
COUNTER AUTOMATA AND CLASSICAL LOGICS

FOR DATA WORDS

By

Amaldev Manuel

The Institute of Mathematical Sciences, Chennai.

A thesis submitted to the
Board of Studies in Mathematical Sciences

in partial fulfillment of the requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

October 2011

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared
by Amaldev Manuel entitled “Counter Automata and Classical Logics for Data
Words” may be accepted as fulfilling the dissertation requirement for the Degree
of Doctor of Philosophy.

Date :
Chairman : R. Ramanujam

Date :
Convener : V. Arvind

Date :
Member : Kamal Lodaya

Date :
Member : Madhavan Mukund

Final approval and acceptance of this dissertation is contingent upon the can-
didate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it may be accepted as fulfilling the dissertation requirement.

Date :
Guide : R. Ramanujam

DECLARATION

I hereby declare that the investigation presented in the thesis
has been carried out by me. The work is original and the
work has not been submitted earlier as a whole or in part for
a degree/diploma at this or any other Institution or University.

Amaldev Manuel

ACKNOWLEDGEMENTS

First and foremost I thank my guide R. Ramanujam who supported me through-
out my doctoral years with his vast knowledge, sublime perspectives and unearthly
patience while giving me freedom to work in my own way. He has been a great
guide, an exemplary teacher and a marvelous friend to me both in the darkest
hours and brightest days.

I am grateful to all the faculty members in Matscience and CMI especially to
Madhavan Mukund, Kamal Lodaya, K. Narayan Kumar and S. P. Suresh. Thanks
to Benedikt Loewe for hosting me in Amsterdam and Maarten Marx for mentoring
me. Thanks Paritosh Pandya for allowing me to spend many summers in TIFR.
I am grateful to Luc Segoufin and Thomas Schwentick for their great suggestions
and feed-backs. Thanks to my co-author Thomas Zeume.

I thank my all friends in Matscience especially Bruno (now Brenda), Muthu,
Sheeraz, Phawade, Suman, Sylvester and George for their great company and
support. Also, thanks to Ajesh and Benny for making my summers in TIFR
wonderful. Thanks to Biju for being my constant companion during my stay in
Netherlands. Special thanks to David for the great discussions I had with him over
these years.

I thank my parents, parents-in-law, sister, brother and brothers-in-law for their
encouragement and support. Finally, thanks to my wife for proofreading my pa-
pers, giving valuable suggestions and criticisms and above all for her unmatched
love and patience.

Abstract

This thesis takes shape in the ongoing study of automata and logics for data words
– finite words labelled with elements from an infinite alphabet. The notion of data
words is a natural way for modelling unboundedness arising in different areas of
computation. The contribution of this thesis is two-fold, which we discuss briefly
below.

On the automata side, after introducing two known models – Register automata
and Data automata – we formulate a model of computation for data words, namely
Class Counting Automaton (CCA). CCA is a finite state automaton equipped
with countably infinitely many counters where counters can be increased or reset.
Decrement is not allowed to preserve decidability. We prove basic facts about this
model and compare its expressive power with respect to the earlier models. It is
shown that this automaton sits (roughly) in between register automata in terms
of expressiveness and complexity of decision problems. We also study several
extensions some of which subsume earlier models.

In the second part we look at the two-variable logics (first-order logic restricted
to two variable) on logical structures which correspond to data words, continuing
the study initiated in [BDM+11]. First, it is shown that two-variable logic on
structures with two linear orders and their successor relations is undecidable. Then
we consider first-order structures with successors of two linear orders and show
that finite satisfiability of two-variable logic is decidable on these structures. We
use suitably defined automata for proving this result. Later, we generalize the
above proof to the case of k-bounded ordered data words – first-order structures
with a linear successor and a total preorder with an additional restriction of k-
boundedness on the preorder – and prove a similar result. A corollary of this result
is that two-variable logic is decidable on structures with two successors and at most
one order relation. The decidability results are sharpened by showing lower bounds
for decidable fragments and exhibiting undecidability results for richer fragments.

5

Contents

1 Introduction 1

1.1 Words over infinite alphabets . 2

1.2 Automata for data words . 2

1.3 Logics for data words . 4

1.4 Organization of the thesis . 7

2 Preliminaries 9

2.1 Automata Formalisms . 9

2.1.1 Finite state automata . 9

2.1.2 Finite state transducers . 10

2.1.3 Petri nets . 10

2.1.4 Multicounter automata . 11

2.2 Post’s Correspondence Problem . 12

3 Automata for data words 13

3.1 Introduction . 13

3.2 Languages of data words . 15

3.3 Formulating an automaton mechanism 17

3.4 Register automata . 18

3.5 Data and Class Memory automata 23

3.6 Discussion . 29

4 Class counting automata 30

4.1 Introduction . 30

4.2 Class counting automata . 30

4.3 Decision problems . 36

i

Contents

4.3.1 Upper bound . 36

4.3.2 Lower bound . 41

4.3.3 Word problem . 44

4.4 Extensions and subclasses . 45

4.4.1 Deterministic CCA . 45

4.4.2 Many bags . 47

4.4.3 Checking any counter . 48

4.4.4 The language of constraints 50

4.4.5 Two-way CCA . 52

4.4.6 Alternating CCA . 53

4.4.7 Counter acceptance conditions 56

4.5 Discussion . 57

5 Two-variable logics 59

5.1 Introduction . 59

5.2 Preliminaries . 59

5.2.1 Data words . 61

5.3 Logics . 62

5.3.1 Scott reduction . 63

5.4 FO2 on data words . 64

6 Two-successor structures 71

6.1 Introduction . 71

6.2 Preliminaries . 71

6.3 Automata on 2-SS . 72

6.3.1 Reducing 2-SS automata to EMSO2 (Σ,+1l1 ,+1l2) 77

6.3.2 Computing msp+1l2
from msp+1l1

. 78

ii

Contents

6.4 Reducing EMSO2 (Σ,+1l1 ,+1l2) to 2-SS automata 79

6.5 Decidability of 2-SS automata . 86

6.5.1 Remarks . 95

6.6 n-Successor Structures . 96

6.6.1 Successor Types . 96

6.7 Automata on n-SS . 97

6.8 Logical Characterization of n-SS Automata 98

6.8.1 Discussion . 102

7 Ordered data words 104

7.1 Introduction . 104

7.2 Automata over ordered data words 105

7.3 k-bounded Ordered Data Automaton 107

7.3.1 Deciding the Emptiness Problem for k-ODA 118

7.3.2 When ≤p is a linear order 121

7.3.3 When k > 1. 126

7.3.4 A Hardness Result for FO2(≤l1 ,+1l1 ,+1l2) 129

7.4 Discussion . 130

8 Conclusion 131

8.1 Remarks on automata for data words 131

8.2 Remarks on logics . 132

iii

List of Figures

1.1 CCA accepting the language “All data values under a are distinct” . 4

3.1 Sample data languages . 16

3.2 Register automaton accepting the language La. 20

3.3 1-Register automaton accepting the language Ldd 21

3.4 n-Register automaton accepting the language L∃n 21

3.5 CMA accepting the language La. 26

3.6 CMA accepting the language La→b. 27

3.7 CMA accepting the language Ldd. 27

4.1 CCA accepting the language La . 33

4.2 CCA accepting the language Ldd. 33

4.3 CCA accepting the language L∃n 34

4.4 CCA accepting the language L<n 34

4.5 CCA accepting the language L2 . 35

4.6 Transitions corresponding to (q0, x < 1, inc, 3, q2), (q0, x = 2, inc, 3, q2)

and (q4, x ≥ 6, inc, 1, q5). 38

6.1 The initial 2-SS in Proposition 6.3.7 76

6.2 The modified 2-SS in Proposition 6.3.7 77

7.1 A (+1l ,+1p ,≤p)-structure and representation in the plane. Columns
are ordered by ≤l , rows are ordered ≤p 105

7.2 A (+1l ,+1p ,≤p)-structure and markings. Columns are ordered by
≤l , rows are ordered ≤p , i.e. every box represents the intersection
of one ≤p-class and one ≤l-class. The markings of the a, b, d are
respectively +∞,+1,−1. 106

7.3 2-ODA accepting Lww . 108

iv

List of Figures

7.4 2-ODA accepting Lwwr . 110

7.5 Blocks in a snippet of a 3-bounded (+1l ,+1p ,≤p)-structure. 120

7.6 How a 1-ODA is simulated by a multicounter automatonM. When
M reaches the solid line T , the counter for (q, s) is one. When
starting to read block B3, the counter for (q, s) is decremented and
(q, t) is stored in the state. 127

8.1 Summary of results on finite satisfiability of FO2 with successor and
order relations. Cases that are symmetric and where undecidability
is implied are omitted. 133

v

1
Introduction

The formalism of languages over finite alphabets is well-suited for abstracting
sequential behaviour of computing systems such as execution traces of programs
and plays of games. Hence the multipronged — algebraic, logical, automata-
theoretic — study of languages over finite alphabets has contributed effectively
to the verification of software and control systems. A standard approach is the
following. The program or control system under scrutiny is abstracted as a finite
state system and the specification is written in a specification language, very often a
suitable logic. It is then checked that the finite state system obeys the specification
by comparing the languages described by the system and the specification. A
necessary premise for this method is the effectiveness of checking non-emptiness of
the language defined by the system and checking satisfiability of the formula. The
above approach to program verification, called model checking [CGP99], has been
found very effective in the verification of stand-alone reactive systems like control
systems in automobiles.

This thesis takes shape in an ongoing effort to find suitable formalisms, both
automata theoretic and symbolic, for languages over infinite alphabets. Infinite
alphabets are an obvious way to abstract unboundedness often occurring in many
areas of computer science. Natural examples are values of variables in programs,
process IDs in distributed computing, nonces in security protocols, attribute values
in XML, keys in data bases etc. Apparent uses of such mechanisms are many fold
[MRR+08], the single most important application being in verification.

1

Chapter 1. Introduction

1.1 Words over infinite alphabets

Let Σ be a finite alphabet and Γ be an infinite set in which membership and equality
are decidable. We call finite sequences of elements of the set Σ × Γ data words.
Formally a data word w = (a1, d1) . . . (an, dn) is in (Σ× Γ)∗. A data language is a
set of such words.

The course of study of data languages so far has been driven by two impor-
tant questions, which are: (1) what is a suitable class of finite state automata for
recognizing data languages with a decidable emptiness problem? (2) what is a
suitable logical language for expressing data languages with a decidable satisfia-
bility problem? The contributions of this thesis are to be seen in the light of these
two questions which we discuss briefly below.

1.2 Automata for data words

We mentioned above that the effectiveness of finite state model checking is expedi-
ated by the presence of a class of languages captured by the notion of regularity. In
the case of finite words regularity is synonymous with the confluence of the follow-
ing properties: closure under boolean and other natural operations, low complexity
of the decision problems such as membership and non-emptiness, alternate char-
acterizations in terms of logics and algebras and robustness in terms of machine
characterization in the sense that the restriction of determinism or the addition of
alternation or two-way-ness does not break the characterization.

An important question is whether there is a regular class of data languages.
As of now the literature does not possess such a class. Of the above properties the
decidability of non-emptiness problem plays a pivotal role in verification. Hence,
unsurprisingly a good amount of time and energy has been invested in finding
classes of automata with decidable non-emptiness problem.

The general approach, so far, for designing automata for data words has been
to augment a finite state automaton with memory structures. This idea traces its
origin to the dawn of automata theory in the fifties and sixties when an intensive

2

Chapter 1. Introduction

study of automata with various memory structures such as stacks, queues, push-
downs, counters, tapes etc. was performed. Following this line, most important
classes of automata known for data words employ structures such as registers, hash
tables, counters, stacks, pointers etc.

Among the various automaton models proposed for data languages, two, Regis-
ter automata and Data automata got particular attention. A Register automaton
[KF94, DL09] is a finite state automaton equipped with a finite number of reg-
isters which can hold data values. The transitions depend on the state of the
automaton as well as the register configuration. It is easy to observe that since
the registers are only finitely many the automaton is unable to keep track of all
the data values it has seen, thus incapable of recognizing the language “all data
values occurring in the word are different”. However register automata are akin
to finite state automata in the sense that the string projections of the language
accepted by a register automaton is regular. The nonemptiness problem of register
automata is NP-complete. A Data automaton [BDM+11], is a composition of two
finite state machines where regular properties over the entire word and over data
values can be checked. They strictly subsume register automata in terms of the
set of accepted languages. They are capable of accepting languages like “all data
values under a are distinct”, “every data value occurring under a occurs under b”
etc. However their nonemptiness problem is of very high complexity (not known
to be elementary). Neither of the above classes of automata is complementable.

Our approach to the automaton problem involves enhancing finite state au-
tomata with counters. Counters are a primitive and minimal computational device
where the operations are increment, decrement and checking for zero. Yet it is long
been known that automata with two counters are as powerful as Turing machines.
Hence it is necessary to restrict the operations on the counters. There are standard
restrictions in the literature. Some of them are: (1) disallowing the decrement op-
eration, (2) removing the two-way branching on a zero test, (3) allowing counter
values to be negative.

In this thesis we introduce a class of machines we call Class Counting Automata.
A class counting automaton A = (Q,Σ,∆, I, F) is a finite state automaton with
|Γ|-many counters, where Q is the finite set of states, ∆ is the transition relation
and I ⊆ Q and F ⊆ Q are the set of initial and final set of states. A configuration

3

Chapter 1. Introduction

q0 q1

(a, x = 1, inc, 0)

(a, x = 0, inc, 1)

(b, x ≥ 0, inc, 0)

(a, x ≥ 0, inc, 0)

(b, x ≥ 0, inc, 0)

Figure 1.1: CCA accepting the language “All data values under a are distinct”

of the automaton is of the form (q, h) where q ∈ Q and h : Γ → N is a function
holding the counter values. The transitions of the automaton are of the form
(p, a, ϕ(x), u, q) where p, q are the entry and exit states of the transition, ϕ(x)

is a univariate linear inequality and u is from the set {inc, reset}. The intended
semantics of the transition is that on a configuration (p, h) of the automaton on
the pair (a, d) the transition (p, a, ϕ(x), u, q) can be taken if ϕ(h(d)) is true. The
resulting configuration will be (q, h′) where h′ is h for all but d where h′(d) =

h(d) + 1 if u is inc and h′(d) = 0 if reset.

Theorem 1.2.1. The nonemptiness problem of CCA is Expspace-complete.

Note that the complexity is to be contrasted with that of register automata
(NP-complete) and that of data automata (not known to be elementary). The
model checking problem for CCA is NP-complete. Addition of alternation or two-
wayness leads to undecidability of the nonemptiness problem.

CCA are closed under union and intersection but they are not closed under com-
plementation. The deterministic fragment is closed under complementation but is
strictly less powerful. It is not known whether they subsume register automata.

We also study several extensions and restrictions of class counting automata
which are equivalent to Register automata and Data automata.

1.3 Logics for data words

Various modal and classical logics are used for specifying properties over words
over a finite alphabet. On the classical side, monadic second order logic and first

4

Chapter 1. Introduction

order logic are the most important ones, while modal languages, very attractive
due to their lower complexity and intuitiveness, include linear and branching time
temporal logics.

For the purpose of verification the most important aspect regarding a logic
is the decidability of the model checking and the satisfiability. A whole lot of
other questions reduce to checking satisfiability, for example checking implication
between two formulas, checking validity of a formula etc. From a practical point
of view the finite satisfiability problem (“is there a finite model satisfying the
formula?”) is more interesting than the general problem.

This thesis focuses on classical logics on data words. For this purpose, data
words can be represented as a first order structure w = ([n],Σ, <,+1,∼) extending
the corresponding representation for words due to Büchi. Here [n] denotes the set
{1, . . . , n}, and Σ stands for the unary relations indicating the alphabet labelling.
The binary relations <,+1 are interpreted as the natural linear order and successor
relations on the set [n]. The binary relation ∼ denotes the equivalence relation on
[n] given by the data values based on equality. That is to say, i ∼ j if di = dj. In
addition if we have a linear order <Γ on the data values then this uniquely defines
a total preorder <p (a total preorder is a reflexive, transitive and total binary
relation) on the positions [n]. We denote the successor relation of <p by +1p. In
the following we denote linear orders and their successor relations by <l1 , <l2 , . . .

and by +1l1 ,+1l2 ,

It is easy to see that satisfiability and finite satisfiability of first order logic
on data words, FO (Σ, <,∼) is undecidable. The problems remain undecidable
even for the fragment FO3 (Σ, <,∼), the set of formulas which uses at most 3

variables. Hence for decidability one has to look for suitable restrictions which
are sufficiently expressive. The two-variable fragment is a natural candidate. It is
known that satisfiability problem for first order logic with two variables is decidable
[Mor75, GKV97]. Since it is not expressible in FO2 that a binary relation R is a
linear order (or an equivalence relation or a preorder), the above theorem does
not imply satisfiability of FO2 over data words or over ordered data words. In a
landmark paper [BDM+11] it was shown that;

Theorem 1.3.1 ([BDM+11]). Finite satisfiability of FO2(Σ, <l1 ,+1l1 ,∼) is decid-
able.

5

Chapter 1. Introduction

Note that +1l1 is not definable in terms of <l1 using two-variables over words.
This prompts us to add both the order and successor relations of the linear order
to the vocabulary. [As a side note, it is also the case that +1l1 is not definable in
terms of <l1 and ∼ using two-variables over words.] Decidability holds even when
<l1 is the ordinal ω. Status of the infinite satisfiability problem is not known.

However, the theorem fails for ordered data words;

Proposition 1.3.2 ([BDM+11]). Finite satisfiability problems of FO2(Σ, <l1 ,+1l1 , <p2

) and FO2(Σ, <l1 ,+1l1 ,+1p2) are undecidable. In fact, undecidability persists even
when the equivalence classes of <p2 are of size at most 2.

This implies that in the presence of a total order on data values to get back
decidability either <l1 or +1l1 has to be dropped from the vocabulary. The former
case was undertaken in [SZ10] where it was shown that FO2(Σ, <l1 , <p2 ,+1p2) is
decidable. We consider the latter case when the preorder is in fact a linear order
(in the case of data words it corresponds to the scenario when all the data values
are distinct) and show that,

Theorem 1.3.3. Finite satisfiability of FO2(Σ,+1l1 ,+1l2) is decidable.

Proposition 1.3.4. Finite satisfiability of FO2(Σ, <l1 ,+1l1 , <l2 ,+1l2) is undecid-
able.

Note that this line of work is interesting on its own [Ott01]. Our proof is au-
tomata theoretic. Concurrently, it was shown that removing at least one successor
relation also results in decidability[SZ10], that is;

Theorem 1.3.5 ([SZ10]). Finite satisfiability of FO2(Σ, <l1 ,+1l1 , <l2) is decidable.

This raises the question whether FO2 is decidable if one of the order relations
is absent from the vocabulary. We answer this question positively. In fact, a more
general theorem is proved which says that FO2 (Σ,+1l1 , <p2 ,+1p2) is decidable
where +1l1 is a successor of a linear order and <p2 ,+1p2 are a total preorder and
its successor relation where the equivalence classes of the preorder is bounded by
a constant. This is to be contrasted with Proposition 1.3.2.

6

Chapter 1. Introduction

Theorem 1.3.6. Fix k ∈ N. Finite satisfiability of FO2(Σ,+1l1 , <p2 ,+1p2) is
decidable when classes of <p2 are of size at most k.

For the proof, the notion of data automata are generalized so that they ac-
cept ordered data words. A translation from the above logic to these automata
is established and finally the non-emptiness of these automata are shown to be
decidable by reduction to reachability problem in vector addition systems. Since
it is definable in FO2 that <p2 is a linear order, this implies the answer to the
previous question.

Corollary 1.3.7. Finite satisfiability of FO2(Σ,+1l1 , <l2 ,+1l2) is decidable.

Though the problem is decidable, it turns out to be as hard as reachability in
vector addition systems.

1.4 Organization of the thesis

In Chapter 2 we recapitulate the necessary definitions and theorems required for
the rest of the thesis.

In Chapter 3 Register automata and Data automata are introduced and major
facts about them are briefly surveyed.

In Chapter 4 we introduce the model of Class Counting automata and give
examples. Some extensions of Class counting automata are also detailed. The
decidability issues of class counting automata and its variants are studied.

In Chapter 5 we introduce first order logic over data words and show basic
undecidability results. The landmark results on two-variable logic over data words
are outlined.

In Chapter 6 it is shown that two-variable logic with two successor relations is
decidable.

In Chapter 7 two-variable logic on k-bounded ordered data words is studied.
A number of undecidability results are also proved here.

7

Chapter 1. Introduction

In Chapter 8 we summarize by a comparison of automaton models in terms
of expressiveness and complexity of nonemptiness problems. The complexity of
satisfiability problems of the logics is discussed.

8

2
Preliminaries

In this chapter we recapitulate some definitions and theorems used in the later
chapters. Let k > 0; we use [k] to denote the set {1, 2, . . . k}. When we say [k]0,
we mean the set {0} ∪ [k]. By N we mean the set of natural numbers {0, 1, . . .}.
When f : A→ B, (a, b) ∈ (A×B), by f⊕(a, b), we mean the function f ′ : A→ B,
where f ′(a′) = f(a′) for all a′ ∈ A, a′ 6= a, and f ′(a) = b.

2.1 Automata Formalisms

We recall the definitions of some existing automaton models.

2.1.1 Finite state automata

Definition 2.1.1. A finite state automaton A is a tuple A = (Q,Σ,∆, I, F) where
Q is a finite set of states, Σ is a finite alphabet, ∆ ⊆ (Q× Σ×Q) is the set of
transitions, I ⊆ Q is the set of initial states and F ⊆ Q is the set of final states.

Given a word w = a1 . . . an ∈ Σ∗, a run ρ of A over w is a sequence q0 . . . qn

such that q0 ∈ I and for all 1 ≤ i ≤ n, (qi−1, ai, qi) ∈ ∆. The run ρ is accepting if
qn ∈ F . The language of A, denoted by L(A), is the set of words w such that A
has an accepting run on w.

Languages accepted by finite state automata are closed under union, intersec-
tion, complementation, homomorphisms and inverse homomorphisms.

9

Chapter 2. Preliminaries

2.1.2 Finite state transducers

Definition 2.1.2. A finite state letter-to-letter transducer A is given by the tuple
A = (Q,Σ,Σ′,∆, O, I, F), where Q is a finite set of states, Σ is a finite input
alphabet, Σ′ is a finite output alphabet, ∆ ⊆ (Q× Σ×Q) is the set of transitions,
O : ∆→ Σ′ is the output function, I ⊆ Q is the set of initial states and F ⊆ Q is
the set of final states.

For δ = (p, a, q) ∈ ∆, we denote the output state of δ by output (δ) = q and
the input state of δ by input (δ) = p.

Given a word w = a1 . . . an ∈ Σ∗, a run ρ of A over w is a sequence of tran-
sitions δ1 . . . δn such that δ1 is a transition from a state in I (that is to say,
input (δ1) ∈ I) and for every 1 ≤ i ≤ n the output state of δi−1 and the input
state of δi are the same (that is to say, output (δi−1) = input (δi)). The run ρ is
accepting if output (δn) ∈ F . A successful run ρ defines a unique output word
w′ = O(δ1) . . . O(δn) over the alphabet Σ′.

2.1.3 Petri nets

Definition 2.1.3. A Petri net N is a tuple N = (S, T, F,M0), where S is a
finite set of places, T is a finite set of transitions such that S and T are disjoint,
F ⊆ (S × T) ∪ (T × S) is a set of flows, and M0 : S → N is the initial marking.

The preset of a transition t ∈ T is the set of its input places: •t = {s ∈ S |
(s, t) ∈ F}; its postset is the set of its output places: t• = {s ∈ S | (t, s) ∈ F}.
Definitions of pre- and postsets of places are analogous.

A marking of a Petri net is a multiset of its places, that is a mapping M : S →
N. We say the marking assigns to each place a number of tokens. Markings can
be added in the following way. Let M1 and M2 be markings.

M1 +M2 = {(s, (M1(s) +M2(s))) | s ∈ S}.

A marking M1 covers the marking M2 if for all s ∈ S, M1(s) ≥ M2(s). The
marking M2 can be subtracted from M1 if M1 covers M2 and the result of subtrac-

10

Chapter 2. Preliminaries

tion is the marking; .

M1 −M2 = {(s, (M1(s) +M2(s))) | s ∈ S,M1(s) ≥M2(s)}.

On a given marking M the transition t is enabled if M assigns at least one
token to each of the input places of t. An enabled transition can fire to give a new
marking M ′ = ((M −M•t) +M•t) where

M•t(s) =

{
1 if s ∈ •t
0 otherwise

Mt•(s) =

{
1 if s ∈ t•

0 otherwise

In this case we say M ′ is reachable in one step from M , denoted as M →M ′. We
say M ′ is reachable from M if there is a sequence of markings M1, . . . ,Mn such
that M → M1 → . . .Mn → M . The set of all markings reachable from the initial
marking M0 is called the reachable markings of the Petri net.

