̃(w)) ≤ inf
q∈F

πk+1(val∗(π3(ρq))) (By definition of ζ)

≤ inf
q∈F

πk+1(val∗(π3(ρ))) (By previous claim)

≤ inf
q∈F

costhB (val(π3(ρ))) = [[B]](w) (Definition of cost of a B-automaton)

This concludes the correctness proof. ut

References

1. Sebastian Bala. Regular language matching and other decidable cases of the satisfiability problem for constraints
between regular open terms. In STACS, volume 2996, pages 596–607, 2004.

2. Achim Blumensath, Martin Otto, and Mark Weyer. Boundedness of monadic second-order formulae over finite
words. In 36th ICALP, pages 67–78, July 2009.

3. Achim Blumensath, Martin Otto, and Mark Weyer. Decidability results for the boundedness problem. Available
online, 2012.

4. Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst., 48(3):554–576, 2011.
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