The reachability problem for Petri nets is the following: Given a Petri net
N = (S, T, F,M0) and a marking M , is M reachable from M0? The problem is
known to be decidable [Kos82, May81]. No algorithm for the reachability problem
is known that run in elementary time.

The coverability problem for Petri nets is the following: Given a Petri net
N = (S, T, F,M0) and a marking M , is there a reachable marking M ′ that covers
M? This problem is complete for Expspace [Lip76].

2.1.4 Multicounter automata

Definition 2.1.4. A k-multicounter automaton A is a tuple A = (Q,Σ,∆, I, F)

where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is set of initial
states and F ⊆ Q is a set of final states. The transition relation is of the form
∆ ⊆fin (Q× Σ× Nk × Nk ×Q).

The automaton works as follows: it has k-counters, denoted by v̄ = (v1, . . . vk)

which hold non-negative integer values. The automaton starts in an initial state

11

Chapter 2. Preliminaries

with all its counters empty. During a transition the automaton can increment
or decrement some or all of the counters. If a counter holding the value zero is
decremented then the automaton halts erroneously.

Formally, a configuration of the machine is of the form (p, ū) where p ∈ Q

and ū ∈ Nk. The initial configurations are of the form (q0, 0̄), q0 ∈ I. Given a
configuration (p, ū) the automaton can go to a configuration (q, v̄) on letter a if
there is a transition (p, a, ¯vdec, ¯vinc, q) ∈ ∆ such that ū − ¯vdec ≥ 0̄ (pointwise) and
v̄ = ū − ¯vdec + ¯vinc. Finally, the automaton accepts if the state reached is final
and all the counters are zero. It is known that the non-emptiness problem for
multicounter automata and the reachability problem for Petri nets are equivalent
in terms of hardness [May81]. Though decidable, it is not known whether the
non-emptiness problem for multicounter automata is in elementary time.

We describe a weaker acceptance condition for multicounter automata which
is based only on the state of the accepting configuration. With this acceptance
condition, the configuration reached is final if the state of the configuration is final.
The problem of checking non-emptiness of a multicounter automaton with weak
acceptance is known to be Expspace-hard [Lip76].

2.2 Post’s Correspondence Problem

Below, we discuss a marvellous tool for showing undecidability results, namely
Post’s correspondence problem, in short PCP. Let Σ = {l1, l2, . . . lk} be a finite
alphabet. A PCP instance I = {(ui, vi) | 1 ≤ i ≤ n, ui, vi ∈ Σ+} is a finite set of
ordered pairs of non-empty strings over the alphabet Σ. A solution for I is a finite
sequence of integers i0, i1, . . . im, all of which are from the set {1, . . . n} such that,

ui0ui1 . . . uim = vi0vi1 . . . vim .

The following problem is undecidable: given a PCP instance I, does I have a
solution? The problem remains undecidable even when the length of each ui as
well as vi is at most two [HU79]. We employ this variant also for our proofs.

12

3
Automata for data words

3.1 Introduction

The theory of finite state automata over (finite) words is an area that is rich in
concepts and results, offering interesting connections between computability the-
ory, algebra, logic and complexity theory. Moreover, finite state automata provide
an excellent abstraction for many real world applications, such as string matching
in lexical analysis [HU79, ASU86], model checking finite state systems[CGP99] etc.

Considering that finite state machines have only bounded memory, it is a priori
reasonable that their input alphabet is finite. If the input alphabet were infinite,
it is hardly clear how such a machine can tell infinitely many elements apart. And
yet, there are many good reasons to consider mechanisms that achieve precisely
this.

Abstract considerations first: consider the set of all finite sequences of natural
numbers (given in binary) separated by hashes. A word of this language, for
example, is 100#11#1101#100#10101. Now consider the subset L containing all
sequences with some number repeating in it. It is easily seen that L is not regular, it
is not even context-free. The problem with L has little to do with the representation
of the input sequence. If we were given a bound on the numbers occurring in
any sequence, we could easily build a finite state automaton recognizing L. The
difficulty arises precisely because we do not have such a bound or because we have
‘unbounded data’. It is not difficult to find instances of languages like L occurring

13

Chapter 3. Automata for data words

naturally in the computing world. For example consider the sequences of all nonces
used in a security protocol run. Ideally this language should be L. The question
is how to recognize such languages, and whether there is any hope of describing
regular collections of this sort.

Note that we could simply take the set of binary numbers as the alphabet in
the example above: Γ = {#, 0, 1, 10, 11, . . .}. Now, L = {w = b0#b1# . . . bn | w ∈
Γ∗,∃i, j.bi = bj}. Note further that Γ itself is a regular language over the alphabet
{#, 0, 1}.

There are more concrete considerations that lead to infinite alphabets as well,
arising from two strands of computation theory: one from attempts to extend
classical model checking techniques to infinite state systems, and the other is the
realm of databases. Systems like software programs, protocols (communication,
cryptography, . . .), web services and alike are typically infinite state, with many
different sources of unbounded data: program data, recursion, parameters, time,
communication media, etc. Thus, model checking techniques are confronted with
infinite alphabets. In databases, the XML standard format of semi-structured data
consists of labelled trees whose nodes carry data values. The trees are constrained
by schemes describing the tree structure, and restrictions on data values are spec-
ified through data constraints. Here again we have either trees or paths in trees
whose nodes are labelled by elements of an infinite alphabet.

Building theoretical foundations for studies of such systems leads us to the
question of how far we can extend finite state methods and techniques to infinite
state systems. The attractiveness of finite state machines can mainly be attributed
to the easiness of several decision problems on them. They are robust, in the sense
of invariance under nondeterminism, alternation etc. and characterizations by a
plurality of formalisms such as Kleene expressions, monadic second order logic,
and finite semigroups. Regular languages are logically well behaved (closed under
boolean operations, homomorphisms, projections, and so on). What we would like
to do is to introduce mechanisms for unbounded data in finite state machines in
such a way that we can retain as many of these nice properties as possible.

In the last decade, there have been several answers to this question. We make
no attempt at presenting a comprehensive account of all these, but point to some
interesting automata theory that has been developed in this direction. Again,

14

Chapter 3. Automata for data words

while many theorems can be discussed, we concentrate only on one question, that
of emptiness checking, guided by concerns of system verification referred to above.

3.2 Languages of data words

Before we consider automaton mechanisms, we discuss languages over infinite al-
phabets. We will look only at languages of words but it is easily seen that similar
notions can be defined for languages of trees, whose nodes are labelled from an
infinite alphabet. We will use the terminology of database theory, and refer to
languages over infinite alphabets as data languages. However, it should be noted
that at least in the context of database theory, data trees (as in XML) are more
natural than data words, but as it turns out, the questions discussed here happen
to be considerably harder for tree languages than for word languages.

Customarily, the infinite alphabet is split into two parts: it is of the form Σ×Γ,
where Σ is a finite set, and Γ is a countably infinite set. Usually, Σ is called the
letter alphabet and Γ is called the data alphabet. Elements of Γ are referred to as
data values. We use letters a, b etc to denote elements of Σ and use d, d′ to denote
elements of Γ.

The letter alphabet is a way to provide ‘contexts’ to the data values. In the
case of XML, Σ consists of tags, and Γ consists of data values. Consider the
XML description: <name> “Tagore”</name>: the tag <name> can occur along with
different strings; so also, the string “Tagore” can occur as the value associated with
different tags. As another example, consider a system of unbounded processes with
states {b, w} for ‘busy’ and ‘wait’. When we work with the traces of such a system,
each observation records the state of a process denoted by its process identifier (a
number). A word in this case will be, for example, (b, d1)(w, d2)(w, d1)(b, d2).

A data word w is an element of (Σ × Γ)∗. A collection of data words L ⊆
(Σ×Γ)∗ is called a data language. In this thesis, by default, we refer to data words
simply as words and data languages as languages. As usual, by |w| we denote the
length of w.

Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word. The string projection of w,
denoted as str(w) = a1a2 . . . an, is the projection of w to its Σ components. Let

15

Chapter 3. Automata for data words

L∃n All data words in which at least n distinct data values occur.
L<n All data words in which every data value occurs at most n times.
La∗b∗ All data words whose string projections are in the set a∗b∗.
La All data values under the label a are different.
La→b All data values occurring under a occurs under b as well.
Ldd There is a data value which occurs in consecutive positions.

Figure 3.1: Sample data languages

i ∈ [n]. The data class of di in w is the set {j ∈ [n] | di = dj}. A subset of [n] is
called a data class of w if it is the data class of some di, i ∈ [n]. Note that the set
of data classes of w form a partition of [|w|].

We introduce in Figure 3.2 some example data languages which we will keep
referring to in the course of our discussion; these are over the alphabet Σ =

{a, b},Γ = N.

Let · denote concatenation on data words. For L ⊆ (Σ×Γ)∗, consider the Myhill
- Nerode equivalence on (Σ×Γ)∗ induced by L: w1 ∼L w2 iff ∀w ∈ (Σ×Γ)∗, w1 ·w ∈
L⇔ w2 · w ∈ L. The language L is said to be regular when ∼L is of finite index.
A classical theorem of automata theory equates the class of regular languages with
those recognized by finite state automata, in the context of languages over finite
alphabets.

It is easily seen that ∼La is not of finite index, since each singleton data word
(a, d) is distinguished from (a, d′), for d 6= d′. Hence we cannot expect a classical
finite state automaton to accept La; we need to look for another device, perhaps
an infinite state machine.

Indeed, for most data languages, the associated equivalence relation is of infinite
index. Is there a notion of recognizability that can be defined meaningfully over
such languages and yet corresponds (in some way) to finite memory? This is the
central question addressed in this and the following chapters.

16

Chapter 3. Automata for data words

3.3 Formulating an automaton mechanism

The first challenge in formulating an automaton mechanism is the question of
‘finite representability’. It is essential for a machine model that the automaton is
presented in a finite fashion. In particular, we need implicit finite representations of
the data alphabet. An immediate implication is that we need algorithms that work
with such implicit representations. Towards this, it is absolutely necessary that,
we consider only data alphabets Γ in which membership and equality are decidable.

Automata for words over finite alphabets are usually presented as working on
a read-only finite tape, with a tape head under finite state control. One detail
which is often taken for granted is the complexity of the tape head. Since we can
recognize a finite language (which is the alphabet!) by a constant-sized circuit the
computing power of the tape-head is inferior to that of the automaton.

In the case of infinite alphabets, the situation is different, and our assumption
about decidable membership and equality in Γ makes sense when we consider the
complexity of the tape head. For example, if we consider the alphabet as the encod-
ings of all halting Turing machines, the tape-head has to be a Σ0

1 machine, which is
obviously hard to conceive of as a machine model relevant to software verification.
Therefore, we see that our assumption needs tightening and we should require the
membership and equality checking in the alphabet to be computationally feasible.
In fact, we should also ensure that the language accepted by the automaton, when
restricted to a finite subset of the infinite alphabet, remains regular.

One obvious way of implementing finite presentations is by insisting that the
finite state automaton uses only finitely many data values in its transition relation.
However, when the only allowed operation on data is checking for equality of data
values, such an assumption becomes drastic: it is easily seen that having infinite
data alphabets is superfluous in such automata. Every such machine is equivalent
to a finite state machine over a finite alphabet.

Thus we note that infinite alphabets naturally lead us to infinite state systems,
whose space of configurations is infinite. The theory of computation is rich in such
models: pushdown systems, Petri nets, vector addition systems (VAS), Turing
machines etc. In particular, we are led to models in which we equip the automaton

17

Chapter 3. Automata for data words

with some additional mechanism to enable it to have infinitely many configurations.

This takes us to a striking idea from the 1960’s: “automata theory is the study
of memory structures”. These are structures that allow us to fold infinitely many
actions into finitely many instructions for manipulating memory, which can be part
of the automaton definition. These are storage mechanisms which provide specific
tools for manipulating and accessing data. Obvious memory mechanisms are regis-
ters (which act like scratch pads, for memorizing specific data values encountered),
stacks, queues etc.

One obvious memory structure is the input tape, which can be ‘upgraded’ to
an unbounded sequential read-write memory. But then it is easily noted that a
finite state machine equipped with such a tape is Turing-complete. On the other
hand, if the tape is read-only, the machine accepts all data data words whose string
projections belong to the letter language (subset of Σ∗) defined by the underlying
automaton. Clearly this machine is also not very interesting. We therefore look for
structures that keep us in between: those with infinitely many configurations, but
for which reachability is yet decidable. Note that such ambition is not unrealistic,
since Petri nets and pushdown systems are systems of this kind.

3.4 Register automata

The simplest form of memory is a finite random access read-write storage device,
traditionally called register. In Register automata [KF94], the machine is equipped
with finitely many registers, each of which can be used to store one data value.
Every automaton transition includes access to the registers, reading them before
the transition and writing to them after the transition. The new state after the
transition depends on the current state, the input letter and whether or not the
input data value is already stored in any of the registers. If the data value is not
stored in any of the registers, the automaton can choose to write it in a register.
The transition may also depend on which register contains the encountered data
value. The definition we present below is a close variant of the definition in [KF94].
In terms of complexity of decision problems and language acceptance they are
equivalent.

18

Chapter 3. Automata for data words

Definition 3.4.1. A k-Register automaton A is given by A = (Q,Σ,∆,⊥, q0, F),
where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set
of final states and ⊥ is the empty register symbol. The transition relation is
∆ ⊆ (Q× Σ× [k]×Q) ∪ (Q× Σ×Q× [k]). For p, q ∈ Q, a ∈ Σ, i ∈ [k], transi-
tions of the form (p, a, i, q) are called read transitions and transitions of the form
(p, a, q, i) are called write transitions.

The automaton A has k registers. ⊥ is used above to denote an uninitialized
register. A configuration of A is of the form (q, h) where q ∈ Q denotes the current
state and h : [k]→ (Γ ∪ {⊥}) is a function from [k] to (Γ ∪ {⊥}), such that if for
i 6= j, h(i) ∈ Γ and h(j) ∈ Γ then h(i) 6= h(j), representing the current register
configuration. For convenience, sometimes we identify the function h with the set
range(h) = ∪i{h(i)}, for instance by d ∈ h we mean that the data value d is in the
registers. The working of the automaton is as follows. Suppose that A is in state
p, with each of the registers i holding data value di, and its input is of the form
(a, d). Now there are two cases:

• If d 6= di for all i, then a register write is enabled and the automaton can
make a write transition (p, a, q, i) storing data value d in register i and the
next state becomes q.

• Suppose that d = di, for some i ∈ [k], and (p, a, i, q) ∈ ∆. Then this read
transition is enabled and when applying the transition, the registers are left
untouched and the next state becomes q.

A run of A on a data word w = (a1, d1)(a2, d2) . . . (an, dn) is a sequence γ =

(q0, h0)(q1, h1) . . . (qn, hn), where (q0, h0) is the initial configuration of A, and for
every i ∈ [n], there is a transition from (qi−1, hi−1) to (qi, hi) on (ai, di) in ∆. γ is
accepting if qn ∈ F . The language accepted by A, denoted L(A) = {w ∈ (Σ×Γ)∗ |
A has an accepting run on w}.

Observe that at any configuration all the data values stored in the registers are
different.

Example 3.4.2. Recall the language La mentioned earlier: it is the set of all data
words in which all the data values in context a are distinct. The language La can

19

Chapter 3. Automata for data words

q0 q1 qf
(a, read 1), (a,write 1)

(Σ, read 1)

(Σ,write 1)

(a, read 1)

(Σ, read 1)

(Σ,write 2)

(Σ, read 1), (Σ, read 2)

(Σ,write 2)

Figure 3.2: Register automaton accepting the language La.

be accepted by a 2-register automaton A = (Q = {q0, q1, qf},Σ,∆,⊥, q0, F = {qf}),
where ∆ consists of,

∆ =

{
(q0,Σ, 1, q0), (q0,Σ, q0, 1), (q0, a, 1, q1), (q0,Σ, q1, 1), (q1,Σ, 1, q1),

(q1,Σ, q1, 2), (q1, a, 1, qf), (qf ,Σ, 1, qf), (qf ,Σ, 2, qf), (qf ,Σ, qf , 2)

}

A works as follows. Initially A is in state q0 and stores new input data in the
first register. When reading the data value with label a, which appears twice, A
changes the state to q1 nondeterministically and waits there storing the new data
in the second register. When the data value stored in the first register appears the
second time with label a, A changes state to qf and continues to be there.

The automaton is shown in the Figure 3.2.

Example 3.4.3. The language Ldd is accepted by a 1-register automaton A =

(Q = {q0, qf},Σ,∆, q0, F = {qf}) where

∆ =

{
(q0,Σ, 1, qf), (qf ,Σ, 1, qf)

(q0,Σ, q0, 1), (qf ,Σ, qf , 1)

}

The automaton (as shown in Figure 3.3) always stores the data values in the
register 1 and stays in state q0, if it sees a data value repeating it goes to state qf
and stays there.

Example 3.4.4. A finite state automaton is a 0-register automaton. Since a∗b∗

is regular, the language La∗b∗ is accepted by a register automaton.

20

Chapter 3. Automata for data words

q0 qf
(Σ, read 1)

(Σ,write 1) (Σ,write 1)

(Σ, read 1)

Figure 3.3: 1-Register automaton accepting the language Ldd

q0 . . . qi . . . qn
(Σ,write 1) (Σ,write i) (Σ,write i+ 1)

(Σ, read 1)
...

(Σ, read i)

(Σ,write n)

(Σ, read 1)
...

(Σ, read n)

Figure 3.4: n-Register automaton accepting the language L∃n

Example 3.4.5. The family of languages L∃n is accepted by n-register automata
with n + 1-states q0, . . . , qn (shown in Figure 3.4) in the following way. The au-
tomaton fills up the registers successively with new data values while keeping the
number of registers filled in the states. Finally it accepts the word if the state qn is
reached.

However, the languages L<n, La and La→b are not accepted by register au-
tomata. Below we see why it is so.

Note that a register automaton uses only finitely many registers to deal with
infinitely many symbols, and hence we get something analogous to the pumping
lemma for regular languages which asserts that a finite state automaton which
accepts sufficiently long words also accepts infinitely many words. Suppose there
are k registers and the automaton sees k+1 data values; since the only places where
it can store these data values are in the registers, it is bound to forget one of the
data values. This is made precise by the following lemma. Again, our formulation
is slightly different from the corresponding lemma in [KF94].

21

Chapter 3. Automata for data words

Lemma 3.4.6. If a k-register automaton A accepts any word at all, then it accepts
a word containing at most k + 1 distinct data values.

Proof. Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word accepted by A and ρ =

(q0, h0)(q1, h1) . . . (qn, hn) be an accepting run of A on w. If the size of the set
D = {d1, . . . , dn} is k + 1 then the claim is proved else let D′ ⊂ D be a subset
of size k + 1. For register configuration h and data values d1, d2, we denote by
h[d1/d2] the register configuration obtained from h by replacing d1 by d2. Let,

w′ = (a1, d
′
1)(a2, d

′
2) . . . (an, d

′
n)

ρ′ = (q0, h0)(q1, h
′
1) . . . (qn, h

′
n),∀i ≥ 1, h′i = hi[di/d

′
i]

where d′i ∈ D′ and d′i ∈ h′i−1 if and only if di ∈ hi−1. We show by induction on
n that A has a run ρ′ on w′ as follows. For the base case, fix d′1 = d1 and D′ ⊆ D

such that d1 ∈ D′ and trivially (q0, h0) (q1, h1) satisfies the conditions. For the
inductive step assume that there is a partial sequence (a1, d

′
1)(a2, d

′
2) . . .

(
ai−1, d

′
i−1

)
and (q0, h0)(q1, h

′
1) . . . (qi−1, h

′
i−1) satisfying the above conditions. Assume di is

stored in register j in hi−1, that is hi−1(j) = di. We define d′i to be h′i−1(j) = d and
h′i = hi[di/d]. If di is not in hi−1 then we choose a data value d ∈ D′ not appearing
in h′i−1 and define d′i = d. Observe that in both these cases the conditions are
preserved. However, in order to show that w′ is accepted by A, it remains to be
proved that ρ′ = (q0, h

′
0)(q1, h

′
1) . . . (qn, h

′
n) is an accepting run for w′. We prove

this using induction again. For the base case it is trivial. For the inductive step,
assume di is in hi−1 in which case there is a read transition (qi−1, ai, j, qi) where
hi−1(j) = di. Since d′i is in h′i−1 the same transition is enabled at

(
qi−1, h

′
i−1

)
.

Similarly, if di is not in hi−1 there is a write transition (qi−1, ai, qi, j). Since d′i is
also not in h′i−1 the same transition is enabled at

(
qi−1, h

′
i−1

)
. This completes the

proof.

Note that the language La requires unboundedly many data values to occur
with a, and hence by the above lemma, it cannot be recognized by any register
automaton. On the other hand, since L̄a can be accepted by a register automa-
ton, we see that languages recognized by register automata are not closed under

22

Chapter 3. Automata for data words

complementation. As this suggests, non-deterministic register automata are more
powerful than deterministic ones.

While the lemma demonstrates a limitation of register machines in terms of
computational power, it also shows the way for algorithms on these machines.

Theorem 3.4.7. Emptiness checking of register automata is decidable.

Proof. Let A be a register automaton with k registers, which we want to check for
emptiness. Let D′ ⊆ Γ, |D′| = k + 1 be a subset of Γ containing k + 1 different
values. We claim that L(A) 6= ∅ if and only if L(A) ∩ (Σ × D′)∗ 6= ∅. The if
direction is trivial. The other direction follows from the preceding lemma. Thus a
classical finite state automaton working on a finite alphabet can be employed for
checking emptiness of A.

The emptiness problem for register automata is in np, since we can guess a word
of length polynomial in the size of the automaton and verify that it is accepted. It
has also been shown that the problem is complete for np in [SI00]. The problem
is no less hard for the deterministic subclass of these automata. Though, as we
mentioned earlier, register automata are not closed under complementation, they
are closed under intersection, union, Kleene iteration and homomorphisms.

There are many extensions of the register automaton model. An obvious one is
to consider two-way machines: interestingly, this adds considerable computational
power and the emptiness problem becomes undecidable[NSV04, KF94, Zei06].

The word problem for register automata are NP-complete, while for determin-
istic register automata it is P-complete[SI00].

3.5 Data and Class Memory automata

The weakness of register automata arises from its finite memory. A way to over-
come this is by allowing unbounded memory and hashtables provide an easy mech-
anism for providing that. Below we discuss an equivalent formulation of such an
automaton.

23

Chapter 3. Automata for data words

A Data automaton [BDM+11] is a composite automaton consisting of a finite
state transducer B and a finite state automaton C. They use an internal alphabet
Σ′ for communication. Formally:

Definition 3.5.1. A data automaton is a tuple A = (B,C) where B is a finite
state transducer, given by the tuple B = (Qb,Σ,Σ

′,∆b, Ob, Ib, Fb), with input al-
phabet Σ and output alphabet Σ′. The automaton C = (Qc,Σ

′,∆c, Ic, Fc) is a finite
state auotmaton with alphabet Σ′.

A run ρ of a data automaton on data word w is defined in the following manner;
Let w′ = a1 . . . an be the string projection of w. Let ρB = δ1 . . . δn ∈ ∆∗b be a run
of B on w′. The run ρB uniquely defines an output word w′′ = Ob(δ1) . . . Ob(δn)

(See section 2.1.2). Let D(w) be the set of data values occurring in w and let
w′′d be the subword of w′′ formed by the positions labelled by d ∈ D(w). For
each d ∈ D(w), let ρd be a run of the automaton C on w′′d . Define the run ρ as
(ρB, {ρd | d ∈ D(w)}). We say ρ is successful if (1) ρB is a successful run of B on
w′ (2) For each d ∈ D(w), ρd is a successful run of C on w′′d .

Example 3.5.2. The language La is easily accepted by the following way. The
intermediate alphabet is Σ itself. The transducer B is a copy machine, copies
every letter to the output. The automaton C accepts the language Σ∗aΣ∗aΣ∗. It
is clear that if in w there is a class with at least two a’s then C cannot have a
successful run over that class.

Example 3.5.3. For accepting the language Ldd, choose the intermediate alphabet
to be {0, 1}. While reading the string projection the transducer B chooses two
consecutive positions and label them by ‘1’, all other positions are labelled ‘0’. The
automaton C accepts the language 0∗10∗10∗ + 0∗. Note that the automaton C

specifies that in each class either all positions are labelled ‘0’ or there are exactly
two positions with label ‘1’. Since the transducer B outputs ‘1’ on two positions,
there is atleast one class which contains a ‘1’ and because of C that class contains
two ‘1’s. Finally, since B outputs exactly two ‘1’s on consecutive positions it can
be inferred that there exist consecutive positions labelled with the same data value.

Example 3.5.4. The language L<n is accepted in the following way. Again, the
transducer B is a copy machine and the internal alphabet is Σ. The finite state
automaton C accepts the language Σ0 ∪ Σ1 . . . ∪ Σn.

24

Chapter 3. Automata for data words

Example 3.5.5. In the case of La∗b∗ the automaton B accepts the language a∗b∗

and C is a machine accepting all strings.

Example 3.5.6. For the language La→b, the automaton B is a copy machine.
Automaton C accepts the language (a∗ba∗)∗ which is the set of strings w such that
w contains a ‘b’ if it contains an ‘a’.

Now, we give the definition of the finite state automaton equipped with a hash
table called Class Memory Automaton (shortly CMA) [BS10].

Definition 3.5.7. A class memory automaton is a tuple A = (Q,Σ,∆, q0, F`, Fg)

where Q is a finite set of states, q0 is the initial state and Fg ⊆ F` ⊆ Q are the
sets of global and local accepting states respectively. The transition relation is
∆ ⊆ (Q× Σ× (Q ∪ {⊥})×Q).

The class memory automaton is equipped with a hashtable h which maps from
the set of data values Γ to a finite set of hash values. The working of the automaton
is as follows. The finite set of hash values is simply the set of automaton states.
A transition of the form (p, a, s, q) on input (a, d) stands for the state transition of
the automaton from p to q when the hash value for d is s, as well as the updating
of the hash value for d from s to q. The acceptance condition has two parts. The
global acceptance set Fg is as usual: after reading the input the automaton state
should be in Fg. The local acceptance condition refers to the state of the hash
table: the image of the hash function should be contained in F`. Thus acceptance
depends on the memory of the data encountered.

Formally, a hash function is a map h : Γ → (Q ∪ {⊥}) such that h(d) = ⊥
for all but finitely many data values. h holds the hash value (the state) which
is assigned to the data value d when it was read the last time. A configuration
of the automaton is of the form (q, h) where h is a hash function. The initial
configuration of the automaton is (q0, h0) where h0(d) = ⊥ for all d ∈ Γ.

Transition on configurations is defined as follows: a transition from a configu-
ration (p, h) on input (a, d) to (q, h′) is enabled if (p, a, h(d), q) ∈ ∆, and

h′(d′) =

{
q if d = d′.

h(d′) if d 6= d′.

25

Chapter 3. Automata for data words

A run of CMA A on a data word w = (a1, d1)(a2, d2) . . . (an, dn) is, as usual, a
sequence γ = (q0, h0)(q1, h1) . . . (qn, hn), where (q0, h0) is the initial configuration of
A, and for every i ∈ [n], there is a transition from (qi−1, hi−1) to (qi, hi) on (ai, di)

in ∆. γ is accepting if qn ∈ Fg and for all d ∈ Γ, hn(d) ∈ Fl ∪ {⊥}. The language
accepted by A, denoted L(A) = {w ∈ (Σ× Γ)∗ | A has an accepting run on w}.

Example 3.5.8. The language La can be accepted by the following class memory
automaton A = (Q,Σ,∆, q0, Fl, Fg) where Q = {q0, qa, qb} and ∆ contains the tu-
ples {(p, a,⊥, qa), (p, b,⊥, qb), (p, b, qa, qa), (p, b, qb, qb), (p, a, qb, qa) | p ∈ {q0, qa, qb}}.
Fl is the set {qa, qb} and Fg is the set Q. The idea is that for each class the automa-
ton remembers if it has seen an ‘a’ by means of the hash function. A run terminates
erroneously if in a class a second ‘a’ is seen. Finally the run is successfull if all
classes terminates in the local final state qb.

q0 qa qb
(a,⊥)

(b,⊥)

(b, qa)

(a,⊥)

(b,⊥)

(a, qb)

(a,⊥)

(b,⊥)
(b, qa)

(b, qb)

Figure 3.5: CMA accepting the language La.

The automaton is shown in the Figure 3.5. The local accepting states are shown
in red, while global accepting states are circled.

Example 3.5.9. The language La→b is accepted by CMA in the following fashion
(shown in the Figure 3.6). The automaton has three states q0, qa, qb where q0 is
the initial state. For each class if the hash function carries the state qa then it
indicates that so far in the class only ‘a’ has appeared. Similarly if the hash function
indicates qb then it denotes that the class contains at least one ‘b’. The automaton
updates the hash function by appropriately changing states on each pair. Finally
the automaton accepts if all the classes end in the local final state qb.

26

Chapter 3. Automata for data words

q0 qa qb
(a,⊥)

(b,⊥)

(a, qa)

(b, qa)

(b,⊥)

(a,⊥)

(b,⊥)

(a,⊥)

(b, qa)

(Σ, qb)

Figure 3.6: CMA accepting the language La→b.

Example 3.5.10. The language Ldd is accepted by a three state CMA (shown in
the Figure 3.7) in the following way. The automaton starts in the initial state q0.
At some point during the run nondeterministically the automaton changes state to
q1. The automaton checks if the following data value is the same by checking the
hash function (if it is the case then the state associated with the data value should
be q1) and then moves to the final state qf . The local final states are irrelevant in
this case.

q0 q1 qf

(Σ,⊥),

(Σ, q0),

(Σ,⊥)

(Σ, q0)

(Σ, q1)

(Σ, Q)

(Σ,⊥)

Figure 3.7: CMA accepting the language Ldd.

The following two important properties of CMA are proved in [BS10].

Theorem 3.5.11 ([BS10]). CMA and Data automata are expressively equivalent.
The translations from CMA to Data automata and vice versa are in P.

Theorem 3.5.12 ([KF94, BS10]). Register automata are strictly less powerful than
CMA in terms of expressiveness.

Next we discuss the emptiness problem for CMA, which follows from the de-
cidability of Data automata. Here we give a proof of the same fact.

27

Chapter 3. Automata for data words

Theorem 3.5.13 ([BDM+11, BS10]). The emptiness problem for CMA is decid-
able.

Proof. Let A = (Q,Σ,∆, q0, Fl, Fg) be a given CMA. We construct a Petri net NA

and a set of configurations MA such that A accepts a string if and only if NA can
reach any of MA.

Define NA = (S, T, F) where S = Q ∪ {qc | q ∈ Q}, and the transition relation
T is as follows. For each δ = (p, a, s, q) where s 6= ⊥ we add a new transition
tδ such that •tδ = {p, sc} and t•δ = {q, qc}. For each δ = (p, a,⊥, q) where we
add a new transition tδ such that •tδ = {p} and t•δ = {q, qc}. We add additional
transitions t(p,q) for each p ∈ Fg, q ∈ Fl such that •t(p,q) = {p, qc} and t•(p,q) = {p}.
The flow relation is defined accordingly.

The initial marking of the net is M0 where q0 has a single token and all other
places are empty. MA is the set of configurations in which exactly one of q ∈ Fg
has a single token and all other places are empty.

The details are routine. The place qc keeps track of the number of data values
with state q. Using induction it can be easily shown that a run of the automaton
gives a firing sequence in the net and vice versa. Finally when we reach a global
state we can use the additional transitions to pump out all the tokens in the local
final states. The only subtlety is that the additional transitions in the net can be
used even before reaching an accepting configuration in the net, in which case it
amounts to abandoning certain data classes in the run of the automaton (these are
data values which are not going to be used again).

Thus emptiness for CMA is reduced to reachability in Petri nets which is known
to be decidable. As it happens, it is also as hard as Petri net reachability[BDM+11].
Since the latter problem is not even known to be elementary, we need to look for
subclasses with better complexity. CMA are not closed under complementation,
but they are closed under union, intersection, homomorphisms. It also happens
that they admit a natural logical characterization to which we will return later.

The word problem for CMA is NP-complete and the complexity remains the
same for the deterministic subclass as well [BS10].

28

Chapter 3. Automata for data words

3.6 Discussion

In this chapter we saw two popular automaton models for data words, Register and
Class Memory automata. While lacking in expressive power register automata have
decision problems of relatively low complexity. Class memory automata, on the
other hand, have better expressive power but their decision problems are of very
high complexity. In the next chapter we discuss a model which falls between these
classes both in terms of expressive power and complexity of decision problems.

29

4
Class counting automata

4.1 Introduction

In this chapter we introduce Class Counting Automata, an extension of finite
state automata with counters. We show that the non-emptiness problem for these
automata is decidable in elementary time. We also study several extensions of
these automata and the complexity of their decision problems. The contents of
this chapter appeared in [MR11].

4.2 Class counting automata

A constraint ϕ(x) is a univariate inequality of the form x ≤ e or x ≥ e, where
e ∈ N. When v ∈ N, we say v |= ϕ(x) if ϕ(v) holds. For convenience, often we
denote the constraints as c, c1, Let C denote the set of all constraints. Define
a bag to be a finite set h ⊆ (Γ×N) such that whenever (d, n1) ∈ h and (d, n2) ∈ h,
we have: n1 = n2. Thus h defines a partial function from Γ to N which is defined
on a finite subset of Γ. By convention, we implicitly extend it to a total function
on Γ by considering h to represent the set h′ = h∪{(d, 0) | d 6∈ Domain(h)}. Hence
we (ab)use the notation h(d) = n for a bag h. Let B denote the set of bags. Note
that the notation h⊕ (d, n) now stands for the bag h′ = (h− ({d}×N))∪{(d, n)}.

The automaton we present below includes a bag of infinitely many monotone
counters, one for each possible data value. When it encounters a letter - data

30

Chapter 4. Class counting automata

pair, say (a, d), the multiplicity of d is checked against a given constraint, and
accordingly updated, the transition causing a change of state, as well as possible
updates for other data as well. We can think of the bag as a hash table, with
elements of Γ as keys, and counters as hash values. Transitions depend only on
hash values (subject to constraints) and not keys.

Below, let Inst = {inc, reset} stand for the set of instructions. We use variables
π, π1, . . . to represent the instructions. Each instruction takes a natural number
as an argument. The inc instruction with argument k tells the automaton to
increment the counter by k, whereas reset with argument k asks for a reset to the
value k. Note that the instruction (inc, 0) says that we do not wish to make any
update, and (inc, 1) causes a unit increment; we use the notation [0] and [+1] for
these instructions below.

Definition 4.2.1. A class counting automaton, abbreviated as CCA, is a tuple
CCA = (Q,Σ,∆, I, F), where Q is a finite set of states, I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states. The transition relation is given by:
∆ ⊆fin (Q× Σ× C × Inst× N×Q).

Representation of constants: We note here that the constants in the definition
of the automata are represented in unary. The mode of representation of numbers
turns out to be crucial for the upper bound of the emptiness problem.

Let A be a CCA. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.
An initial configuration of A is given by (q0, h0), where q0 ∈ I and h0 is the empty
bag; that is, ∀d ∈ Γ, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence
γ = (q0, h0)(q1, h1) . . . (qn, hn) such that (q0, h0) is an initial configuration and for
each 1 ≤ i ≤ n there exists a transition ti = (q, a, c, π,m, q′) ∈ ∆ such that q = qi,
q′ = qi+1, a = ai+1 and:

• hi(di+1) |= c.

• hi+1 is given by:

hi+1 =

{
hi ⊕ (di+1,m

′) if π = inc,m′ = hi(di+1) +m

hi ⊕ (di+1,m) if π = reset

31

Chapter 4. Class counting automata

γ is an accepting run above if qn ∈ F . The language accepted by A is given by
L(A) = {w ∈ (Σ× Γ)∗ | A has an accepting run on w}. L ⊆ (Σ× Γ)∗ is said to be
recognizable if there exists a CCA A such that L = L(A). Note that the counters
are either incremented or reset to fixed values.

If the configuration c2 = (q2, h2) is reachable from c1 = (q1, h1) on (a, d) we
denote it by c1 `(a,d) c2. Extending this notion further if c2 is reachable from c1

on the data word w we denote it by c1 `w c2. We first observe that CCA runs
have some useful properties. To see this, consider a bag h and d1, d2 ∈ Γ, d1 6= d2

such that at a configuration (q, h), we have two transitions enabled on inputs
(a1, d1) and (a2, d2) leading to configurations (q1, h1) and (q2, h2) respectively, that
is (q, h) `(a1,d1) (q1, h1) and (q, h) `(a2,d2) (q2, h2). Notice that for any condition c,
if h(d2) |= c then so also h1(d2) |= c. Similarly, for any condition c′, if h(d1) |= c′

then so also h2(d1) |= c′. Thus when we have distinct data values, tests on them
do not “interfere” with each other. We can extend this observation further: given
data words u and v such that the data values in u are pairwise disjoint from those
in v, if we have a run from (q, h) on u to (q, h1) and on v from (q, h1) to (q′, h2),
then there is a configuration (q′, h′) and a run from (q, h) on v to (q′, h′), that is;

(q, h) `u (q, h1) `v (q′, h2) =⇒ ∃h′ ∈ B, (q, h) `v (q′, h′)

This observation will be useful in the following.

Example 4.2.2. The language La is accepted by the CCA shown in Figure 4.1.
The CCA accepting this language is the automaton A = (Q,Σ,∆, {q0}, F) where
Q = {q0, q1}, q0 is the only initial state and F = {q0}. ∆ consists of:

∆ =

{
(q0, a, x = 0, [+1], q0), (q0, a, x = 1, [0], q1)

(q0, b, x ≥ 0, [0], q0), (q1,Σ, x ≥ 0, [0], q1)

}

The automaton works as follows. Whenever the automaton sees an ‘a’ it in-
creases the counter corresponding to the data value. On ‘b’ it does nothing. The
automaton moves to a non-final state if it sees an ‘a’ with the data value whose
corresponding counter value is 1.

Since the automaton above is deterministic, by complementing it, that is, set-

32

Chapter 4. Class counting automata

q0 q1

a, x = 1, [0]

a, x = 0, [+1]

b, x ≥ 0, [0]

a, x ≥ 0, [0]

b, x ≥ 0, [0]

Figure 4.1: CCA accepting the language La

q0 q1 qf
Σ, x = 0, [+1]

Σ, x = 0, [0]

Σ, x = 1, [0]

Σ, x ≥ 0, [0]

Figure 4.2: CCA accepting the language Ldd.

ting F = {q1}, we can accept the language La = “There exists a data value
appearing at least twice under a”.

Example 4.2.3. Since a finite state automaton can be viewed as a CCA which
does not increase its counters, the language La∗b∗ is recognizable by CCA.

Example 4.2.4. The language Ldd is accepted by a CCA in the following way
(shown in Figure 4.2). The automaton starts in the initial state q0 with all its
counters carrying value 0. Initially the automaton leaves the counters untouched.
At some point during the run the automaton nondeterministically increases the
counter value to 1 and moves to the state q1. In the next step the automaton
verifies that the counter corresponding to the current data value is 1 and if so the
automaton moves to the final state qf and stays there for the rest of the word.

Example 4.2.5. The family of languages L∃n is accepted by CCA with (n + 1)-
states q0, . . . , qn in the following way (depicted in Figure 4.3). Each fresh data
value is marked by increasing the counter corresponding to them and the number
of distinct data values is seen is kept in the state. Finally the word is accepted if
the number reaches n.

33

Chapter 4. Class counting automata

q0 . . . qi . . . qn
Σ, x = 0, [+1] Σ, x = 0, [+1] Σ, x = 0, [+1]

Σ, x > 0, [0]

Σ, x = 0, [+1]

Σ, x ≥ 0, [0]

Figure 4.3: CCA accepting the language L∃n

q0 q1

Σ, x = n, [0]

Σ, x < n, [+1] Σ, x ≥ 0, [0]

Figure 4.4: CCA accepting the language L<n

Example 4.2.6. The language L<n is accepted by a CCA in the following fashion
(shown in Figure 4.4). The automaton starts in the initial state q0 which is also
a final state. During the run the multiplicity of each data value is kept in the
counters. If for some data value the multiplicity exceeds n the automaton moves
to a non-initial state q1.

Example 4.2.7. Fix Σ to be {a}. Let the language L2 be: “There exists a data
value whose multiplicity is not two.”. The CCA accepting this language is the
automaton A = (Q,Σ,∆, q0, F) where Q = {q0, q1, q2, q3}, q0 is the only initial
state and F = {q1, q3}. ∆ consists of:

∆ =

(q0, a, x = 0, [+1], q1), (q0, a, x = 0, [0], q0), (q1, a, x = 1, [+1], q2),

(q1, a, x = 0, [0], q1), (q2, a, x = 2, [+1], q3), (q2, a, x = 0, [0], q2),

(q3, a, x ≥ 0, [0], q3)

The automaton is shown in the Figure 4.5. The idea is that the automaton chooses
non-deterministically a data value and faithfully counts its multiplicity, while keep-
ing the counters of other data values zero. Finally the automaton accepts the word,
if the current count is not two.

34

Chapter 4. Class counting automata

q0 q1 q2 q3
Σ, x = 0, [+1]

Σ, x = 0, [0]

Σ, x = 1, [+1]

Σ, x = 0, [0]

Σ, x = 2, [+1]

Σ, x = 0, [0] Σ, x ≥ 0, [0]

Figure 4.5: CCA accepting the language L2

But as we show below, its complement language, L2 = “All data values occur
exactly twice” is not recognizable. Thus, CCA-recognizable data languages are not
closed under complementation.

Proposition 4.2.8. The language L2 = “All data values occur exactly twice” is
not recognizable.

Proof. Suppose there is a CCA A with m states accepting this language. Consider
the data word

w = (a, d1)(a, d2) . . . (a, dm+1)(a, d1)(a, d2) . . . (a, dm+1)

Clearly, w ∈ L2. Therefore, there is a successful run of A on w. Then there is a
state q repeating in the suffix of length m+ 1. Let us say this splits w as u · v · v′,
such that the configuration after u is (q, h) and after v it is (q, h1). Then by the
remarks we made earlier, we can find an accepting run for u · v′ as well. But then
u · v′ is not in L2.

Proposition 4.2.9. CCA-recognizable data languages are closed under union and
intersection but not under complementation.

Proof. Closure under union is easily obtained by non-determinism. Closure under
intersection requires the use of more than one bag which we will discuss later.

The following observation will be useful for decision questions that follow.
Given a CCA A = (Q,Σ,∆, I, F) let m be the maximum constant used in ∆.
We define the following equivalence relation on N, e 'm+1 e′, e, e′ ∈ N iff e <
(m + 1) ∨ e′ < (m + 1) ⇒ e = e′. Note that if e 'm+1 e

′ then a transition is
enabled at e if and only if it is enabled at e′. We can extend this equivalence to

35

Chapter 4. Class counting automata

configurations of the CCA as follows. Let (q1, h1) 'm+1 (q2, h2) iff q1 = q2 and
∀d ∈ Γ, h1(d) 'm+1 h2(d).

Lemma 4.2.10. If c1, c2 are two configurations of the CCA such that c1 'm+1 c2,
then ∀w ∈ (Σ× Γ)∗, c1 `w c′1 =⇒ ∃c′2, c2 `w c′2 and c′1 'm+1 c

′
2.

Proof. Proof by induction on the length of w. For the base case observe that
any transition enabled at c1 is enabled at c2 and the counter updates respects the
equivalence. For the inductive case consider the word w · (a, d). By induction
hypothesis c1 `w c′1 =⇒ ∃c′2, c2 `w c′2 and c′1 'm+1 c

′
2. If c′1 `(a,d) c

′′
1 then using

the above argument there exists c′′2 such that c′2 `(a,d) c
′′
2 and c′′1 'm+1 c

′′
2.

In fact the lemma holds for any N ≥ m+ 1, where m is the maximum constant
used in ∆. This observation paves the way for proving the decidability of the
emptiness problem.

4.3 Decision problems

Since the space of configurations of a CCA is infinite, reachability is in general
non-trivial to decide. We now show that the emptiness problem is elementarily
decidable.

Theorem 4.3.1. The non-emptiness problem for CCA is Expspace-complete.

4.3.1 Upper bound

We reduce the emptiness problem of CCA to the covering problem on Petri nets
([Esp96]). For checking emptiness, we can omit the Σ labels from the configura-
tion graph; we are then left only with counter behavior. However since we have
unboundedly many counters, we are led to the realm of multi-counter automata,
or vector addition systems.

Definition 4.3.2. An ω-counter machine B is a tuple (Q,∆, I) where Q is a finite
set of states, I ⊆ Q is the set of initial states and ∆ ⊆fin (Q× C × Inst× N×Q).

36

Chapter 4. Class counting automata

A configuration of B is a pair (q, h), where q ∈ Q and h : N → N. The initial
configurations of B are of the form (q0, h0) where q0 ∈ I and h0(i) = 0 for all i in
N. A run of B is a sequence γ = (q0, h0)(q1, h1) . . . (qn, hn) such that for all i such
that 0 ≤ i < n, there exists a transition ti = (p, c, π,m, q) ∈ ∆ such that p = qi,
q = qi+1 and there exists j such that h(j) |= c, and the counters are updated in a
similar fashion to that of CCA.

The reachability problem for B asks, given q ∈ Q, whether there exists a run of
B from (q0, h0) ending in (q, h) for some h (“Can B reach q?”).

Lemma 4.3.3. Checking emptiness for CCA can be reduced to checking reachabil-
ity for ω-counter machines.

Proof. It suffices to show, given a CCA, A = (Q,Σ,∆, I, F), where F = {q},
that there exists a counter machine BA = (Q,∆′, I) such that A has an accepting
run on some data word exactly when BA can reach q. (When F is not singleton,
we simply repeat the construction.) ∆′ is obtained from ∆ by converting every
transition (p, a, c, π,m, q) to (p, c, π,m, q). Now, let L(A) 6= ∅. Then there exists a
data word w and an accepting run γ = (q0, h0)(q1, h1) . . . (qn, hn) of A on w, with
qn = q. Let g : N → Γ be an enumeration of data values. It is easy to see that
γ′ = (q1, h0 ◦ g)(q1, h1 ◦ g) . . . (qn, hn ◦ g) is a run of BA reaching q.

(⇐) Suppose that BA has a run η = (q0, h0)(q1, h1) . . . (qn, hn), qn = q. It can
be seen that η′ = (q0, h0 ◦g−1)(q1, h1 ◦g−1) . . . (qn, hn ◦g−1) is an accepting run of A
on w = (a1, d1) . . . (an, dn) where w satisfies the following. Let (p, c, π,m, q) be the
transition of BA taken in the configuration (qi, hi), and dk such that hi(dk) |= c.
Then by the definition of BA there exists a transition (p, a, c, π,m, q) in ∆. Then
it should be the case that ai+1 = a and di+1 = g(dk).

Proposition 4.3.4. Checking non-emptiness of ω-counter machines is decidable.

Let s ⊆ N, and c a constraint. We say s |= c, if for all n ∈ s, n |= c.

We define the following partial function Bnd on all finite and co-finite subsets
of N. Given s ⊆fin N, Bnd(s) is defined to be the least number greater than all
the elements in s. If s is a co-finite subset of N, Bnd(s) is defined to be Bnd(N\s).

37

Chapter 4. Class counting automata

Proof.

Pq0 Pq1 Pq2 Pq3 Pq4 Pq5

P1 P2 P3 P4 P5 P6 P7 P8

Figure 4.6: Transitions corresponding to (q0, x < 1, inc, 3, q2), (q0, x = 2, inc, 3, q2)
and (q4, x ≥ 6, inc, 1, q5).

Given an ω-counter machine B = (Q,∆, q0) let

mB = max{Bnd(s) | s |= c, c is used in ∆}.

It is worth noting that mB is of size O(|A|).

We construct a Petri net NB = (S, T, F,M0) where,

• S = {Pq | q ∈ Q} ∪ {Pi | i ∈ N, 1 ≤ i ≤ mB}.

• T is defined according to ∆ as follows. Let (p, c, π, n, q) ∈ ∆ and let i
be such that 0 ≤ i ≤ mB and i |= c. Then we add a transition t such that
•t = {Pp, Pi} and t• = {Pq, Pi′}, where (i) if π is inc then i′ = min{mB, i+n},
and (ii) if π is reset then i′ = min{mB, n}. Note that i can be zero, in which
case we add edges only for the places in {Pi | i ∈ [mB]}.

Formally we define T as follows. Given a transition δ = (p, c, π, n, q) ∈ ∆,
let I (δ) ⊆ ({0, 1, . . . ,mB} × {0, 1, . . . ,mB}) be the pairs (i, i′) such that,

I(δ) =

{
(i, i′) | i |= c, π = inc, i′ = min{mB, i+ n}
(i, i′) | i |= c, π = reset, i′ = min{mB, n}

}

38

Chapter 4. Class counting automata

Finally, T is defined as,

T =
⋃

δ=(p,c,π,n,q)∈∆

({Pp, Pi}, {Pq, Pi′}) | i 6= 0, i′ 6= 0, (i, i′) ∈ I(δ)

({Pp}, {Pq, Pi′}) | i′ 6= 0, (0, i′) ∈ I(δ)

({Pp, Pi}, {Pq}) | i 6= 0, (i, 0) ∈ I(δ)

({Pp}, {Pq}) | (0, 0) ∈ I(δ)

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(Pq0) = 1 and for all p in S, if
p 6= q0 then M0(Pp) = 0.

Let M be any marking of NB. We say that M is a state marking if there exists
q ∈ Q such that M(Pq) = 1 and ∀p ∈ Q such that p 6= q, M(Pp) = 0. When M
is a state marking, and M(Pq) = 1, we speak of q as the state marked by M . For
q ∈ Q, define Mf (Pq) to be set of state markings that mark q. It can be shown,
from the construction of NB, that in any reachable marking M of NB, if there
exists q ∈ Q such that M(Pq) > 0, then M is a state marking, and q is the state
marked by M .

We now show that the counter machine B can reach a state q iff NB has a
reachable marking which covers a marking in Mf (Pq). We define the following
equivalence relation on N, m 'mB

n iff (m < mB) ∨ (n < mB) ⇒ m = n. We
can lift this to the bags (in ω-counters) in the natural way: h 'mB

h′ iff ∀i (h(i) <

mB) ∨ (h′(i) < mB) ⇒ h(i) = h′(i). It can be easily shown that if h 'mB
h′ then

a transition is enabled at h if and only if it is enabled at h′.

Let µ be a mapping of B-configurations to NB-configurations as follows: given
χ = (q, h), define µ(χ) = Mχ, where

Mχ(Pp) =

1 iff p = q

0 iff p ∈ Q\{q}
|[i]| iff Pp = Pi

Above [i] denotes the equivalence class of i under 'mB

on N in h. Now suppose
that B reaches q. Let the resulting configuration be χ = (q, h). We claim that the

39

Chapter 4. Class counting automata

marking µ(χ) of NB is reachable (from M0) and covers Mf (Pq). Conversely if a
reachable marking M of NB covers Mf (Pq), for some q ∈ Q, then there exists a
reachable configuration χ = (q, h) of B such that µ(χ) = M .

From the claim it follows that checking reachability of q in B reduces to checking
reachability of a marking which covers M such that M(Pq) = 1 and for all other
places p, M(p) = 0.

(⇒) The proof is by induction on the length of the B-run. For the base case,
observe that µ(χ0) = M0, which is a state marking that marks q0. Assume that
for every run of length n the claim is true.

Suppose that χ = (q, f) is a configuration reachable in n steps, and that the
transition t = (q, c, π,m, q′) can be taken at χ on counter i such that f(i) |= c,
resulting in the configuration χ′ = (q′, f ′). By induction hypothesis there exists a
marking M such that µ(χ) = M . By definition of µ it is the case that M(Pq) = 1.

If f(i) = 0 then the transition t0 ∈ T with •t0 = {Pq} is enabled (since its only
input place, namely Pq contains a token) and is fired. In the resulting markingM ′,
if q 6= q′ then M ′(Pq) = 0 and M ′(Pq′) = 1, else M ′(Pq) = M(Pq) since Pq′ ∈ t•0. If
f(i) is updated to f ′(i) = 0 then t•0 = {Pq′}, which means the transition t did not
increment the counter i or reset it to zero. In which case for all u ∈ [mB] it is the
case that M ′(u) = M(u). Hence µ(χ′) = M ′. If f(i) is updated to f ′(i) > 0 then
t•0 = {Pq′ , Pv′} where v′ 'mB

f ′(i), in which case, M ′(Pv′) = M(Pv′) + 1 and for
all u ∈ [mB]\{v′} is the case that M ′(u) = M(u). Hence again µ(χ′) = M ′.

If f(i) > 0 then there exists v ∈ [mB] such that M(Pv) > 0 and v 'mB
f(i).

Then tv ∈ T with •tv = {Pq, Pv} is enabled and is fired. Again, in the resulting
marking M ′, if q 6= q′ then M ′(Pq) = 0 and M ′(Pq′) = 1, else M ′(Pq) = M(Pq),
since Pq′ ∈ t•v. If f(i) is updated to f ′(i) = 0 then M ′(Pv) = M(Pv) − 1 and for
all u ∈ [mB]\{v} it is the case that M ′(u) = M(u). Hence µ(χ′) = M ′. If f(i)

is updated to f ′(i) > 0 then t•0 = {Pq′ , Pv′} where v′ 'mB
f ′(i). In which case, if

v 6= v′ thenM ′(Pv) = M(Pv)−1,M ′(Pv′) = M(Pv′)+1 and for all u ∈ [mB]\{v, v′}
it is the case that M ′(u) = M(u). If v = v′ then for all u ∈ [mB] it is the case that
M ′(u) = M(u). Hence again, µ(χ′) = M ′.

Thus µ(χ′) is reachable from M in one step by firing t′.

(⇐) The proof in the other direction is similar. We do induction on the length

40

Chapter 4. Class counting automata

of theNB-marking sequence. For the base case, as in the previous case µ(χ0) = M0.
Assume that for every marking sequence of length n the claim is true.

We are considering only one case below; other cases follow similarly. Sup-
pose that M is a marking reachable in n steps, and that the transition tv =

({Pq, Pv}, {Pq′ , Pv′}) , q, q′ ∈ Q, v, v′ ∈ [mB] is enabled at M and is fired result-
ing in the marking M ′. By induction hypothesis there exists a B-configuration
χ = (q, f) such that µ(χ) = M . There exists an i ∈ N such that f(i) 'mB

v

since M(Pv) > 0. By construction, the transition tv was formed from a transition
t = (q, c, π,m, q′), t ∈ ∆ in B such that v |= c and therefore f(i) |= c. There-
fore the transition can be taken in B resulting in configuration χ′ = (q′, f ′) such
that updating f(i) with respect to π and m will result in a value f ′(i) which is
mB-equivalent to v′. This is by virtue of the construction of tv. Hence, µ(χ′) = M ′.

Since the covering problem for Petri nets is decidable, so is reachability for
ω-counter machines and hence emptiness checking for CCA is decidable.

Complexity of Emptiness checking: The decision procedure discussed above
runs in Expspace[Esp96], and thus we have elementary decidability. Note that the
representation of constants in unary is a crucial assumption about the Expspace

upper bound. When the constants are represented in binary, we do not know
whether the upper bound still holds.

4.3.2 Lower bound

We now show that the emptiness problem is also Expspace-hard. Effectively this
is a reduction of the covering problem again, but for technical convenience, we use
multicounter automata.

A k-multicounter automaton with weak acceptance is a tupleA= (Q,Σ,∆, q0, F)

where Q is a finite set of states, q0 ∈ Q is the initial state and F ⊆ Q is a set of final
states. The transition relation is of the form ∆ ⊆fin (Q×Σ×Nk ×Nk ×Q). The
two vectors in the transition specify decrements and increments of the counters.

The automaton works as follows: it has k-counters, denoted by v̄ = (v1, . . . vk)

which hold non-negative counter values. A configuration of the machine is of the

41

Chapter 4. Class counting automata

form (q, v̄) where q ∈ Q and v̄ ∈ Nk. The initial configuration is (q0, 0̄). Given
a configuration (q, v̄) the automaton can go to a configuration (q′, v̄′) on letter a
if there is a transition (q, a, ¯vdec, ¯vinc, q

′) such that v̄ − ¯vdec ≥ 0̄ (pointwise) and
v̄′ = v̄ − ¯vdec + ¯vinc. A final configuration is one in which the state is final.

The problem of checking non-emptiness of a multicounter automaton with weak
acceptance is known to be Expspace-hard [Lip76].

Any multicounter automatonM = (Q,Σ,∆, q0, F) can be converted to another
(in a “normal form”): M ′ = (Q′,Σ,∆′, q0, F) such that L(M) is non-empty if and
only if L(M ′) is non-empty and M ′ uses only unit vectors or zero vectors in its
transitions. A unit vector is of the form (b1, b2, . . . , bk) where there is a unique
i ∈ [k] such that bi = 1 and for j 6= i, bj = 0. That is M ′ decrements or increments
at most one counter in each transition.

∆′ is obtained as follows. Let t = (q, a, ¯vdec, ¯vinc, q
′). Let ū1, ū2, . . . , ūn be a

sequence of unit vectors such that ¯vdec = Σiūi and ū1
′, ū2

′, . . . , ūm
′ be a sequence

of unit vectors such that ¯vinc = Σiūi
′. We add intermediate states to rewrite t by

the following sequence of transitions,

(q, a, ū1, 0̄, q(t,ū1)), (q(t,ū1), a, ū2, 0̄, q(t,ū2)), . . . , (q(t,ūn), a, 0̄, ū1
′, q(t,ū1′)),

(q(t,ū1′), a, 0̄, ū2
′, q(t,ū2′)), . . . , (q(t, ¯um−1

′), a, 0̄, ūm
′, q′)

Lemma 4.3.5. L(M) is non-empty if and only if L(M ′) is non-empty.

Proof. By an easy induction on the length of the run. It is easy to see that for
every accepting run ρ of M we have an accepting run ρ′ of M ′, this is achieved
by replacing every transition t in the run ρ by the corresponding sequence of
transitions. For the reverse direction, we need to show that every run accepting
run ρ′ of M ′ can be translated to an accepting run ρ of M . This is possible since
the intermediate states added to obtain the transitions in M ′ are unique for each
transition t in M . Hence for every sequence of transitions taking M ′ from q1 to q2

where q1, q2 ∈ Q there is a unique transition t which takes M from q1 to q2. By
doing an induction on the number of states occurring in ρ′ which are from Q we
can show that there is a valid run ρ which is accepting.

42

Chapter 4. Class counting automata

Next we convertM ′ to a CCA thus establishing a lower bound of Expspace for
the emptiness problem. Let M ′ = (Q,Σ,∆, q0, F) be a k-multicounter automaton
in normal form. We construct the automaton A = (Q,Σ,∆A, q0, F). Let t =

(q, a, ū, ū′, q′) where ū, ū′ are either unit or zero vectors. If ū is the i-th unit vector
and ū′ is a zero vector, we add a transition tA = (q, a, (x = i), (reset, 0), q′) to
∆A. If ū is the i-th unit vector and ū′ is the j-th unit vector, we add a transition
tA = (q, a, (x = i), (reset, j), q′) to ∆A. If ū is a zero vector and ū′ is the j-th unit
vector, we add a transition tA = (q, a, (x = 0), (reset, j), q′) to ∆A.

Lemma 4.3.6. L(M ′) is non-empty if and only if L(A) is non-empty.

Proof. The proof is by induction on the length of the run. First we define a
mapping from configurations of A to configurations ofM ′ in the following manner,
µ((q, h̄)) = (q, v̄) where vi = |{j | h̄(j) = i}|. We show, by induction on the length
of the run, that for every configuration χ reachable by A there is a configuration
ψ of M ′ such that µ(χ) = ψ and conversely for every configuration ψ reachable by
M ′ there is a configuration χ reachable by A such that µ(χ) = ψ.

For the base case, it is evident that µ((q0, h̄0)) = (q0, 0̄).

Suppose that χ = (q, h̄) is a configuration reachable in l steps, and that the
transition t = (q, a, x = j, (reset, i), q′) is enabled at χ. Therefore there is a counter
holding the value j. By induction hypothesis there exists a configuration ψ such
that µ(χ) = ψ = (q, v̄) such that vj > 0. After the transition t, the number of
counters holding the value j decreases by one and the number of counters hold-
ing the value i increases by one (if i 6= 0). This is achieved by the transition
(q, a, ūj, ūi, q

′) in ∆′, preserving the map µ.

Conversely, suppose a configuration ψ = (q, v̄) is reachable by M ′ in l steps.
Then by induction hypothesis we have a configuration χ reachable by the automa-
ton A such that µ(χ) = ψ. Suppose a transition t′ = (q, a, ūi, ūj, q

′) is enabled in
ψ resulting in ψ′.

Consider the case where ūi 6= 0̄ and ūj 6= 0̄. By construction t′ is obtained from
a transition t = (q, a, (x = i), reset, j, q′). We choose the smallest counter holding
the value zero and apply the transition t, resulting in ξ′ such that µ(ξ′) = ψ′. The
remaining cases are similar.

43

Chapter 4. Class counting automata

The reduction from M to M ′ is not in polynomial time when the constants in
the transitions of the Multicounter automata are encoded in binary. However, we
observe that the Expspace-hardness for covering problem from [Esp96, Lip76] can
be obtained with updates restricted to the values −1, 0 and 1. Hence, the lower
bound extends to the scenario where the constants are represented in binary.

4.3.3 Word problem

Since emptiness checking is of such high complexity, one may wonder whether the
model is complex enough to render even the word problem to be hard: the simplest
algorithmic question of how one can check whether a given word is accepted or not.
The important thing to note is that during a run, the size of the configuration is
bounded by the length of the input data word. Therefore a non-deterministic Tur-
ing machine can easily guess a path in polynomial time and check for acceptance.
Hence the word problem is easily seen to be in NP. Interestingly, it turns out to
be NP-hard as well.

Theorem 4.3.7. The word problem for CCA is NP -complete.

Proof. The proof is by reduction of the satisfiability problem for 3-CNF formulas
to the word problem for CCAs. Given the 3-CNF formula, we code it up as
a data word, where data values are used to remember the identity of literals in
clauses. We use a two letter alphabet with +,− indicating whether a propositional
variable occurs positively or negatively. Data values stand for the propositional
variables themselves. Thus a pair (+, d1) asserts that the first boolean variable
occurs positively.

We show the coding by an example, let ϕ ≡ (p1 ∨ ¬p3 ∨ p4) ∧ (¬p2 ∨ p5 ∨
p1) ∧ (¬p3 ∨ ¬p4 ∨ p5), we construct the corresponding word over the alphabet
{+,−,#} × Γ,

w = (+, d1)(−, d3)(+, d4)(#, d)(−, d2)(+, d5)(+, d1)(#, d)(−, d3)(−, d4)(+, d5)(#, d)

The non-deterministic automaton checks satisfiability in the following way. Every
time the automaton encounters a new data value (representing a propositional

44

Chapter 4. Class counting automata

variable), the automaton non-deterministically assigns a boolean value and stores
it in the counter (1 for ⊥ and 2 for >) corresponding to the data value, in the
future whenever the same data value occurs the counter is consulted to obtain the
assigned value to the propositional variable. The automaton evaluates each clause
and carries the partial evaluation in its state. Finally the automaton accepts the
word if the formula evaluates to >.

4.4 Extensions and subclasses

We observe that the model admits many extensions, without substantially affecting
the main decidability result.

4.4.1 Deterministic CCA

To define the deterministic subclass of CCA, we need a way of ensuring that
nondeterminism is only on Q. Towards this, we say that two constraints c1 and
c2 are non-intersecting if there does not exist v ∈ N such that v |= c1 and v |= c2.
Observe that any automaton can be converted to an automaton in which the
transitions are such that:

• If (q, a, c1, π1,m1, q1) ∈ ∆, (q, a, c2, π2,m2, q2) ∈ ∆ and c1 6= c2, then c1 and
c2 are non-intersecting.

An automaton A is a deterministic class counting automaton (DCCA) if it is
a CCA with the property mentioned above and whenever (q, a, c, π1,m1, q1) ∈ ∆

and (q, a, c, π2,m2, q2) ∈ ∆, we have π1 = π2,m1 = m2 and q1 = q2. Since the size
of the configuration is bounded by the size of the data word, the word problem of
DCCA is in P. Also by an easy reduction from Monotone-CVP we can show that
the problem is P-hard.

Proposition 4.4.1. The word problem for DCCA is P -complete.

Proof. It is easy to see that the size of the configuration of an automaton on a word
is bounded by the length of the word. Hence checking membership is polynomial

45

Chapter 4. Class counting automata

time in the length of the word, hence in P. For completeness we reduce the circuit
valuation problem (CVP) to the membership problem of a CCA. Circuit valuation
problem asks the following question; Given a circuit C and a valuation V , does the
circuit evaluate to >? We assume that the circuit is presented in a topologically
sorted order. For example, let the circuit be

c0 = p0 ∨ ¬p1, c1 = ¬p0 ∧ p2, C = c0 ∨ c1

and the valuation be (p0, 0), (p1, 1), (p2, 1). We construct a word w coding both
the circuit and the evaluation in the following way,

w = (⊥, d0)(>, d1)(>, d2)(; , d)(+, d0)(−, d1)(∨, c0)(−, d0)(+, d2)(∧, c1)(+, c0)(+, c1)(∨, C)

Here the data values d0, d1, . . . stand for the input variables and c0, c1, . . . repre-
sent the gates. The automaton works in two phases. In the first phase, before
encountering the letter ′;′ the automaton consults the letters from {>,⊥} to ini-
tialize the counter corresponding to the data values to either 1 (for ⊥) or 2 (for
>). Once the automaton reaches the letter ′;′ it moves on to the evaluation phase
where it evaluates each gate and stores the output value of the gate in the counter
corresponding to the data value denoting the gate. Computing the output value
of a gate depends on the value of the input values (appropriated with their signs,
+ or −) and the type of gate (∨ or ∧. Finally the automaton accepts if the last
gate has value >.

The restriction of determinism makes DCCA strictly weaker than CCA as
shown by the following proposition.

Proposition 4.4.2. The language Ldd is not accepted by any DCCA.

Proof. The proof is by contradiction. Assume Ldd is accepted by a DCCA with
m states. Consider the data word w = (a, d1)(a, d2) . . . (a, dn) such that all data
values are distinct and n = 2 ·m + 1. Let C0, C1, C2 . . . Cn be the unique run of
the automaton on w, where Ci = (qi, h̄i). By pigeonhole principle there are two
configurations Ci and Cj, 1 ≤ i < j ≤ n, such that qi = qj and h̄i(di) = h̄j(dj). Let
w �i= (a, d1)(a, d2) . . . (a, di) be the prefix of w of length i. Since w �j · (a, dj) ∈ Ldd,
there is a transition t enabled at Cj on (a, dj) such that Cj `t Cf , where Cf is

46

Chapter 4. Class counting automata

a final configuration. Since h̄i(di) = h̄j(dj) and all data values are distinct, t is
enabled at Cj on (a, di) also. Therefore the automaton accepts w �j · (a, di) as well,
though it is not in the language.

Recall that Ldd on the other hand is accepted by a register automaton. This
along with the fact that La is accepted by a DCCA (which is not accepted by
register automata) shows that;

Theorem 4.4.3. DCCA and Register automata are incomparable in terms of ex-
pressive power.

4.4.2 Many bags

Instead of working with one bag of counters, the automaton can use several bags
of counters, much as multiple registers are used in the register automaton. It is
easy to formally define CCA with k-bags, using k-tuples of constraints on guards.
An interesting fact is that a CCA with k-bags can be converted to a CCA with
one bag. This can be achieved because of the following:

• Any CCA, no matter how many bags it has, can be converted to a CCA
whose counter values are bounded (We take the maximum constant used
in ∆ and rewrite the transitions in such a way that we never increment a
counter once it reaches that value). This is a direct consequence of Lemma
4.2.10.

• A k-bag CCA whose counters are bounded can be simulated by a CCA with
one bag, by using a bit representation. Since the counters are bounded, we
know a priori how many bits are needed to represent each bag.

Now we are ready to show that CCA are closed under intersection.

Proposition 4.4.4. CCA are closed under intersection.

Proof. Given two CCA A1 and A2 with state spaces Q1 and Q2 respectively, we
construct a CCA A with two bags and state space Q1 ×Q2 such that A simulates
A1 and A2. The automaton utilizes its first bag for simulating A1’s counters and

47

Chapter 4. Class counting automata

second bag for A2’s counters. Now above discussion shows that A can be converted
to a CCA with only one bag and hence the proposition.

4.4.3 Checking any counter

Another strengthening involves checking for the presence of any counter satisfying
a given constraint and updating it. The idea is to extend the transitions to the
following form, t = (q, a, τ0, τ1, . . . , τn, q

′) where each τi ∈ C × Inst × N is of the
form (ci, πi,mi). The intended semantics of the transition is as follows. Suppose
that the current letter is a and data value is d0. The transition t is enabled if there
exist distinct data values d1, . . . , dn such that, for every i ∈ [n]0, di satisfies τi. On
the occurrence of t each di is updated with respect to τi. Note that in this way we
can modify the counter of a data value which is not the current data value.

Formally a CCA with context check, denoted CCAC, is a tuple (Q, n,∆, I, F),
where the transition relation is modified to be ∆ ⊆fin (Q× Σ× (C × Inst× N)n ×Q)

where n ∈ N.

Let A be a CCAC. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.
The initial configuration of A is given by (q0, h0), where h0 is the empty bag; that
is, ∀d ∈ Γ, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (am, dm), a run of A on w is a sequence
γ = (q0, h0)(q1, h1) . . . (qm, hm) such that q0 ∈ I and for all i, 0 ≤ i < m, there
exists a transition ti = (q, a, τ0, τ1, . . . , τn, q

′) ∈ ∆ where τj = (cj, πj,mj) such that
q = qi, q′ = qi+1, a = ai+1 and:

• hi(di+1) |= c0 and there exist distinct e1, . . . en in Γ such that for all j ∈
{1, . . . , n}, ej 6= di+1 and hi(ej) |= cj .

• hi+1 is given by:

hi+1 =

hi ⊕ (di+1,m

′) if π0 = inc,m′ = hi(di+1) +m0

hi ⊕ (di+1,m0) if π0 = reset

hi ⊕ (ej,m
′) if πj = inc,m′ = hi(ej) +mj

hi ⊕ (ej,mj) if πj = reset

48

Chapter 4. Class counting automata

We define ω-counter machines with context in a similar way: such a machine
is a tuple (Q,∆, q0) where Q is finite set of states, q0 is the initial state and
∆ ⊆fin (Q× (C × Inst× N)n ×Q). A run of an ω-counter machine with context is
defined analogously to that of CCA with context. We can then easily show that
checking emptiness for CCA with context can be reduced to checking reachability
for ω-counter machines with context.

Finally, the following proposition shows that checking emptiness of CCA with
context is decidable in Expspace.

Proposition 4.4.5. Checking non-emptiness of ω-counter machines with context
is decidable in EXPSPACE.

Proof. Given an ω-counter machine B = (Q,∆, q0), we define mB as in the proof
of Proposition 4.3.4.

We construct a Petri net NB = (S, T, F,M0) where,

• S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ mB}.

• T is defined according to ∆ as follows. Let t = (q, a, τ0, τ1, . . . , τn, q
′) be

a transition in ∆ where τj = (cj, πj,mj) and let i0, i1, . . . , in be such that
0 ≤ ij ≤ mB and ij |= cj. Then we add a transition t such that •t =

{p, i0, i1, . . . , in} and t• = {q, i′0, i′1, . . . , i′n} (take note of the fact that •t and
t• are multisets), where (i) if πj is inc then i′j = min{mB, ij + nj}, and (ii)
if πj is reset then i′j = min{mB, nj}. Note that ij can be zero, in which case
we add edges only for the places in [mB].

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if
p 6= q0 then M0(p) = 0.

The rest of the proof is similar to the proof of Proposition 4.3.4 with obvious
modifications.

Given a k-register automaton A = (Q,Σ,∆, I, F) we can construct a CCA with
context which accepts the language L(A).

49

Chapter 4. Class counting automata

The way the CCA A′ = (Q′,Σ,∆′, q′0, F
′) simulates the register automaton A

is as follows. The states of A′, namely the set Q′ = Q × {0, 1}k stores two kinds
of information, the current state of the automaton A and the registers which store
a data value (0 indicates the register is holding ⊥ and 1 indicates the register is
holding a data value). When a register write takes place, if the bit corresponding
to the written register is 0 it is updated to 1. The information that which data
value is in which register is stored in the counter corresponding to the data value.
This is done in the following manner. If the counter corresponding to a data
value d has value i, 1 ≤ i ≤ k, it means that the register i contains the data
value d. We also make sure that exactly one counter holds the value i at any
time. Suppose ∆ contains a read transition (p, a, i, q), we add the set of transitions
{((p, v̄), a, x = i, [0], (q, v̄)) | v̄ ∈ {0, 1}i−1×{1}×{0, 1}k−i−1}. Suppose ∆ contains
a write transition (p, a, q, i), we add the set of transitions ({p, v̄), a, (x ≥ 0), (y =

i), (reset, i), (reset, 0), (q, v̄′) | v̄ ∈ {0, 1}k, v̄′ = v̄ + ui} to ∆′ (ui is the i-th unit
vector). The initial state q′0 =

(
q0, 0

k
)
, and final states are F ′ = {(q, v̄) | q ∈ F, v̄ ∈

{0, 1}k}. We omit the proof here since it is straightforward. It follows that;

Proposition 4.4.6. Register automata are strictly weaker than CCA with context
in terms of expressiveness.

4.4.4 The language of constraints

The language of constraints can be strengthened. Previously, the constraints where
of the form x ≤ e or x ≥ e. Consider the following language, the language of
Presburger arithmetic. The terms in this language are given by the grammar,

t ::= 0 | 1 | t1 + t2 |x, x ∈ V

where V is a countably infinite set of variables. The formulas of this language are
given by:

ϕ ::= t1 ≤ t2 | ¬ϕ |ϕ1 ∨ ϕ2 | ∃x.ϕ.

The semantics is given as follows. The variables take natural numbers as their
values and + is interpreted as addition. We call a formula ϕ(x) with one free
variable, a Presburger constraint. We say that k ∈ N satisfies ϕ(x) if k |= ϕ(x).

50

Chapter 4. Class counting automata

Note that the set of numbers satisfying a constraint may be neither finite nor
co-finite. For example, the formula ∃y.y + y = x defines the set of even numbers.

Let Cp be the set of all Presburger constraints. We define CCA with Presburger
constraints, abbreviated as CCA + Presburger, as a tuple CCA = (Q,Σ,∆, I, F),
where the transition relation is modified to be ∆ ⊆fin (Q× Σ× Cp × Inst× N×Q).
The definitions of run and acceptance condition is defined in the obvious way.

A set of natural numbers D is eventually periodic iff there exists positive num-
bers m and p such that for all n greater than m, n ∈ D iff n + p ∈ D. From
[End72], we know that the set of numbers satisfying a Presburger constraint is
eventually periodic.

Using this, the decision procedure in Section 3 can be modified to check the
emptiness of CCA with Presburger constraints. As above, we define ω-counter ma-
chines with Presburger constraints: such a machine is a tuple (Q,∆, q0) where Q is
a finite set of states, q0 ∈ Q is the initial state and ∆ ⊆fin (Q× Cp × Inst× N×Q).
Runs are defined in the natural way.

We can then easily show that checking emptiness for CCA with Presburger
constraints can be reduced to checking reachability for ω-counter machines with
Presburger constraints. Then the following proposition shows that checking empti-
ness of CCA with Presburger constraints is decidable in Expspace.

Proposition 4.4.7. Checking non-emptiness of ω-counter machines with Pres-
burger constraints is in Expspace.

Proof. Given an ω-counter machine B = (Q,∆, q0), let c1, . . . cn be the constraints
used in ∆. From [End72], we know that c1, . . . cn are eventually periodic with the
pairs (m1, p1), . . . (mn, pn). We take m = m1 + . . .+mn and p as the least common
multiple of p1, . . . pn.

We construct a Petri net NB = (S, T, F,M0) where,

• S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ m+ p}.

• T is defined according to ∆ as follows. Let (p, c, π, n, q) ∈ ∆ and let i be such
that 0 ≤ i ≤ m+p and i |= c. Then we add a transition t such that •t = {p, i}
and t• = {q, i′}, where (i) if π is inc then i′ = min{i+n,m+(i+n−m) mod p},

51

Chapter 4. Class counting automata

and (ii) if π is reset then i′ = min{n,m + (n −m) mod p}. Note that i can
be zero, in which case we add edges only for the places in [mB].

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if
p 6= q0 then M0(p) = 0.

The rest of the proof is similar to the proof of Proposition 4.3.4 with obvious
modifications.

4.4.5 Two-way CCA

A two-way CCA is system (Q,Σ,∆, I, F), where Q, I, F are as usual, the transition
relation is ∆ ⊆fin (Q× Σ× C × Inst× N×Q× {L,R, S}). A configuration of A is
a triple (q, i, h), where q ∈ Q, i ∈ N and h ∈ B, where the variable i denotes the
position of the head. The initial configuration of A is given by (q0, 1, h0), where h0

is the empty bag; that is, ∀d ∈ Γ, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence
γ = (q0, i0, h0)(q1, i1, h1) . . . (ql, il, hl) such that q0 ∈ I and for all j, 0 ≤ j < l, there
exists a transition tj = (q, a, c, π,m, q′, µ) ∈ ∆ such that q = qj, q′ = qj+1, a = aij
and hj(dij) |= c. The resulting counter configuration hj+1 is defined as in the case
of CCA. Finally, the updated position of the head is determined in the following
way;

ij+1 =

ij − 1 if µ = L

ij + 1 if µ = R

ij if µ = S

We assume that the input word is wrapped with end markers so that if the
machine tries to go off the boundary of the word it halts erroneously. We say a
run is accepting if the machine halts in a final state.

As we will see below, the emptiness problem is undecidable for the two-way
extension of CCAs.

52

Chapter 4. Class counting automata

4.4.6 Alternating CCA

An alternating CCA is system (Q = Q∀]Q∃,∆, I), where Q, I,∆ are as usual.
Note that there is no designated set of final states; instead, the state set is parti-
tioned into a set of universal states Q∀ and a set of existential states Q∃. A con-
figuration of A is a tuple (q, h), where q ∈ Q and h ∈ B. The initial configuration
of A is given by (q0, h0), q0 ∈ I and h0 is the empty bag; that is, ∀d ∈ Γ, h0(d) = 0

and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), assume that the automaton is at
position i with configuration (qi, hi). We say that (qi+1, hi+1) is a valid successor
configuration if there exists a transition t = (q, a, c, π,m, q′, µ) ∈ ∆ such that
q = qi, q′ = qi+1, a = ai+1 and hi(di+1) |= c. The resulting counter configuration
hj+1 is defined as in the case of CCA.

We say that a configuration (q, h) is accepting if

1. q ∈ Q∀ and all of its valid successor configurations are accepting. (Note that
a configuration with no valid successor configurations is accepting.)

2. q ∈ Q∃ and there is a valid successor configuration (q′, h′) which is accepting.

Finally we say that the word is accepted if the initial configuration (q0, h0) is
accepting.

Theorem 4.4.8. The emptiness problem is undecidable for Two-way CCAs and
for Alternating CCAs.

Proof. We do the proofs simultaneously by reducing the Post’s Correspondence
Problem to the emptiness of two-way CCA and of alternating CCA. Without loss of
generality, assume that we are given a PCP instance I which is a set of ordered pairs
of non-empty strings over the alphabet Σ = {l1, l2, . . . lk}, that is I = {(ui, vi) | i ∈
[n], ui, vi ∈ Σ+}. A solution for I is a finite sequence of integers i0, i1, . . . im, all of
which are from the set {1, . . . n} such that ui0ui1 . . . uim = vi0vi1 . . . vim . We define
a two-way CCA which accepts precisely all solutions of I.

53

Chapter 4. Class counting automata

For this purpose, we code the PCP solution as a data word, in the following
way. Let Σ̄ = {l̄1, l̄2, . . . l̄k} and Σ̂ = Σ ∪ Σ̄. Given a word w = a1a2 . . . an in Σ∗,
we denote by w̄ the word ā1ā2 . . . ān in Σ̄∗.

A solution of I is a data word w over Σ̂ such that,

(I) The string projection of the word is in (u1v̄1 + u2v̄2 . . .+ unv̄n)+.

(II) Every data value d occurring in w appears precisely twice, once labelled by a
letter from Σ and once by a letter from Σ̄. Moreover if d is labelled by li ∈ Σ

in w if and only if it is labelled by l̄i ∈ Σ̄ in v (the second occurrence).

(III) The ordering of data values in the positions labelled by Σ is exactly the same
as the ordering of data values in positions labelled by Σ̄. Formally, let d and
e are data values occurring in w. Let dΣ and eΣ be the positions where d and
e are labelled by letters from Σ. Similarly, let dΣ̄ and eΣ̄ be the positions
where d and e are labelled by letters from Σ̄. The condition says that dΣ < eΣ

if and only if dΣ̄ < eΣ.

It is easy to see that there is a data word w satisfying the above three conditions
iff I has a solution. We show that two-way CCA and alternating CCA can check
these three conditions.

1. The first condition is a regular property and can be checked by any finite
state automaton. Hence it is easily checked by a CCA.

2. The conjunction of the following four conditions is equivalent to condition
(II).

(a) Data values occurring in Σ-labelled positions are all distinct.

(b) Data values occurring in Σ̄-labelled positions are all distinct.

(c) All data values occurring under Σ̄-labels occur under Σ-labels as well.

(d) All data values occurring under Σ-labels occur under Σ̄-labels as well.

Note that each of these conditions can be checked by a CCA. Since CCAs
are closed under intersection, a CCA can verify condition (II).

54

Chapter 4. Class counting automata

3. Condition (III) is checked by a two-way CCA in the following way. We assume
that conditions (I) and (II) are verified independently. Given a position i

labelled by a letter from Σ we say that the position j > i is the Σ-successor
of i iff j is a position labelled by a letter from Σ and all positions k, i < k < j

are labelled by letters from Σ̄. Similarly we can define Σ̄-successor of a Σ̄-
labelled position. Let i and j be Σ-successors and let di and dj be the
corresponding data values. We know that di and dj occur under Σ̄ as well.
Let those positions be ī and j̄. For each Σ-successors i, j the automaton
verifies that ī and j̄ are Σ̄ successors.

To achieve this, assume that the automaton starts in a Σ position i, it resets
the counter of di to 1 and goes to next Σ-labelled position j. It increments
the counter of dj to 2. Now, the automaton moves to left end marker and
makes a left to right sweep ignoring all Σ positions. During this sweep the
automaton stops when it sees the data value dj under a Σ̄ label. It resets
counter of di to zero and then verifies that the next Σ̄ position has the data
value dj with the help of the counter. After this step the automaton goes
to the left end of the word and again makes a right sweep. This time it
stops when it sees the data value dj under a Σ label. Then the procedure
is repeated for position j. Finally the machine halts and accepts when it
reaches the last Σ position in the data word.

4. Condition (III) is checked by an alternating CCA in the following way. The
automaton starts in state q0. In this state automaton records all the data
values it has seen till the current position. Whenever it sees a fresh data
value, it makes a universal branching, one branch continues in state q0 and
one branch goes to state q1. In the state q1 the automaton verifies the
following. Assume the fresh data value d occurs under a Σ label and let the
data value on its Σ successor position is e. The automaton verifies that the
positions where d and e are occurring under Σ̄ labels are Σ̄ successors. This
can easily be done by incrementing the counters corresponding to d and e to
specially designated values. The q1 branching halts successfully after each
verification. The q0 branching accepts at the end of the word.

55

Chapter 4. Class counting automata

In the previous proof, conditions (I), (II) and (III) are in fact verified by a
universal CCA. This implies that the emptiness problem for universal CCA is
undecidable. Since emptiness problem for universal CCA and universality prob-
lem for CCA are equivalent it follows that the universality problem for CCA is
undecidable, and hence the language inclusion problem for CCA is undecidable.

4.4.7 Counter acceptance conditions

We compare the expressiveness of CCA and CMA.

Proposition 4.4.9. The class of CCA-recognizable languages are strictly contained
in the class of CMA-recognizable languages.

Proof. Let A = (Q,Σ,∆, I, F) be a CCA withm being the maximum constant used
in ∆. Let V = {0, . . . ,m+ 1}. We construct a CMA Acma = (Q′,Σ,∆′, I ′, F ′l , F

′
g)

where Q′ = Q×V , I ′ = I×{0}, F ′l = Q′, F ′g = {(q, v) ∈ Q′ | q ∈ F}. ∆′ is defined
in the following way,

∆′ =
⋃

(q,a,c,π,s,q′)∈∆,(p,v)∈Q′

{
((q, w), a, (p, v), (q′, v′)) | v |= c, v′ ∈ V, v′ 'm+1 π(v, s)

((q, w), a,⊥, (q′, v′)) | 0 |= c, v′ ∈ V, v′ 'm+1 π(0, s)

}

where π(v, s) denotes the result of the operation π (one of inc or reset) with argu-
ment s on value v and the equivalence is defined as c 'm+1 d iff ∀i c < m+ 1∨d <
m+ 1⇒ c = d. From Lemma 4.2.10 it follows that L(A) = L(Acma).

The strict containment follows from the fact that CCA do not accept the lan-
guage L2 (4.2.8) while this language is accepted by a CMA as saw in the last
chapter.

The acceptance condition we have in CCA is global in the sense that it relates
only to the global control state rather than multiplicities encountered. We can
strengthen the acceptance condition as follows: CCA with counter acceptance
conditions A is given by A = (Q,Σ,∆, I, F,G) where Q,Σ, I,∆, F are as before,
and G ⊂f in N. We say a final configuration (q, h) is accepting if q ∈ F and
∀d ∈ Γ, h(d) ∈ G or h(d) = 0.

56

Chapter 4. Class counting automata

We then find that the non-emptiness problem continues to be decidable but be-
comes as hard as Petri net reachability, which is not even known to be elementarily
decidable. This is proved by relating this class to that of class memory automata
discussed below.

Proposition 4.4.10. CCA with counter acceptance conditions are expressively
equivalent to CMA.

Proof. The proof of Proposition 4.4.9 can be extended to show that the class of
languages recognized by CCA with counter acceptance conditions is contained in
the class of CMA-recognizable languages. Let A = (Q,Σ,∆, I, F,G) be a CCA
with counter acceptance condition. Considering A as a CCA construct A′cma =

(Q′,Σ,∆′, I ′, F ′) with m being the maximum constant used in ∆ and G as above.
Replace the local accepting states Fl = Q × G to A′cma to get Acma. It is easy to
see that L(A) = L(Acma).

For the other direction, let A = (Q,Σ,∆, I, Fl, Fg) be a CMA. Let Q =

{q1, q2, . . . qn}. We construct a CCA with counter acceptanceA′ = (Q′,Σ,∆′, I ′, F,G)

as follows. We define Q′ = Q, I ′ = I, F = Fg. The accepting counter configura-
tions are defined as G = {i | qi ∈ Fl}. The transitions ∆′ is given by,

∆′ =
⋃

(qi,a,τ,qk)∈∆

{
(qi, a, x = j, reset, k, qk) | τ = qj

(qi, a, x = 0, inc, k, qk) | τ = ⊥

}

It is easy to see that L(A) = L(A′).

4.5 Discussion

In this chapter we introduced the automaton model CCA. This class of automata
is strictly weaker than CMA but at the same time has an elementarily decidable
emptiness problem. It is also possible to extend this model to match the expres-
siveness of CMA.

CCA can accept certain languages, for instance La which are not accepted by
register automata. The question whether CCA contains register automata is still
open. The language Ldd is accepted by a register automaton, however it is open

57

Chapter 4. Class counting automata

whether Ldd is accepted by a CCA. It is possible to extend CCA with context
information to include register automata. The language Ldd is not accepted by the
deterministic subclass of CCA. Since deterministic CCA can accept the language
La while register automata can not, deterministic CCA and register automata are
incomparable in terms of expressiveness.

Regarding the complexity of emptiness checking CCA falls strictly in between
register automata and CMA. But with respect to the word problem all these au-
tomata have the same complexity.

58

5
Two-variable logics

5.1 Introduction

In this and subsequent chapters we study two-variable logic for data words. Two-
variable logic is the subclass of first-order logic containing formulas which use only
two variables x and y. Unlike the full first-order logic whose satisfiability and finite
satisfiability problems are undecidable, for two-variable logic both these problems
are decidable [Mor75]. More precisely they are complete for Nexptime [GKV97].
The expressiveness of this logic is good enough for many applications in AI and
natural language processing.

5.2 Preliminaries

In the following, N denotes the set of natural numbers and Q the set of ratio-
nals. We deal with equivalence relations, preorders and linear orders and briefly
introduce them now. Let A be a finite set. An equivalence relation ∼ on A is a
reflexive, symmetric and transitive relation. A total preorder ≤p on A is a transi-
tive, reflexive, total relation, that is, u ≤p v and v ≤p w implies u ≤p w and for
every two elements u, v ∈ A u ≤p v or v ≤p u holds. A linear order ≤l on A is a
antisymmetric total preorder, that is, if u ≤l v and v ≤l u then u = v. Thus, the
essential difference between a total preorder and a linear order is that the former
allows that for two distinct elements u and v both u ≤p v and v ≤p u hold. We

59

Chapter 5. Two-variable logics

call two such elements equivalent with respect to ≤p . Thus, a total preorder can be
viewed as an equivalence relation ∼p whose equivalence classes are linearly ordered
by ≤p . Clearly, every linear order is a total preorder with equivalence classes of
size one. For any element u, the ∼p-class of u ∈ A is denoted by [u]∼p (or [u] if
∼p is clear from the context). The set of all equivalence classes of ∼p is denoted
by A/∼p .

We only consider finite structures. Therefore, the linear order on the equiv-
alence classes of a total preorder induces a successor relation of the equivalence
classes. We write +1sp(u, v) if the equivalence class of v with respect to ≤p is the
successor of the equivalence class of u and we call +1sp the induced successor re-
lation of ≤p . Further we say u and v are +1p-close, if either u+1spv or u ∼p v or
v+ 1spu. If u ≤p v and if they are not +1p-close, we denote it by u�p v. Similarly
for +1l(u, v) and +1l-close.

We use binary relation symbols ≤l ,≤l1 ,≤l2 , . . . that are always interpreted
as linear orders, binary relation symbols ≤p ,≤p1 ,≤p2 , . . . that are interpreted
as total preorders, and binary relation symbols +1p ,+1p1 ,+1p2 , . . . as well as
+1l ,+1l1 ,+1l2 , . . . that are interpreted as successor relations.

A first order structure A is a non-empty set A (called the universe) along with
some specified binary relations. For example, finite words over the alphabet Σ

are (usually) represented as first-order structures of the form
(
[n], (Pa)a∈Σ , <,+1

)
where < and +1 are the order and successor relations on natural numbers (re-
stricted to the set [n]) and (Pa)a∈Σ are unary predicates representing the Σ labelling
on positions. Often while denoting the vocabulary of the structure we abbreviate
unary predicates by the alphabet they are representing, for instance (Pa)a∈Σ by Σ.

An ordered structure is a structure with non-empty universe and some lin-
ear orders, some total preorders, some successor relations and some unary rela-
tions. We always allow an unlimited number of unary relations and specify the
numbers of allowed linear orders and total preorders explicitly. For instance, a
(+1l1 ; +1p2 ,≤p2)-structure is a structure with arbitrarily many unary relations,
one successor of linear order and one total preorder together with a correspond-
ing successor relation. We write (+1l ; +1p ,≤p) instead of (+1l1 ; +1p2 ,≤p2) if no
ambiguities arise.

60

Chapter 5. Two-variable logics

5.2.1 Data words

Given a data word w, the data values define an equivalence relation on the positions
of w given by i ∼ j if di = dj. Thus a data word can be naturally represented as
a first-order structure w = ([n],Σ, <,+1,∼).

Assume the data alphabet Γ is linearly ordered by an order relation <Γ. In
this case data values di and dj on positions i and j can have any of the following
relationships: di = dj or di <Γ dj or di >Γ dj. This relationship can be expressed
by a total preorder on positions given by,

i ≤p j ⇔ di <Γ dj or di = dj.

Hence an ordered data word can be represented logically as a first order struc-
ture w = ([n],Σ,≤l ,+1l ,≤p ,+1p); where ≤l denotes the linear order on positions
and ≤p denotes the total preorder on positions induced by the order on the data
values.

Note that for a linear order and a total preorder the successor relation uniquely
defines the order and vice-versa. Therefore even if one of the successor or order
relation is absent from the vocabulary, every (ordered) data word has a unique
first-order representation in the above mentioned scheme.

Example 5.2.1. The word ababab is encoded as the structure,

([6], Pa = {1, 3, 5}, Pb = {2, 4, 6}, <,+1) .

Example 5.2.2. The data word (a, d2)(b, d1)(a, d1)(b, d2)(a, d3)(b, d2) is encoded
as the structure,

([6], Pa = {1, 3, 5}, Pb = {2, 4, 6}, <,+1,∼= {{1, 4, 6}, {2, 3}, {5}}) .

Example 5.2.3. The ordered data word (a, 1)(b, 2)(a, 1)(b, 4)(a, 2)(b, 1) is encoded
as the structure,

([6], Pa = {1, 3, 5}, Pb = {2, 4, 6}, <,+1,≤p) ,

61

Chapter 5. Two-variable logics

where ≤p is the total preorder {1, 3, 6} ≤p {2, 5} ≤p {4}.

5.3 Logics

The set of first order (abbreviated as FO) formulas over the vocabulary τ is given
by the following syntax;

ϕ ::= x = y | R(x1, . . . , xn) | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ∃xϕ

where R is an n-ary relation as specified by τ and x, y, x1 . . . are first-order
variables. The set of monadic second order (abbreviated as MSO) formulas over
the vocabulary τ is given by the syntax

ϕ ::= x = y | R(x1, . . . , xn) | X(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

whereX is a set variable. Note that in MSO variablesX1, X2, . . . range over subsets
of the universe. Two-variable first-order logic or simply Two-variable logic is the
restriction of first order logic to formulas that only use (at most) two variables x
and y. We denote two-variable logic by FO2. Similarly the three-variable logic is
denoted by FO3. Formulas with no free variables are called sentences, but in the
following we may refer to sentences as formulas when no ambiguity arises.

It is not possible to express in FO2 that a binary relation R is transitive, a fact
easily proved by EF-games. Hence we need to supply the logic with additional
non-logical symbols if some relations are to be interpreted as order or equivalence
relations. These are specified in the vocabulary. For instance FO2 (Σ, <,+1) is the
two variable logic with unary predicates and binary relations <,+1 interpreted as
a linear order and its successor relation, In other words, this is the two-variable
logic on words.

Example 5.3.1. The following FO2 (Σ, <,+1) formula describes that the model
(in this case a word) contains three ‘a’s.

ϕ1 = ∃x (Pa(x) ∧ ∃y (x < y ∧ Pa(y) ∧ ∃x (y < x ∧ Pa(x)))) .

62

Chapter 5. Two-variable logics

Example 5.3.2. The following FO2 (Σ, <,+1) formula says that the word is from
the language a∗b∗.

ϕ2 = ∀x∀y (Pa(x) ∧ Pb(y)→ x < y) .

Example 5.3.3. The following FO3 (Σ, <,+1,∼) formula over data words de-
scribes that between any two positions of the same class there is no ‘b’-labelled
position from a different class.

ϕ3 = ∀x∀y∀z (x ∼ y ∧ Pb(z) ∧ x < z ∧ z < y → z ∼ x) .

Example 5.3.4. The formula below states that each class contains an ‘a’ if it
contains a ‘b’ and vice versa.

ϕ4 = ∀x ((Pa(x)→ ∃y (Pb(y) ∧ x ∼ y)) ∧ (Pb(x)→ ∃y (Pa(y) ∧ x ∼ y)))

Example 5.3.5. The following FO2 (Σ, <,+1,≤p) formula over ordered data words
describes that the data values on the positions are non-decreasing.

ϕ4 = ∀x∀y (x < y → x ≤p y) .

5.3.1 Scott reduction

A very useful property of FO2 formulas is that they possess a normal form, called
Scott Normal Form, with quantifier rank at most two. The following fact is due
to Dana Scott [Sco62]. Fix a relational vocabulary τ containing order relations.
A formula ϕ ∈ FO2 (τ) is equivalent with respect to satisfiability (as well as finite
satisfiability) to a formula of the form;

ζ = ∀x∀y χ ∧
i=k∧
i=1

∀x∃y ψi,

where k ∈ N and, χ and ψi are quantifier free formulas which use only extra unary
predicates other than the predicates used in ϕ. The formula ζ can be obtained
from ϕ in linear time and the size of the formula ζ is linear in terms of the size
of ϕ. Moreover, models of ζ are expansions of models of ϕ with unary predicates

63

Chapter 5. Two-variable logics

and models of ϕ are reducts of models of ζ. A full proof of the above statement
can be found in [GKV97].

5.4 FO2 on data words

The primary reason why two-variable logics are looked at in the context of data
words is stated below.

Theorem 5.4.1. Finite satisfiability problem of FO (Σ,≤l ,+1l ,∼p) is undecidable.
More precisely, finite satisfiability problem of FO3 (Σ,≤l ,+1l ,∼p) is undecidable.

The above theorem was proved in [BDM+11] which also showed the landmark
result that;

Theorem 5.4.2. Finite satisfiability problem of FO2 (Σ,≤l ,+1l ,∼p) is decidable
and is as hard as reachability of multicounter automata.

The proof of the above theorem is via automata construction and is interest-
ing in many aspects. Given a formula ϕ ∈ FO2 (Σ,≤l ,+1l ,∼p) it is converted in
2-Dexptime to a Data automaton Aϕ such that L (ϕ) = L (Aϕ). Since checking
nonemptiness of Data automaton is decidable it implies that checking (finite) sat-
isfiability of FO2 (Σ,≤l ,+1l ,∼p) is decidable. But the complexity of this decision
procedure as stated above is as hard as the reachability problem of multicounter
automata which is not known to be elementary, making it untenable for practical
applications. On the other hand since classical logics provides tools and techniques
to test and compare expressiveness questions, this result has great importance.

The proof in [BDM+11] also shows that Data automata are charactersized by
the logic EMSO2 (Σ,≤l ,+1l ,∼p,⊕1) whose formulas are of the form ∃X1 . . . Xnϕ

where ϕ ∈ FO2 (Σ,≤l ,+1l ,∼p,⊕1) and X1, . . . , Xn are set variables. A merit of
this proof method is that it allows us to prove decidability without proving a small
model property. Note that in this case an elementary small-model property will
settle a decades-old problem (is reachability problem for Petri nets elementarily
decidable?). In the next two chapters we will emulate this proof method (the
history of which dates back to Büchi) to show decidability of other logics.

64

Chapter 5. Two-variable logics

Next we move on to ordered data words. As mentioned earlier a linear order on
data values will imply a total preorder on the positions of the data word. Hence
two-variable logic on ordered data words has the signature FO2 (Σ,≤l ,+1l ,≤p).
The following was proved in [BDM+11];

Theorem 5.4.3. Finite satisfiability problem of FO2 (Σ,≤l ,+1l ,≤p) is undecid-
able.

Even if we replace the preorder ≤p with its successor relation +1p the unde-
cidability remains as is shown below.

Theorem 5.4.4. Finite satisfiability problem of FO2 (Σ,≤l ,+1l ,+1p) is undecid-
able.

Proof. The proof follows the lines of the proof of Proposition 29 in [BDM+11].

We reduce from the Post’s Correspondence Problem. Let I = (u1, v1), . . . , (uk, vk)

be an instance of PCP. We construct an FO2(≤l ,+1l ; +1p)-sentence ϕ that has a
finite model if and only if I has a solution. The sentence ϕ uses unary predi-
cates from Σ as well as the two unary predicates U, V , and expresses the following
conditions:

(1) The string projection of ≤l is ui1vi1 . . . uimvim for some m ∈ N. Elements
corresponding to some ui and vi are marked with U and V , respectively.

(2) Every equivalence class of +1p contains exactly two elements such that

– One is marked with U and one is marked with V .

– Both carry the same label from Σ.

(3) Positions x1, . . . , x|u| corresponding to the positions of u := ui1 . . . uim fulfill
+1p(i, i+ 1) for all i ∈ {1, . . . , |u| − 1}. Analogously for v.

Condition (1) can be expressed in the following way. Given a string uivi, it is
straightforward to write a formula ϕuivi(x) ∈ FO2 (Σ,+1l) which states that there
is a subword uivi starting from the position x where positions of ui are labelled by
U and positions of vi are labelled by V . In addition, the subword is followed by a
U position unless the word ends. Next we state that;

65

Chapter 5. Two-variable logics

∀x

(
U(x) ∧ (∃y (+1l(y, x) ∧ V (y)) ∨ ¬∃y + 1l(y, x))→

∨
i∈k

ϕuivi(x)

)

The second condition is ensured by the formulas;

¬∃x∃y (x ∼p y ∧ x 6= y ∧ ((U(x) ∧ U(y)) ∨ (V (x) ∧ V (y))))

∀x
∧
a∈Σ

(Pa(x) ∧ U(x)→ ∃y (Pa(y) ∧ x ∼p y ∧ V (y)))

∀x
∧
a∈Σ

(Pa(x) ∧ V (x)→ ∃y (Pa(y) ∧ x ∼p y ∧ U(y)))

The third condition can be ensured by the formula,

∀x∀y(U(x) ∧ U(y) ∧+1p(x, y)→ x <l y)

Now, from a solution ~i = i1 . . . im a model of ϕ can be constructed easily. On the
other hand, letM be a a model of ϕ. By (1), the string projection ofM is of the
form ui1vi1 . . . uimvim . The U - and V -labeled elements are ordered with respect to
≤p due to (3). Thus, (2) implies that ui1 . . . uim = vi1 . . . vim .

This means that for two-variable logic to be decidable on ordered data words
either the linear order ≤l or the successor relation +1l has to be dropped from the
vocabulary. Following this line in [SZ10, SZ11] it was shown that,

Theorem 5.4.5. Finite satisfiability problem of FO2 (Σ,≤l ,≤p ,+1p) is decidable
in Expspace.

The above theorem is proved by showing a small model property. In the sub-
sequent chapters we consider the other line that is to drop ≤l . The status of finite
satisfiability problem for FO2 (Σ,+1l ,≤p ,+1p) is still open. In the next chapter
we restrict the preorder to be a linear order and study the logic with two linear
orders, namely FO2 (Σ,≤l1 ,+1l1 ,+1l2) and its subclasses. While this is the two-
variable logic on class of ordered data words where all data values appearing in
the word are different, this logic is interesting in its own way as described in the
next paragraph.

66

Chapter 5. Two-variable logics

The status of satisfiability problem of first-order logic on ordered structures is
very interesting as these are one of the simplest mathematical structures and at
the same time ubiquitous in computer science as they naturally arise in compu-
tation. To give a short account of the results in this direction, in [EVW02] it is
shown that the satisfiability and finite satisfiability problems of FO2 over words
are Nexptime-complete. In [Ott01] the following are shown. The logic FO2 over
ordered or well-ordered domains, or in the presence of one well-founded relation,
is decidable for satisfiability as well as for finite satisfiability. The complexity of
these decision problems is essentially the same as for plain unconstrained FO2. In
contrast, FO2 becomes undecidable for satisfiability and for finite-satisfiability, if a
sufficiently large number of predicates (at least eight) are required to be interpreted
as orderings, well-orderings, or as arbitrary well-founded relations. In [KO05] it
is shown that FO2 with two transitive relations (without equality) is undecidable.
In [KO05] it is shown that FO2 is undecidable with three equivalence relations,
but is decidable when the number of equivalence relations is two. Later in [KT09]
it is shown that in the case of two equivalence relations, finite satisfiability is de-
cidable in 3-Exptime. In the same paper the undecidability is sharpened to one
equivalence relation and one transitive relation.

As a warm-up, we show the following theorem. Note that +2l1 denotes the
second-successor or successor-of-successor relation in the linear order ≤l1 . Similarly
for +3l1 .

Theorem 5.4.6. The finite satisfiability problems for the following logics are un-
decidable.

(a) FO2 (Σ,≤l1 ,+1l1 ,≤l2 ,+1l2)

(b) FO3 (Σ,+1l1 ,+1l2)

(c) FO2 (Σ,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2)

Proof. We reduce the Post’s Correspondence Problem (PCP) to the finite satisfi-
ability problems of the logics FO2 (Σ,+1l1 ,≤l1 ,+1l2 ,≤l2), FO3 (Σ,+1l1 ,+1l2) and
FO2 (Σ,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2). The variant of PCP in which the strings are of
length one or two is also undecidable [HU79]. We employ this variant for the reduc-
tion. Assume that we are given a PCP instance I = {(ui, vi) | i ∈ [n], ui, vi ∈ Σ≤2}

67

Chapter 5. Two-variable logics

over the alphabet Σ = {l1, l2, . . . lk}. We encode the PCP solution as structures in
the above vocabularies, in the following way. Let Σ′ = {l′1, l′2, . . . l′k} and Σ̂ = Σ∪Σ′.
Given a word w = a1a2 . . . an in Σ∗, we denote by w′ the word a′1a′2 . . . a′n in Σ′∗.

A solution of I is a structure A = (A, Σ̂,+1l1 ,+1l2) over Σ̂ such that,

(1) The word (A, Σ̂,+1l1) is in the language (u1v
′
1 + u2v

′
2 . . .+ unv

′
n)+. This

language is expressible in FO2 (Σ̂,+1l1) as in the proof of Theorem 5.4.4, let
us call it ϕ1.

(2) The word (A, Σ̂,+1l2) is in the language (l1l
′
1 + l2l

′
2 . . .+ lkl

′
k)

+. This lan-
guage is expressible in FO2 (Σ̂,+1l2) by the formulas (call them ϕ2),

∀x∀y

(∧
i

(
Pli(x) ∧+1l2(x, y)→ Pl′i(y)

)
∧
∧
i

(
Pl′i(x) ∧+1l2(x, y)→ Pli(y)

))

∃x

(
¬ (∃y +1l2(y, x))→

∨
i

Pli(x)

)
∧ ∃x

(
¬ (∃y +1l2(x, y))→

∨
i

Pl′i(x)

)

(3a) The third condition is specific for each of the logics, though they all express
the same form of matching between Σ and Σ′ positions. We say x is Σ-
position, denoted as Σ(x), if it is labeled by a letter from Σ, that is if Pl1(x)∨
Pl2(x) . . . ∨ Plk(x) is true. Similarly, we say x is a Σ′-position, denoted as
Σ′(x), if Pl′1(x) ∨ Pl′2(x) . . . ∨ Pl′k(x) is true. Our next condition says that,
taken only the Σ positions, the order ≤l2 respects the order ≤l1 , similarly is
the case with Σ′ positions. This can be expressed by the following formula
in FO2

(
Σ̂,+1l1 ,≤l1 ,+1l2 ,≤l2

)
,

ϕ3a ≡ ∀xy ((Σ(x) ∧ Σ(y) ∧ x ≤l1 y → x ≤l2 y)

∧ (Σ′(x) ∧ Σ′(y) ∧ x ≤l1 y → x ≤l2 y))

(3b) Let S(x, y) be true if either one of the following conditions holds : (1) both
x and y are Σ positions and no position between x and y in +1l1 is labeled
from Σ. (2) Analogously, both x and y are Σ′ positions and no position
between x and y in +1l1 is labeled from Σ′. Notice that S(x, y) can be

68

Chapter 5. Two-variable logics

coded in FO3(Σ̂,+1l1 ,+1l2) since the distance between any two consecutive Σ

positions or any two consecutive Σ′ positions is bounded by two. The formula
S(x, y) = SΣ(x, y)∨ SΣ′(x, y). Below we give the definition of SΣ(x, y) while
SΣ′(x, y) is defined analogously.

SΣ(x, y) = (Σ(x) ∧ Σ(y))∧
(+1l1(x, y)

∨ ∃z (+1l1(x, z) ∧ Σ′(z) ∧+1l1(z, y))

∨ ∃z (+1l1(x, z) ∧ Σ′(z) ∧ ∃x (+1l1(z, x) ∧ Σ′(x) ∧+1l1(x, y))))

Once we have S we enforce the correct matching in the following way, ϕ3b is
the conjunction of the following formulas in FO3(Σ̂,+1l1 ,+1l2),

∀xyz((Σ(x)∧Σ(y)∧Σ′(z)∧S(x, y)∧ x+ 1l2z)→z + 1l2y)

∀xyz((Σ′(x)∧Σ′(y)∧Σ(z)∧S(x, y)∧x+ 1l2z)→z + 1l2y)

(3c) Note that, when the strings are of length at most two, the predicate S(x, y)

defined above, can be coded by using the successor relations +1l1 , +2l1 and
+3l1 as in the previous case. Again, we define S(x, y) = SΣ(x, y) ∨ SΣ′(x, y)

and SΣ(x, y) is;

SΣ(x, y) = (Σ(x) ∧ Σ(y))∧
(+1l1(x, y)

∨ (+2l1(x, y) ∧ ∃y (+1l1(x, y) ∧ Σ′(y)))

∨ (+3l1(x, y) ∧ ∃y (+2l1(x, y) ∧ Σ′(y)) ∧ ∃y (+1l1(x, y) ∧ Σ′(y))))

The matching is done by ϕ3c which is a conjunction of the following formulas
in FO2

(
Σ̂,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2

)
,

∀xy ((Σ(x) ∧ Σ(y) ∧ S(x, y))→ x+ 2l2y)

∀xy ((Σ′(x) ∧ Σ′(y) ∧ S(x, y))→ x+ 2l2y)

We claim that the formulas ϕ1 ∧ ϕ2 ∧ ϕ3a, ϕ1 ∧ ϕ2 ∧ ϕ3b, ϕ1 ∧ ϕ2 ∧ ϕ3c encodes

69

Chapter 5. Two-variable logics

a solution of I in the logics FO2
(

Σ̂,+1l1 ,≤l1 ,+1l2 ,≤l2
)
, FO3

(
Σ̂,+1l1 ,+1l2

)
,

FO2
(

Σ̂,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2

)
respectively. That is I has a solution if and

only if each of them is satisfiable. Suppose I has a solution i0, i1, . . . im, in which
case ui0ui1 . . . uim = vi0vi1 . . . vim , call it w. Let |w| = n. We define the structure(

[2n], Σ̂,+1,+1l2

)
such that +1 is the successor relation on [2n] and

(
[2n], Σ̂,+1

)
is the word ui0v′i0 . . . uimv

′
im . Note that in this word there are n-many Σ positions

and Σ′ positions. Let those be the sequences σ1 . . . σn and σ′1 . . . σ′n in the ascending
order. Define the order +1l2 as σ1σ

′
1σ2σ

′
2 . . . σnσ

′
n. Clearly the structure satisfies

all the three conditions. Now suppose a structure satisfies all the three conditions.
Without loss of generality we can assume that it is of the form

(
[2n], Σ̂,+1,+1l2

)
for some n ∈ N such that

(
[2n], Σ̂,+1

)
is a word of the form ui0v

′
i0
. . . uimv

′
im for

some i0 . . . im. Let σ1 . . . σn and σ′1 . . . σ′n be the Σ and Σ′ positions in the ascending
order. Condition (3) ensures that for every i, σi + 1l2σ

′
i + 1l2σi+1 (if σi+1 exists)

and condition (2) ensures that σi is labelled by letter ‘l’ if and only if σi is labelled
by ‘l′’. Together it implies that ui0ui1 . . . uim = vi0vi1 . . . vim .

Note that undecidability of FO3 (Σ,+1l1 ,+1l2) also implies undecidability of
FO3 (Σ,≤l1 ,≤l2) since in three variables the successor relation +1l1 is express-
ible in terms of the order relation ≤l1 . An interesting question is to sharpen the
undecidability of FO2 (Σ,+1l1 ,+2l1 ,+3l1 ,+1l2 ,+2l2) by reducing the number of
successors required. In the next chapter we will show that FO2 (Σ,+1l1 ,+1l2) is
decidable.

70

6
Two-successor structures

6.1 Introduction

In this chapter we study the finite satisfiability problem of two variable logic on first
order structures with two or more successor relations. Our approach is automata
theoretic. After necessary definitions, we define an automaton formalism on struc-
tures with two successor relations. An algorithm for deciding the non-emptiness
of the language of the automaton is proved. The decidability of the satisfiability
of the logic follows from an equivalence between the logic and the automata in
terms of the language defined. Next, we move on to structures with more than
two successors and generalize the automata whose decidability of non-emptiness
remains open.

6.2 Preliminaries

As usual, we denote by [n] the set {1, . . . , n} and whenever +1l is associated with
this set we mean the usual successor relation on [n].

A two-successor structure (abbreviated as 2-SS) A over Σ is a first order struc-
ture A = (A, λ,+1l1 ,+1l2) where A is a finite set, λ : A→ Σ is a labeling function,
+1l1 ,+1l2 are successor relations of two linear orders over A. We denote the linear
order corresponding to +1l1 (alternatively +1l2) by the symbol ≤l1 (alternatively

71

Chapter 6. Two-successor structures

≤l2). Restricting the structure A to either of the orders yields a word, we call the
word (A, λ,+1l1) the projection of A to the order +1l1 .

Given any 2-SS A = (A, λ,+1l1 ,+1l2) where |A| = n we can rewrite A uniquely
as
(
[n], λ′,+1l ,+1′l2

)
such that λ′ = κ−1 ◦ λ and +1′l2 = {(κ(x), κ(y)) | x + 1l2y}

where κ is the unique isomorphism from (A,+1l1) to ([n],+1l). Similarly, it can
be also rewritten uniquely as

(
[n], λ′′,+1′l1 ,+1l

)
.

6.3 Automata on 2-SS

Given a 2-SS of the form A = ([n], λ,+1l1 = +1l ,+1l2), let ([n], λ,+1l) = a1a2 . . . an

be the projection of A to the order +1l1 . We define the marked string projection of
A to +1l1 , abbreviated as msp+1l1

(A), as the word (a1, b1)(a2, b2) . . . (an, bn) where
bi ∈ {−1, 0, 1}, such that

bi =

−1 if 1 ≤ i < n and + 1l2 ((i+ 1), i) ,

1 if 1 ≤ i < n and + 1l2 (i, (i+ 1)) ,

0 otherwise.

Given any 2-SS A we can define its msp+1l1
(A) by converting it into the above

form.

Similarly, we can define the marked string projection of A to +1l2 denoted as
msp+1l2

(A). For this, we first convert it into the form A′ = ([n], λ,+1l1 ,+1l2 =

+1l). Let ([n], λ,+1l) = a1a2 . . . an be the projection of A′ to the order +1l2 .
msp+1l2

(A) = msp+1l2
(A′) is defined as the word (a1, b1)(a2, b2) . . . (an, bn) where

bi ∈ {−1, 0, 1}, such that

bi =

−1 if 1 ≤ i < n and + 1l1 ((i+ 1), i) ,

1 if 1 ≤ i < n and + 1l1 (i, (i+ 1)) ,

0 otherwise.

In the following we define the notion of a 2-SS automaton. Fix an alphabet
Σ. A 2-SS automaton A = (B,C) is a composite automaton consisting of two
word automata B and C. The automaton B is a non-deterministic letter-to-letter

72

Chapter 6. Two-successor structures

word transducer with the input alphabet Σ × {−1, 0, 1} and an output alphabet
Σ′ (included in the definition of B). The automaton C is a non-deterministic
finite state recognizer accepting words over the alphabet Σ′. Given a 2-SS A =

(A, λ,+1l1 ,+1l2) the automaton works as follows. The transducer B runs over the
msp+1l1

(A) yielding a string w = (A, λ′,+1l1) in Σ′∗, where λ′ : A → Σ′. The
automaton C runs over the string w′ = (A, λ′,+1l2), notice that w is permuted
to the order +1l2 . Finally, the automaton A accepts A if both B and C have a
successful run, that is they both finish in one of their final states respectively.

Definition 6.3.1. Formally, a 2-SS automaton A is a tuple A = (B,C), where B
is a word transducer given by the tuple B = (Qb, (Σ× {−1, 0, 1}) ,Σ′, Ob,∆b, Ib, Fb),
where Qb is the finite set of states, (Σ× {−1, 0, 1}) is the input alphabet, Σ′ is the
output alphabet, Ib ⊆ Qb is the set of initial states, Fb ⊆ Qb is the set of final
states, ∆b ⊆ Qb × (Σ× {−1, 0, 1})×Qb is the set of transitions and Ob : ∆b → Σ′

is the output function.

The automaton C is given by the tuple C = (Qc,Σ
′,∆c, Ic, Fc) where Qc is the

finite set of states, Σ′ is the alphabet, Ic ⊆ Qc is the set of initial states, Fc ⊆ Qc

is the set of final states, ∆c ⊆ Qc × Σ′ ×Qc is the set of transitions.

Given a marked string w = (a1, b1)(a2, b2) . . . (an, bn) we define a run ρB of B
as a sequence q0q1 . . . qn such that q0 ∈ Ib and for every i ∈ [n] there is a transition
δi = (p, (a, b), q) in ∆b such that qi−1 = p, qi = q, ai = a and bi = b. The run
ρb is accepting if qn ∈ Fb. Given any accepting run ρb of B on w, it uniquely
defines an output string w′ = a′1a

′
2 . . . a

′
n ∈ Σ′∗ where a′i = Ob (δi). Given a word

w′ = a′1a
′
2 . . . a

′
n ∈ Σ′∗ a run ρc of C is a sequence q0q1 . . . qn such that q0 ∈ Ic and

for every i ∈ [n] there is a transition (p, a′, q) in ∆c such that qi−1 = p, qi = q and
a′i = a′. The run ρc is accepting if qn ∈ Fc. Now, we define the run ρ of A on the
2-SS A = (A, λ,+1l1 ,+1l2) as a pair (ρb, ρc) such that (i) ρb is an accepting run of
B on msp+1l1

(A) yielding a word (A, λ′,+1l1) and (ii) ρc is an accepting run of C
on the word (A, λ′,+1l2).

We look at some example languages.

Example 6.3.2. Let L1 be the language of 2-SS’s where both the orders coincide,
that is L1 = {A | A |= ∀xy (x ≤l1 y ⇔ x ≤l2 y)}. Observe that in the string
projection msp+1l1

all positions except the last position is labelled by the marking

73

Chapter 6. Two-successor structures

1. The last position is marked by 0. The automaton B verifies the marking and
accepts the structure. The automaton C always accepts.

What is more interesting is that we can accept 2-SS’s whose string projections
are non-regular.

Example 6.3.3. Consider the set of 2-SS’s such that,

• the word projection of the 2-SS to the order +1l1 belongs to the language
a∗b∗c∗,

• the projection to +1l2 belongs to the language (abc)∗.

The above conditions are checked easily by the automata B and C. Notice that the
projection of the 2-SS to +1l1 has to be the language {anbncn | n ∈ N} which is
not regular.

Lemma 6.3.4. Given a regular language L ⊆ Σ∗, there is a 2-SS automaton
accepting all 2-SS’s whose projections to +1l1 is in L. Similarly, there is a 2-SS
automaton accepting all 2-SS’s whose projections to +1l2 is in L.

Proof. In the first case the transducer B checks if the projection of the 2-SS to
+1l1 (ignoring the markings) is in L and C accepts Σ′∗. For the second case, the
transducer B simply copies the string (again ignoring the markings) and C accepts
if its input is in L.

Lemma 6.3.5. Languages recognized by 2-SS automata are closed under union,
intersection and renaming.

Proof. We deal with closure under intersection first. Assume that we are given two
2-SS automata A1 = (B1, C1) and A2 = (B2, C2) with internal alphabets Σ1 and
Σ2 respectively. Without loss of generality assume that states of the constituent
automata and the internal alphabets are (pair-wise) disjoint. If the sets of states
or the alphabets are not disjoint we simply rename them appropriately.

For intersection, we define the internal alphabet of the product automata as
Σ′ = Σ1 × Σ2. We define the intersection of A1 and A2 as A∩ = (B,C) where B

74

Chapter 6. Two-successor structures

is the product of B1 and B2 and C is the product of C1 and C2 which are defined
as follows. The set of states of B is the product of states of B1 and B2 and the
set of initial (alt. final) states of B is the product of set of initial (alt. final)
states of B1 and B2. The transition δ = ((p1, p2), a, (q1, q2)) belongs to the set of
transitions of B if δ1 = (p1, a, q1) and δ2 = (p2, a, q2) are in the sets of transitions of
B1 and B2 respectively. Finally the automaton outputs (a1, a2) ∈ Σ′ if B1 outputs
a1 on δ1 and B2 outputs a2 on δ2. For the automaton C, we take the set of states
as the product of sets of states of C1 and C2, the set of initial and final states
as the product of sets of initial and final states of C1 and C2 respectively. The
automaton C has a transition δ = ((p1, p2), (a1, a2), (q1, q2)) if C1 has a transition
δ1 = (p1, a1, q1) and C2 has a transition δ2 = (p2, a2, q2).

For union of A1 and A2 the construction is similar. The internal alphabet is
defined to be Σ′ = Σ1 ∪ Σ2. Define the union of A1 and A2 as A∪ = (B,C) where
B is the union of B1 and B2 and C is the union of C1 and C2 which are defined as
follows. The set of states of B is the union of states of B1 and B2 and the set of
initial (alt. final) states of B is the union of set of initial (alt. final) states of B1

and B2. The set of transitions of B is the union of sets of transitions of B1 and
B2. Similarly the output function is the union of output functions of B1 and B2.
For the automaton C, we take the union of automata C1 and C2.

For showing closure under renaming, let A = (B,C) be a 2-SS automaton over
Σ and let h : Σ1 → Σ be a letter-to-letter renaming. The language h−1 (L (A)) is
obtained by the automaton A′ = (B′, C) where B′ is B with the following changes.
We assign the alphabet of B′ as Σ1 and leave the set of states as well as the sets
of initial and final states unchanged. For each transition δ = (p, a, q) of B, we
add the set of transitions {(p, a1, q) | a1 ∈ h−1(a)} to B′. On these transitions the
automaton outputs O(δ) where O is the output function of B.

Example 6.3.6. Consider the language LM , the collection of 2-SS’s such that,

• the projection to +1l1 is in $1a
+#1$2b

+#2,

• projection to +1l2 is in $1$2(ab)+#1#2,

75

Chapter 6. Two-successor structures

• there exist two positions x0, x1 having the same label from {a, b} such that
x0 ≤l1 x1 and x1 ≤l2 x0.

The language, LM is accepted by a 2-SS automaton. Conditions 1 and 2 can be
checked easily by B and C. For condition 3, the transducer B non-deterministically
chooses two positions having the same label (either a or b), x0 ≤l1 x1 and outputs
0 at x0 and 1 at x1 and $ at every other position. The automaton C verifies that
its input is of the form $∗1$∗0$∗.

Proposition 6.3.7. The complement of the language LM (denoted as LM) is not
accepted by any 2-SS automaton.

Proof. For the sake of contradiction, assume that there is a 2-SS automaton
A = (B,C) accepting the language LM . Let the number of states in B be n.
Consider the 2-SS A = ([2k + 4], λ,+1l ,+1l2) such that ([2k + 4], λ,+1l) is the
word $1a

k#1$2b
k#2 and +1l2 is the successor relation;

{(1, k + 3), (k + 3, 2), (2, k + 4), (k + 4, 3) . . . (k + 2, 2k + 4)}

where k > n. This 2-SS is shown in the Figure 6.1, the relation +1l is shown in
black and +1l2 is shown in blue. Note that in the msp+1l1

(A) all the markings are
zero. Since A is in LM , there is an accepting run of B such that there exist two
positions i < j with label a and qi−1 = qj−1 in the run. We define the order +1′l2
as,

{(l, k + 2 + l) | 1 ≤ l ≤ k + 2, l 6= i, l 6= j}

∪ {(k + 2 + l, l + 1) | 1 ≤ l < k + 2, l + 1 6= i, l + 1 6= j}

∪ {(k + 1 + i, j), (j, k + 2 + i), (k + 1 + j, i), (i, k + 2 + j)}

$1 a1 a2 ak−1 ak #1 $1 b1 b2
. bk−1 bk #2

Figure 6.1: The initial 2-SS in Proposition 6.3.7

76

Chapter 6. Two-successor structures

$1 a1 . . . ai . . . aj . . . ak #1 $1 b1
. . . bi−1 bi . . . bj−1 bj . . . bk #2

Figure 6.2: The modified 2-SS in Proposition 6.3.7

In the relation +1′l2 only the positions i and j are switched from +1l2 . Let
A′ =

(
[2k + 4], λ,+1l ,+1′l2

)
(shown in Figure 6.2, the switched edges are shown in

red). It is the case that msp+1l1
(A) = msp+1l1

(A′) and B has an accepting run on
msp+1l1

(A′) outputting the same string as in the case of A, which then permuted
to +1l2 and +1′l2 gives the same string. Hence C also has an accepting run. But,
A′ does not belong to LM , leading to a contradiction.

This shows that,

Lemma 6.3.8. The class of languages accepted by 2-SS, automata are not closed
under complementation.

Using a similar argument, we can show that the class of 2-SS automata where
the transducer B is deterministic is strictly weaker.

6.3.1 Reducing 2-SS automata to EMSO2 (Σ,+1l1,+1l2)

Proposition 6.3.9. Given a 2-SS automaton A, there exists a formula ϕA ∈
EMSO2 (Σ,+1l1 ,+1l2) such that L(A) = L(ϕA).

Proof. Let A = (B,C) be a 2-SS automaton with the output alphabet of B being
Σ′ = {l1, . . . , ln}, n ∈ N. Recall that a run of A on A is a pair (ρb, ρc) where ρb

77

Chapter 6. Two-successor structures

is a run of B and ρc is a run of C. We write down a formula ϕA which expresses
that there is a run of A on A in the following way. Let

ϕA = ∃Pl1Pl2 . . . Pln (ϕpart (Pl1 , . . . , Pln) ∧ ϕB ∧ ϕC) ,

where (i) ϕpart (Pl1 , . . . , Pln) says that the predicates Pl1 , . . . , Pln form a partition
of the set of all positions. These predicates act as the intermediate alphabet. (ii)
ϕB is the encoding of B in EMSO2 (Σ, Pl1 , . . . , Pln ,+1l1 ,+1l2) with the predicates
Pl1 , . . . , Pln (free in ϕB) standing for the output alphabet. (iii) ϕC is the encoding
of C in EMSO2 (Pl1 , . . . , Pln ,+1l2) with the predicates Pl1 , . . . , Pln (free in ϕC)
standing for the input alphabet.

6.3.2 Computing msp+1l2
from msp+1l1

In the definition of the automaton A, the transducer has access to msp+1l1
(A),

whereas C can only access the output of B permuted to +1l2 . In the following,
we show that it is possible for B to output a string which when permuted to
+1l2 , yields msp+1l2

(A). Let A = (A, λ,+1l1 ,+1l2) be a 2-SS and msp+1l1
(A) =

(a1, b1)(a2, b2) . . . (an, bn). Let b′i be the marking of the position i in msp+1l2
(A). It

is easy to verify that b′i is a function of bi and bi−1 as evidenced by the following
table.

bi−1 bi b′i

− 0 0

− −1 0

− 1 1

0 0 0

bi−1 bi b′i

0 1 1

1 0 0

1 1 1

0 −1 0

bi−1 bi b′i

−1 0 −1

−1 −1 −1

−1 1 ⊥
1 −1 ⊥

Note that the configurations bi−1 = −1, bi = 1 and bi−1 = 1, bi = −1 do not
constitute a valid marking. The above table immediately gives a strategy for out-
putting msp+1l2

(A). The automaton B always remembers the previous position’s
marking in its states, and computes b′i. Once the output of B is permuted to +1l2 ,
the string becomes msp+1l2

(A).

78

Chapter 6. Two-successor structures

6.4 Reducing EMSO2 (Σ,+1l1,+1l2) to 2-SS automata

In this section we show that given an FO2 (Σ,+1l1 ,+1l2) formula we can trans-
form it into an equivalent 2-SS automaton. First of all, given a formula ϕ ∈
FO2 (Σ,+1l1 ,+1l2) we transform it into an equivalent formula in Scott normal
form (see Section 5.3.1). Earlier we showed that 2-SS automata are closed under
renaming and intersection. Therefore it suffices to show that we can construct a
2-SS automaton for each of the formulas ∀x∀y χ and ∀x∃y ψi. The following two
lemmas show precisely that.

In the following, a type is a conjunction of unary predicates or their negation.
We say a formula is positive if either it is atomic or all its sub-formulas which are
atomic are under the scope of an even number of negations. Similarly we say a
formula is negative if all its sub-formulas which are atomic are under the scope of
an odd number of negations.

Lemma 6.4.1. Given an FO2(Σ,+1l1 ,+1l2) formula of the form ϕ = ∀x∀y χ

where χ is quantifier free, an equivalent 2-SS automaton of doubly exponential size
can be constructed.

Proof. First of all we write ϕ in CNF (conjunction of disjunctions, causing an ex-
ponential blowup in the size of the formula), followed by distributing the universal
quantification over the conjunction, and then group them in the following way,∧
i ∀x∀y χi where each χi is of the form,

χi = α(x) ∨ β(y) ∨ ε(x, y) ∨ γ(x, y) ∨ δ(x, y)

Above α(x) and β(y) are (abusing the notation) unary types (disjunction of unary
literals over the specified free variable). The formulas in the group ε(x, y) are
x = y and x 6= y. The formula γ(x, y) is an order type over the order +1l1 . By
that we mean it talks about the relation between x and y with respect to the
order +1l1 . The formula δ(x, y) is an order type over the order +1l2 . It is enough
to construct a 2-SS automaton for each ∀x∀y χi since the automata are closed
under intersection. The alphabet Σ of the automata is going to be bit vectors
which represent the evaluation of the unary predicates used in the formula at a

79

Chapter 6. Two-successor structures

given position. Hence, the size of the alphabet is exponential in the length of the
formula. The automaton we construct in each case, has a constant number of
states, but may have exponentially many transitions. Finally the intersection of
these automata is of size doubly exponential.

Back to the reduction, some conjuncts may not have a δ(x, y) formula, some
may not have γ(x, y), some may not have both. We observe that in each of these
cases, the formula χi talks about a regular property over one linear order by Büchi-
Elgot-Trakhtenbrot theorem which says that languages accepted by finite state
automata are precisely the languages definable in MSO (Σ, <,+1), monadic second
order logic over words. For instance if γ(x, y) is absent it is a regular property over
the order +1l2 . And hence we can construct a finite state automaton running over
+1l2 , which can be converted to a 2-SS automaton easily as described in Lemma
6.3.4. If both γ and δ are absent we can verify the property on either of the orders.

Therefore we restrict our attention to those χi, where both γ and δ are present.
Going back, γ is a disjunction of formulas from the set O+1l1

and δ is a disjunction
of formulas from the set O+1l2

, where

O+1l1
= {+1l1(x, y),¬+1l1(x, y),+1l1(y, x),¬+1l1(y, x)}

O+1l2
= {+1l2(x, y),¬+1l2(x, y),+1l2(y, x),¬+1l2(y, x)}

Suppose ε(x, y) ≡ x = y ∨ x 6= y. In this case, the formula is tautology hence we
construct a 2-SS automaton which accepts all 2-SS’s.

Suppose ε(x, y) ≡ x 6= y. In this case we can rewrite χi as χi = (α′(x) ∧ β′(y))→
(x 6= y ∨ γ(x, y) ∨ δ(x, y)). Consider the case when γ(x, y) and δ(x, y) are positive.
In this case, whenever γ(x, y) ∨ δ(x, y) is true, then x 6= y is also true. Therefore
the formula reduces to, χi = (α′(x) ∧ β′(y))→ (x 6= y) which is regular. If γ(x, y)

and δ(x, y) are not positive, one of them contains a negative formula. All negative
formulas in O+1l1

and O+1l2
obey the following equivalence, ϕ ≡ ϕ ∨ x = y, for

example, ¬+1l1(x, y) ≡ ¬+1l1(x, y) ∨ x = y. Therefore, χi can be rewritten as,

(α′(x) ∧ β′(y))→ (x 6= y ∨ x = y ∨ γ(x, y) ∨ δ(x, y))

which is always true. Therefore we construct a 2-SS automaton which accepts all

80

Chapter 6. Two-successor structures

2-SS’s.

Suppose ε(x, y) ≡ x = y. We can rewrite χi in either of the following two
forms,

χi = (α′(x) ∧ β′(y) ∧ x 6= y ∧ γ′(x, y))→ δ(x, y)

χi = (α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′(x, y))→ γ(x, y)

where α′, β′, γ′, δ′ are the negations of α, β, γ, δ respectively. Note that the nega-
tions are conjunctive formulas. If δ′ or γ′ contains a positive formula, we choose
the corresponding form. When both of them contain a positive formula we choose
arbitrarily one. Suppose γ′(x, y) contains a positive formula, in this case, we choose
the following form.

χi = (α′(x) ∧ β′(y) ∧ x 6= y ∧ γ′(x, y))→ δ(x, y)

The only satisfiable γ′(x, y) can be the following, +1l1(x, y), +1l1(y, x), +1l1(x, y)∧
¬+1l1(y, x) and +1l1(y, x) ∧ ¬+1l1(x, y). The formula +1l1(x, y) ∧ ¬+1l1(y, x)

reduces to +1l1(x, y), similarly +1l1(y, x)∧¬+1l1(x, y) reduces to +1l1(y, x). This
leaves us with two possible cases for γ′(x, y) which are +1l1(x, y) and +1l1(y, x).
The formula δ(x, y) is a disjunction of formulas from the set O+1l2

. We claim that
in this case, the automaton can verify the formula χi, by looking at the marked
string projection to the order +1l1 . For example when α′ holds at x, β′ holds at y,
γ′ is +1l1(x, y) and when δ is +1l2(x, y) the automaton B checks the marking of x
is 1. Similarly, when δ is +1l2(y, x), ¬+1l2(x, y), ¬+1l2(y, x) the marking at x has
to be respectively −1, 0 or −1, 0 or 1. If δ is a disjunction, the automaton can
guess one of the disjuncts and verify it. The case when γ′ is +1l1(y, x) is similar,
instead of looking at the marking of x, the automaton B checks the marking of y.

When δ′ contains a positive formula, we choose the form,

χi = (α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′(x, y))→ γ(x, y)

The reasoning is similar, we can reduce δ′ to two cases, +1l2(x, y) and +1l2(y, x).
The formula γ is a disjunction of formulas from the set O+1l1

. In this case the
automaton verifies the formula by checking the marked string projection to the
order +1l2 . We showed earlier that this can be done by a 2-SS automaton.

81

Chapter 6. Two-successor structures

The only remaining case is when γ′ and δ′ both do not contain a positive
formula. Therefore both γ′ and δ′ are negative formulas, therefore γ and δ are
positive formulas. We rewrite χi in the following form,

χi = (α′(x) ∧ β′(y) ∧ x 6= y)→ (γ(x, y) ∨ δ(x, y))

The formula says the following. Whenever α′ holds at x and β′ holds at y and x, y
are distinct then either they are neighbours in +1l1 as dictated by γ or neighbours
in +1l2 as dictated by δ. If there is no α′ in the word there can be any number
of β′. Similarly there can be any number of α′ if there is no β′ occurring in the
word. The automaton B can guess both these cases and verify them easily. So
henceforth we assume that there is at least one α′ and β′ present in the word. In
which case as we show below, the number of α′ and β′ are bounded. We do a case
analysis.

Consider the case when γ ≡ +1l1(x, y) and δ ≡ +1l2(x, y). Let’s say β′ occurs
at position x, then there can be at most three α′, one α′ at the predecessor of
x in +1l1 , one α′ at the predecessor of x in +1l2 and one α′ at x. (Similarly if
there is a β′ there can be at most three α′, though we do not use this fact in
the following construction). Firstly, the transducer B guesses the number of α
occurring in the word, which is let’s say k, 1 ≤ k ≤ 3 and labels them as α1, . . . , αk

in the output. Let the α1 . . . αk occurs at the positions x1, . . . , xk respectively. For
every β(y) occurring in the word the automaton labels the position with a vector
(bα1(y), . . . , bαk

(y)) where the vector is defined in the following way.

bαi
(y) =

1 if xi = y,

1 if xi 6= y, A, xi, y |= γ(x, y),

0 if xi 6= y, A, xi, y 6|= γ(x, y).

This can be done because for every β(y), we only need to know the α-s which are
neighbours of y in +1l1 . Since the number of α-s is bounded, by making use of
finite memory and nondeterminism the automaton B will be able to determine,
which α-s are neighbours of each β(y). The automaton C does the following when
it runs over the output of B. (1) For every β(y) occurring in the word it computes

82

Chapter 6. Two-successor structures

a vector
(
b′α1

(y), . . . , b′αk
(y)
)
where the vector is defined in the following way.

b′αi
(y) =

1 if xi = y,

1 if xi 6= y, A, xi, y |= δ(x, y),

0 if xi 6= y, A, xi, y 6|= δ(x, y).

The automaton C depends on the labellings of the α-s by B to compute this. (2)
For each β(y) the automaton verifies that for every 1 ≤ i ≤ k at least one of bαi

(y)

or b′αi
(y) is one. This step is easily done by accessing the tagged vector of each

β(y).

In the cases where γ ∨ δ is one of +1l1(y, x)∨+1l2(x, y), +1l1(x, y)∨+1l2(y, x),
+1l1(y, x) ∨ +1l2(y, x), the number of α-s is bounded by three. When γ ∨ δ is
+1l1(x, y) ∨ +1l1(y, x) ∨ +1l2(x, y) ∨ +1l2(y, x), the number of α-s is bounded by
five. In all other cases the number of α-s is bounded by four. In all the above
cases, the construction is similar.

This completes the proof.

Lemma 6.4.2. For each FO2(Σ,+1l1 ,+1l2) formula of the form ∀x∃y ψ where ψ
is quantifier free, an equivalent 2-SS automaton of doubly exponential size can be
constructed.

Proof. First of all we note that, ψi can be written (using the truth table for ψi) as
an exponential size conjunction of disjunctions of the form

∀x∃y
∧
i

∨
j

(αi(x)→ θij(x, y))

where αi enumerates through all possible maximal types, that is
∨
i(αi(x)) is a

tautology and ¬ (αi(x) ∧ αj(x)) for all i 6= j. The formula θij is either false or of
the form,

βij(y) ∧ εij(x, y) ∧ γij(x, y) ∧ δij(x, y)

where, βij is a type, εij is one of x = y, x 6= y, γij is one of +1l1(x, y), +1l1(y, x),
¬+1l1(x, y), ¬+1l1(y, x), ¬+1l1(x, y) ∧ ¬+1l1(y, x) and δij is one of +1l2(x, y),
+1l2(y, x), ¬+1l2(x, y), ¬+1l2(y, x), ¬+1l2(x, y) ∧ ¬+1l2(y, x).

83

Chapter 6. Two-successor structures

We notice that the premises occurring in distinct conjuncts are distinct (and
mutually exclusive). Hence it is possible to distribute the ∀x∃y over the conjunc-
tion. The resulting formula is of the form

∧i∀x∃y ∨j (αi(x)→ θij(x, y))

We eliminate the disjunction by adding to every disjunct a new unary predicate
Λij(x) (these predicates are chosen to be distinct for each ψi) which denotes that
at the position x, the j-th disjunct is witnessing αi. We can rewrite every conjunct
in the above formula as

∃Λi1Λi2 . . .Λik (∀x ∨j Λij(x))

∧
∧
j

∀x∃y ((αi(x) ∧ Λij(x))→ θij(x, y))

A 2-SS automaton can guess the predicates Λij nondeterministically and verify
them. Hence our job is complete once we describe how to construct a 2-SS au-
tomaton for each formula of the form ∀x∃y (α(x)→ θij(x, y)). If the consequent is
false, the language is regular. So we concentrate on the cases where the consequent
is satisfiable.

∀x∃y (α(x)→ (β(y) ∧ ε(x, y) ∧ γ(x, y) ∧ δ(x, y)))

We do a case analysis. If ε(x, y) ≡ x = y, the language is regular. Hence now
onwards we fix ε to be x 6= y. As in the previous proof, we have two cases, when
γ or δ contains a positive formula and when they do not. Suppose γ contains a
positive formula, in this case γ reduces to either +1l1(x, y) or +1l1(y, x).

Let γ be +1l1(x, y). The formula δ reduces to one of +1l2(x, y), +1l2(y, x),
¬+1l2(x, y), ¬+1l2(y, x), ¬+1l2(x, y) ∧ ¬+1l2(y, x). The automaton B can check
these cases by verifying that y is the successor of x in +1l1 , β(y) holds and the
marking at x is consistent with δ. The case for γ ≡ +1l1(y, x) is similar.

When δ contains a positive formula the construction is similar, except that now
the automaton C verifies the formula.

The only remaining case is when γ and δ both do not contain a positive formula.

84

Chapter 6. Two-successor structures

Consider the case when γ ≡ ¬+1l1(x, y) and δ ≡ ¬+1l2(x, y). The formula says
that if there is an α at x there should be a witness y with β holding there, such
that y is not a successor of x in both the orders. Notice that if there are at least
four β-s occurring in the word we will be able to find a witness for any α, since
any position can have at most two β-s as its successors and one β at the position
itself, hence the fourth β will witness it. The automaton guesses whether the word
contains at least four β-s and verifies it, in which case the formula is taken care
of. Suppose the automaton guesses that the word contains fewer than four β-s.
In this case, the automaton guesses that there are exactly k, 0 ≤ k ≤ 3 positions
satisfying β and verifies it. If k = 0 there should not be any positions with α, and
this case is regular. Otherwise the automaton B labels the β-s as β1, . . . βk and
outputs them. Let the positions with β be y1 . . . yk. For each α(x) occurring in the
word the automaton B tags the position x with a vector (bβ1(x), . . . bβk(x)) where
the vector is defined in the following way:

bβi(x) =

0 if x = y,

1 if x 6= yi, A, x, yi |= γ(x, y),

0 if x 6= yi, A, x, yi 6|= γ(x, y).

For determining the vector the automaton needs to know which β is the successor
of α(x) in +1l1 , if there is one. Since the number of β-s is bounded, by making use
of finite memory and non-determinism the automaton B will be able to determine
this. The automaton C does the following when it runs over the output of B.
(1) For every α(x) occurring in the word it computes a vector

(
b′β1(x), . . . , b′βk(x)

)
where the vector is defined in the following way:

b′βi(x) =

0 if x = yi,

1 if x 6= yi, A, x, yi |= δ(x, y),

0 if x 6= yi, A, x, yi 6|= δ(x, y).

The automaton C depends on the labellings of the β-s by B to compute this. (2)
For each α(x) the automaton verifies that there is an 1 ≤ i ≤ k such that both
bβi(x) and b′βi(x) are one. This step is easily done by accessing the tagged vector
of each α(x).

In the cases where γ ∧ δ is one of ¬+1l1(y, x) ∧ ¬+1l2(x, y), ¬+1l1(x, y) ∧

85

Chapter 6. Two-successor structures

¬+1l2(y, x), ¬+1l1(y, x)∧¬+1l2(y, x), the sufficient number of β-s is three. When
γ ∧ δ is ¬+1l1(x, y)∧¬+1l1(y, x)∧¬+1l2(x, y)∧¬+1l2(y, x), the sufficient number
of β-s is five. In all other cases the sufficient number of β-s is four. In all the above
cases, the construction is similar.

This completes the proof.

The result from this section along with Proposition 6.3.9 imply the following,

Proposition 6.4.3. 2-SS automata and EMSO2 (Σ,+1l1 ,+1l2) are equivalent in
terms of expressiveness.

Hence checking satisfiability of a formula ϕ in the logic reduces to checking
non-emptiness of the corresponding automaton Aϕ.

6.5 Decidability of 2-SS automata

In this section we prove that checking emptiness of a 2-SS automaton is decidable.
A permutation π over a set S, is a bijective map from S to S. Let w = ([n], λ,+1l)

be a word and let π be a permutation over [n]. We call π(w) = ([n], π−1 ◦ λ,+1l)

a permutation of w. We define perm(w) as the set of all permutations of w. For
a language L, let perm(L) be the set of words that are the permutations of the
words in L.

For example if L = (abc)∗ then perm(L) = {w | w ∈ {a, b, c}∗,#a(w) =

#b(w) = #c(w)}. Notice that perm(L) can be non-regular even if L is regular. In
the previous case, it is not even context-free. But it is the case that for a regular
language L over a two letter alphabet, perm(L) is context-free.

Proposition 6.5.1. If L is regular then perm(L) is accepted by a multicounter
automaton.

Proof. The statement of this proposition is clear, since the Parikh image of any
regular language is semi-linear. However we present a proof below, which will be
extended later. The idea of the proof is to construct a multicounter automaton
MA, given a finite state automaton A, such that perm(L(A)) = L(MA). Though

86

Chapter 6. Two-successor structures

there are many ways to achieve this, in the following, we describe a construction
which we can extend later.

Let L be a regular language, then there is a finite state automaton A =

(Q,Σ,∆, I, F) such that L(A) = L. Given a word w = ([n], λ,+1l), it is in
L(A) if there is a run ρ = δ1 . . . δn ∈ ∆∗ of A on w such that ρ is accepting.

The idea of our construction is the following. Given a word w, the multicounter
automaton assigns a transition from ∆ to each letter of the word. The automaton
then checks if the those partial runs can be joined arbitrarily to create a successful
run. The counters of the multicounter automaton is given by the set C = (Q×Q).
Now onwards we refer to the partial runs as blocks. At any point during the
computation the following invariant is kept: If the counter (p, q) has value k then
there are exactly k blocks corresponding to partial runs from p to q. Initially all
the counters are zero and the invariant is satisfied trivially.

When the automaton encounters a letter a at position i, first of all it guesses a
transition (p, a, q) ∈ ∆. Now, the following scenarios can occur.

(t1) The automaton guesses two blocks (p1, q1) and (p2, q2) such that q1 = p and
p2 = q. The counters corresponding to the blocks (p1, q1) and (p2, q2) are
decremented by one and the counter corresponding to (p1, q2) is incremented
by one. Note that the update of counters amounts to merging two blocks to
the left and right of the current transition.

(t2) The automaton guesses the right block (p2, q2) such that p2 = q. The counter
corresponding to (p2, q2) is decremented by one and the counter correspond-
ing to (p, q2) is incremented by one. In this case the left block will be merged
to the current transition when it appears in the future.

(t3) The automaton guesses the left block (p1, q1) such that q1 = p. The counter
corresponding to (p1, q1) is decremented by one and the counter correspond-
ing to (p1, q) is incremented by one. In this case the right block will be
merged to the current transition when it appears in the future.

(t4) The automaton simply increments the counter corresponding to (p, q) by one.
In this case the transition is returned to the counters as an individual block.

87

Chapter 6. Two-successor structures

Note that in all the above cases our invariant holds. Finally, at the end of the
simulation the multicounter automaton accepts if: (1) a counter corresponding to
(p, q) ∈ I × F is one, (2) all other counters empty.

We need to show that if w ∈ perm(L(A)) if and only if MA has a successful
run on w. The right to left direction is guaranteed by the invariant. Since at the
end of the simulation MA accepts if there is a successful run of A on w.

For the left to right direction, assume that the word w of length n has a
permutation π : [n]→ [n] such that π(w) ∈ L(A). Let ρ = δ1 . . . δn be an accepting
run of π(w) on A. For 1 ≤ i ≤ n, we refer to the set S = {π(1), . . . , π(i)} as the
partial permutation corresponding to position i. The set s ⊆ S is a maximal
segment in S if: (1) the set s = {i, i+ 1, . . . , j} for some i ≤ j (2) i− 1 and j + 1

are not in S. Given any partial permutation it can be partitioned into a number
of maximal segments. The partial run corresponding to the segment s is δi . . . δj.
The block corresponding to the segment s is the pair (p, q) where p is the start
state of δi and q is the end state of δj. For each position i we define the counter
configuration hi : C → N as;

hi((p, q)) = # of maximal segments of {π(1), . . . , π(i)} whose blocks are (p, q)

Next we describe a successful run of the multicounter automaton on w. The
automaton chooses the transition δπ(i) at position i. We claim that at position i
the automaton can reach the counter configuration hi. We prove it using induction
on i. Initially all the counters are empty and the condition is trivially satisfied.
For the inductive step, assume that after position i the automaton reached the
configuration hi.

At position i + 1 the automaton selects the transition δπ(i+1) = (p, a, q). Let
S = {π(1), . . . , π(i)} be the partial permutation corresponding to position i and
let the maximal segments of S be M = {s1, . . . , sk}, 1 ≤ k ≤ i.

If π (π−1(i+ 1)− 1) < i + 1 and π (π−1(i+ 1) + 1) < i + 1 we observe that
there are two maximal segments sl, sr in S whose blocks are (p1, p) and (q, q2) for
some p1, q2 ∈ Q. Hence, by induction hypothesis the values of these counters are
greater than zero. The automaton performs the action t1. The maximal segments
of S ∪ {π(i + 1)} are (M − {sl, sr}) ∪ {sl ∪ sr ∪ {π(i + 1)}}. The count of blocks

88

Chapter 6. Two-successor structures

for segments in (M − {sl, sr}) remains unchanged. While the number of blocks
corresponding to (p1, p) and (q, q2) decreases by one and the number of blocks
corresponding to block (p1, q2) increases by one. This is reflected by the counter
update in the action t1.

If π (π−1(i+ 1)− 1) < i + 1 and π (π−1(i+ 1) + 1) > i + 1 there is maximal
segment sl in S with block (p1, p) for some p1 ∈ Q. The counter value of (p1, p) is
greater than zero by induction hypothesis. The automaton takes the step t3 and the
counter values is updated. The updated counter value reflects the block counts of
maximal segments in S∪{π(i+1)} which is the set (M − {sl})∪{sl∪{π(i+1)}}.
The scenario when π (π−1(i+ 1)− 1) > i + 1 and π (π−1(i+ 1) + 1) < i + 1 is
symmetric and in this case the automaton performs the action t2.

When π (π−1(i+ 1)− 1) > i + 1 and π (π−1(i+ 1) + 1) > i + 1, the maximal
segments of S∪{π(i+1)} is the setM ∪{{π(i+1)}} and the automaton performs
the action t4.

At the end of the run the multicounter automaton has a single maximal segment
with block (p, q) for some p ∈ I and q ∈ F . Hence, by the above claim all
counters except (p, q) are zero and the counter corresponding to (p, q) is one and
the automaton accepts.

The above theorem shows that if we did not have the marking on the words,
the decidability follows immediately. Since, given the 2-SS automaton A = (B,C)

we could construct an ε-free multicounter automaton which accepts perm(L(C))

and intersect it with the finite state transducer B (in such a way that output of B
is supplied as the input of the multicounter automaton) and check the emptiness
of the whole system. Next we show how to adapt this technique to the case of
marked words.

Let w = (a1, b1) . . . (an, bn) ∈ (Σ× {1, 0,−1})∗ be a marked word. We say u is
a −1-factor of w if u is a factor (subword defined by adjacent positions) of w and
all the letters in u have the marking −1 except the last position which is marked
by 0. Similarly u is a 1-factor of w if u is a factor of w such that all the letters
in u have the marking 1 except the last position which is marked by 0. Given any
marked word w, it can be factorised into w = u1u2 . . . uk, k ≤ n where each ui is
a 1-factor or −1-factor. For easiness we refer to them as factors.

89

Chapter 6. Two-successor structures

Lemma 6.5.2. Given a 2-SS automaton A = (B,C), there is a 2-SS automaton
A′ = (B′, C ′) with the following properties. (1) The factors of every marked word
accepted by B′ has length at least two. (2) L(A) is non-empty if and only if L(A′)
is non-empty. Moreover, A′ can be obtained from A in linear time.

Proof. Let the alphabet of A be Σ. We set the alphabet of A′ as Σ ∪ {2} where
2 is a dummy letter.

LetB = (Q,Σ,Σ′,∆, O, I, F). LetB1 beB1 = (Q,Σ∪{2},Σ′∪{2},∆′, O′, I, F)

where ∆′ = ∆ ∪ {(p, (2, 1), p) | p ∈ Q} and O′ = O ∪ {((p, (2, 1), p) ,2) | p ∈ Q}.

Let B2 be the finite state automaton accepting the language “All factors are of
length greater than one”. Define B′ as the intersection of B1 and B2.

Let C be C = (Qc,Σ
′,∆c, Ic, Fc), we define the automaton C ′ to be C ′ =

(Qc,Σ
′,∆′c = ∆c ∪ {(p,2, p) | p ∈ Q}, Ic, Fc).

The first claim follows from the fact that no marked words accepted by B′ has
marking 0 appearing in consecutive positions. This is guaranteed by the automaton
B2.

Next we show that L(A) is non-empty if and only if L(A′) is non-empty.

For the left-to-right direction, let A = (A, λ,+1l1 ,+1l2) be a 2-SS in L(A).
If msp+1l1

(A) does not have factors of length one, we are done. If it is not the
case, we introduce some new elements into the structure A with the label 2 while
preserving the relative orderings (in both the orders) of elements in A. Let F be
the sets of pairs in +1l1 constituting factors of length one.

F = {(x, y) | x, y ∈ A,+1l1(x, y),msp+1l1
(x) = 0,msp+1l1

(y) = 0}

We define a new 2-SS A′ =
(
A′, λ′,+1′l1 ,+1′l2

)
where;

A′ = A ∪ {e(x,y) | (x, y) ∈ F}

λ′(x) =

{
λ(x) if x ∈ A
2 if Otherwise

+1′l1 = {(x, e(x,y)), (e(x,y), y) | (x, y) ∈ F} ∪ (+1l1 − F)

90

Chapter 6. Two-successor structures

+1′l2 ={(x, y) | (x, y) ∈ +1l2 , y 6∈ Range(F)}

∪ {
(
z, e(x,y)

)
| (z, y) ∈ +1l2 , y ∈ Range(F)}

∪ {(e(x,y), y) | (x, y) ∈ F}

We claim that A′ has a successful run on A′. Observe that,

msp+1′l1
(A′) = u1(2, 1)u2(2, 1) . . . (2, 1)uk

where u1u2 . . . uk = msp+1l1
(A) and each uj is a factor of msp+1l1

(A). Let ρ =

(ρb, ρc) an accepting run of A on A. The run ρb of B on u1u2 . . . uk can be grouped
as ρb = ρ1ρ2 . . . ρk where each ρi is a partial run on ui. From the definition
of B′ it follows that ρ′b = ρ1(p1, (2, 1), p1)ρ2(p2, (2, 1), p2) . . . (pk, (2, 1), pl)ρk is
an accepting run of B′ on msp+1′l1

(A′). Here we suppressed the fact that the
automaton B′ is an intersection of B1 and B2 for the sake of simplicity. Since
msp+1′l1

(A′) is in the language of B2 it is not an impediment but a thorny technical
detail.

Similarly the output word of B′ is of the form w′ = v12v22 . . .2vk where
v1v2 . . . vk is the output word of B. By a similar argument it follows that w′ is
accepted by the automaton C.

For the right-to-left direction, assume that L(A′) is non-empty. Hence there
exists a 2-SS A′ =

(
A′, λ′,+1′l1 ,+1′l2

)
in L(A′). If no position in A′ is labelled by 2

we are done since A′ has an accepting run on A. Otherwise we define A to be the
structure A = (A, λ,+1l1 ,+1l2) where A = {x ∈ A′ | λ(x) 6= 2}. λ′ as λ restricted
to A and +1l1 ,+1l2 as,

+1l1 = {(x, y) | (x, y) ∈ +1′l1 ,∀z, x ≤l1 z ≤l2 y =⇒ λ(z) = 2}

+1lz = {(x, y) | (x, y) ∈ +1′l2 ,∀z, x ≤l2 z ≤l2 y =⇒ λ(z) = 2}

From A′ we remove the positions carrying the label 2 while keeping the relative
ordering (on both the orders) of remaining positions. Most importantly this does
not change the marking msp+1l1

of positions in A.

91

Chapter 6. Two-successor structures

Notice that msp+1l1
(A) is the subword of msp+1′l1

(A′) obtained by removing
(2, 1). Hence the accepting run ρ′b of B′ can be converted to an accepting run of
B on msp+1l1

(A) by removing the transitions on (2, 1). Similarly the output word
w′ of B is the subword of output word w of B by removing 2. By definition of C ′,
we can infer that C has an accepting run on w′.

We define the notion of a marked permutation. Given a marked word w =

(a1, b1)(a2, b2) . . . (an, bn) where bi ∈ {−1, 0, 1}, we say a permutation π : [n]→ [n]

defines a marked permutation of w iff (1) for every i, if bi = 1 then π(i) + 1 =

π(i+ 1). Note that for the last position bi is always zero. (2) for every i, if bi = −1

then π(i) = π(i + 1) + 1. (3) Whenever bi = 0 and i is not the last position
then π(i) + 1 6= π(i + 1) and π(i) 6= π(i + 1) + 1. We call π(w) as the marked
permutation of w. Given a word w over Σ , by mperm(w) we mean all marked
words w′ such that w is a marked permutation of w and for a language L of words
over Σ, by mperm(L) we mean the set of marked words w′ such that w′ has a
marked permutation w which is in L.

Lemma 6.5.3. If L is regular language, then the set of all words in mperm(L)

with factors of length at least two is accepted by a multicounter automaton.

Proof. The multicounter automaton checks if positions of w can be permuted (sat-
isfying the marking) to obtain a word in L. Let A = (Q,Σ,∆, I, F) be a finite
state automaton accepting the language L.

Let w = u1u2 . . . uk be a marked word where each ui is a factor. Then w ∈
mperm(L) if there is a permutation i1, i2, . . . , ik of 1, 2, . . . , k such that the word
u∗i1u

∗
i2
. . . u∗ik ∈ L where u∗i = str(ui) if ui is a 1-factor and u∗i = (str(ui))

r if ui is a
−1-factor such that if ui and ui+1 are 1-factors in the permutation u∗i is not followed
by u∗i+1 and if ui and ui+1 are −1-factors in the permutation u∗i is not followed by
u∗i+1. The last condition ensures that the permutation obeys the marking.

Stating the above in terms of the run of A, the word w belongs to mperm(L)

if there exists pairs (p1, q1), . . . , (pk, qk) such that;

• For all i, if ui is a 1-factor then str(ui) has run from pi to qi. For all i, if ui
is a −1-factor then (str(ui))

r has run from pi to qi.

92

Chapter 6. Two-successor structures

• There is a permutation π = (pi1 , qi1), . . . , (pik , qik) of (p1, q1), . . . , (pk, qk) such
that

– pi1 ∈ I, qik ∈ F and forall ij, qij = pij+1
.

– For all i, if ui and ui+1 are both 1-factors then in the permutation π,
the pair (pi, qi) is not followed by (pi+1, qi+1).

– For all i, if ui and ui+1 are both −1-factors then in the permutation π,
the pair (pi+1, qi+1) is not followed by (pi, qi).

We construct a multicounter automaton which checks the above condition. The
automaton has counters from the set C = (Q×Q) to store the count of the blocks
seen so far. Given a marked word w = u1u2 . . . uk where each uj is a factor of
w, as in the proof of Lemma 6.5.1, the multicounter automaton works as follows.
While reading each factor ui−1 it guesses a pair (pi−1, qi−1) and verifies that ui−1

has a partial run starting in the state pi−1 and ending in state qi−1. This block
may then combined on the left and right with partial runs stored in the counters
resulting in block (p′, q′) (Shortly, we will describe this step in detail). Finally
the block (p′, q′) is returned to the counters. To ensure that a run is consistent
with the marking, the automaton remembers in its state the following information:
Whether the factor ui−1 is a 1-factor or a −1-factor, whether the block was merged
to the left, whether the block was merged to the right, the resulting block (p′, q′).

Next we describe the construction in detail. Assume that the automaton is
reading ui and verified that it corresponds to a block (p, q). The following scenarios
can occur,

(t1) The automaton guesses two blocks (p1, q1) and (p2, q2) such that q1 = pi

and p2 = qi. If ui−1 is a 1-factor, (p1, q1) = (p′, q′) and the block (pi−1, qi−)

was not merged to the right then the automaton verifies that the counter
corresponding to (p′, q′) is at least two. We use the fact that factors are of
length at least two here. Since the factor is of length at least two, we just
have to make sure that the block corresponding to ui−1 is not merged to the
right, while it is not a problem to merge it to the left. If ui−1 is a −1-factor,
(p2, q2) = (p′, q′) and the block (pi−1, qi−) was not merged to the left then the
automaton verifies that the counter corresponding to (p′, q′) is at least two.

93

Chapter 6. Two-successor structures

This is to ensure that there is a block (p′, q′) which does not correspond to
partial run over ui−1 violating the consistency condition. Here also it is not a
problem to merge the block to the right because the factors are of length at
least two. The counters corresponding to the blocks (p1, q1) and (p2, q2) are
decremented by one and the counter corresponding to (p1, q2) is incremented
by one. Note that the update of counters amounts to merging two blocks to
the left and right of the current block.

(t2) The automaton guesses the right block (p2, q2) such that p2 = q. If ui−1 is a
−1-factor, (p1, q1) = (p′, q′) and the block (pi−1, qi−) was not merged to the
left then the automaton verifies that the counter corresponding to (p′, q′) is
at least two. This is to ensure that there is a block (p′, q′) which does not
correspond to partial run over ui−1. The counter corresponding to (p2, q2) is
decremented by one and the counter corresponding to (p, q2) is incremented
by one. In this case the left block will be merged to the current block when
it appears in the future.

(t3) The automaton guesses the left block (p1, q1) such that q1 = p. If ui−1 is a
1-factor, (p1, q1) = (p′, q′) and the block (pi−1, qi−) was not merged to the
right then the automaton verifies that the counter corresponding to (p′, q′)

is at least two. This is to ensure that there is a block (p′, q′) which does not
correspond to partial run over ui−1. The counter corresponding to (p1, q1) is
decremented by one and the counter corresponding to (p1, q) is incremented
by one. In this case the right block will be merged to the current block when
it appears in the future.

(t4) The automaton simply increments the counter counter corresponding to (p, q)

by one. In this case the block (p, q) is returned to the counters.

Finally at the end of the simulation if all counters are empty except a counter
(p, q) ∈ (I × F) the multicounter automaton accepts.

To show that if the multicounter automaton accepts a marked word w with
factors of size at least two then w is in mperm(L), we proceed as in the case of
Proposition 6.5.1. The invariant that during the run a counter (p, q) has value k
if and only there are k partial runs from p to q still holds. Also, the consistency

94

Chapter 6. Two-successor structures

condition incorporated into the actions of the multicounter automaton allows us
to find a block whenever there is a conflict in merging two blocks.

Similarly, to show that if w has factors of length at least two and w ∈ mperm(L)

then the multicounter automaton has an accepting run on w, the proof follows
the same reasoning as in the proof of Proposition 6.5.1. We consider factors as
individual positions. Consider the following scenario. The automaton read ui and
verified the partial run (p, q). The left neighbour of the block ui precedes ui and
corresponds to the block (p′, q′). At the same time the factor ui−1 is a 1-factor
with corresponding the block (p′, q′) and was not merged to the right. In this
case there exists yet another maximal segment with block (p′, q′). Hence the value
of the counter (p′, q′) is at least two and the automaton executes action t2. The
arguments for t3, t1 is symmetric.

Theorem 6.5.4. Emptiness checking of 2-SS automata is decidable.

Proof. Given the 2-SS automaton A = (B,C), we first construct the 2-SS (A′ =

(B′, C ′) such that the marked words accepted by B′ have factors of length at least
two (using Lemma 6.5.2). Construct a multicounter automaton PC′ which accepts
mperm (L (C ′)). We take the intersection of the transducer B′ and PC′ such a
way that the output of B′ is supplied as the input of PC′ . Finally we check the
emptiness of the resulting automaton.

6.5.1 Remarks

Theorem 6.5.4 along with Proposition 6.4.3 yield a decision procedure for testing
finite satisfiability of FO2 (Σ,+1l1 ,+1l2) formulas. Given ϕ ∈ FO2 (Σ,+1l1 ,+1l2)

we construct a 2-SS automaton Aϕ accepting models of ϕ and check the emptiness
of Aϕ. It follows that;

Theorem 6.5.5. Finite satisfiability of FO2 (Σ,+1l1 ,+1l2) is decidable.

We want to draw the attention to why the decidability proof does not generalize
to FO2 (Σ,+1l1 ,+1l2 ,+1l3). The reason is that we relied on msp+1l1

to compute
msp+1l2

. This step is not possible in the case of three successor relations. This
can be however overcome by providing the component automata (each running on

95

Chapter 6. Two-successor structures

+1l1 ,+1l2 and +1l3) with their own marked string projection as we see in the next
section.

6.6 n-Successor Structures

Next we try to generalize the constructions seen before to the case of structures
with n successor relations.

A n-successor structure A over the alphabet Σ is a first order structure A =

(A,Σ,+1l1 , . . . ,+1ln) where A is a finite set, +1l1 , . . . ,+1ln are successor relations
of n linear orders over A. For notational convenience sometimes we represent a
n-SS as A = (A, λ,+1l1 , . . . ,+1ln). We denote the linear order corresponding to
+1li by the symbol ≤li . Restricting the structure A to the order ≤li yields a word,
we call the word (A,Σ,+1li) the word/string projection of A to the successor +1li .
Henceforth we abbreviate the term n-successor structure as n-SS .

6.6.1 Successor Types

Given x ∈ A, we define the notion of successor type of x in the following way. First
of all, we define two equivalences s(x) and p(x) on the set [n] as follows.

i ∼s(x) j ⇔ ∃y
(
x+ 1liy ∧ x+ 1ljy

)
i ∼p(x) j ⇔ ∃y

(
y + 1lix ∧ y + 1ljx

)
Note that the relations s(x) and p(x) are equivalences on the set [n]. Let

s(x) = {ζ1, . . . , ζk} and p(x) = {η1, . . . , ηl}, ζi, ηi ∈ P ([n]) be the equivalence
classes of s(x) and p(x). Finally, we define the partial morphism f(x) ⊂ s(x)×p(x)

in the following way.

(ζi, ηj) ∈ f(x)⇔ s ∈ ζi, t ∈ ηj,∃y (y + 1lsx ∧ x+ 1lty)

For every x, we call the triple τ(x) = (p(x), s(x), f(x)) the successor type of
x. There are only exponentially many such triples for every n. we denote the

96

Chapter 6. Two-successor structures

set of all successor types by Υ. Given a n-SS A = (A, λ,+1l1 , . . . ,+1ln) we call
(A, λ′,+1li) where λ′ : A → Σ × Υ defined as λ′(x) = (λ(x), τ(x)) the annotated
string projection to the order i.

6.7 Automata on n-SS

In the following we define the notion of an n-SS automaton. Fix an alphabet Σ.
An n-SS automaton A = (B1, . . . , Bn) is a composite automaton consisting of n
word automata B1, . . . , Bn.

For 1 ≤ i < n, the automaton Bi is a non-deterministic letter-to-letter word
transducer with an input alphabet Σi × Υ and an output alphabet Σi+1. For the
transducer B1 it is the case that Σ1 = Σ. The automaton Bn is a finite state
recognizer with the alphabet Σn ×Υ.

Definition 6.7.1. Formally, an n-SS automaton A = (B1, . . . , Bn) is a composite
automaton consisting of n word automata B1, . . . , Bn where, for 1 ≤ i < n, the
word transducer Bi is given by the tuple Bi = (Qi,Σi×Υ,Σi+1, Oi,∆i, qi, Fi), where
Qi is the finite set of states, Σi×Υ is the input alphabet, Σi+1 is the output alphabet,
qi ∈ Qi is the initial state, Fi ⊆ Qi is the set of final states, ∆i ⊆ Qi×Σi×Υ×Qi

is the set of transitions and Oi : ∆i → Σi+1 is the output function.

Given A = (A, λ,+1l1 , . . . ,+1ln) the automaton Bi runs over the word wi =

(A, (λi, τ) ,+1li). For the automaton B1 we fix λ1 = λ. We define a run ρi : A→ ∆i

of Bi as a labelling such that:

• ρi (min (+1li)) is a transition from the state qi.

• if ρi (a) = (p, (σ, τ) , q) then λi(a) = σ and τ (a) = τ .

• if a+ 1lib and ρi (a) = (p, (σ, τ) , q) and ρi (b) = (p′, (σ′, τ ′) , q′) then q = p′.

The run ρi is accepting if ρi (max (+1li)) is a transition to a state in Fi. An
accepting run ρi of Bi on wi uniquely defines an output string wi+1 = (A, λi+1,+1li)

where λi+1 : A→ Σi+1 given by λi+1(a) = Oi (ρi (a)).

97

Chapter 6. Two-successor structures

The automaton Bn = (Qn,Σn,∆n, qn, Fn) with the set of states Qn, the initial
state qn ∈ Qn, the set of final states Fn ⊆ Qn and the transition relation ∆n ⊆
Qn × Σn ×Qn. We can define a run ρn : A → ∆n similarly as above. The run ρn
is accepting if ρn (max (+1ln)) is a transition to a state in Fn.

Given A = (A, λ,+1l1 , . . . ,+1ln), We say the n-SS automaton A has an ac-
cepting run ρ = ρ1, . . . ρn if,

• for 1 ≤ i < n, ρi is an accepting run of Bi on (A, (λi, τ) ,+1li) outputing the
word (A, λi+1,+1li),

• ρn is an accepting run of Bn on (A, λn,+1ln).

Given an n-SS automaton A over Σ, we define L(A) as the set of n-SS A over
Σ such that A has an accepting run on A. Given a set of n-SS L, we say L is
recognizable if there is a n-SS automaton A such that L = L(A). By ∅, we denote
the empty language of n-SS over Σ. Given L, by L̄ we denote the set of all A over
Σ such that A 6∈ L. Similarly, given L1, L2, by L1 ∪ L2 (alt. L1 ∩ L2) we denote
the set of all A over Σ such that A ∈ L1 or (alt. and) A ∈ L2.

The following three lemmas are obvious generalizations of the corresponding
lemmas for 2-SS automata.

Lemma 6.7.2. There exists n-SS automata A∅ and A∅̄ such that L (A∅) = ∅ and
L (A∅̄) = ∅̄.

Lemma 6.7.3. Given a regular language L ⊆ Σ∗, there is a n-SS automaton A
accepting all n-SS whose string projections to the order ≤li is in L.

Lemma 6.7.4. Languages recognized by n-SS automata are closed under union,
intersection and renaming.

6.8 Logical Characterization of n-SS Automata

Lemma 6.8.1. For every n-SS automaton A there is a formula ϕA in the logic
EMSO2 (Σ,+1l1 , . . . ,+1ln) such that L (A) = L (ϕA).

98

Chapter 6. Two-successor structures

Proof. As usual, the idea is to encode a successful run of A as a formula ϕA in
EMSO2 (Σ,+1l1 , . . . ,+1ln). From the classical encoding of automata, we know that
for 1 ≤ i < n the run of each Bi can be coded as a formula ϕi (Σi,Υ,Σi+1,+1li).
In the formula ϕi, the unary predicates Σi,Υ and Σi+1 occur as free variables. The
automaton Bn is encoded as a formula ϕi (Σi,Υ,+1li).

In this section we show that given an FO2 (Σ,+1l1 , . . . ,+1ln) formula we can
transform it into an equivalent n-SS automaton. First of all, given a formula ϕ ∈
FO2(Σ,+1l1 , . . . ,+1ln) we transform it into an equivalent formula in Scott Normal
Form, ∃R1 . . . Rn

(
∀x∀y χ ∧

∧
j ∀x∃y ψj

)
, where the predicates Rl are unary, and

χ and ψj are quantifier-free formulas in FO2(Σ,+1l1 , . . . ,+1ln). Earlier we observed
that n-SS automata are closed under renaming and intersection. Therefore it
suffices to show that we can construct a n-SS automaton for each of the formulas
∀x∀y χ and ∀x∃y ψj and this is shown by the following two lemmas.

In the following a unary type is a one variable quantifier-free formula containing
only unary predicates.

Lemma 6.8.2. Given an FO2(Σ,+1l1 , . . . ,+1ln) formula of the form ϕ = ∀x∀y χ
where χ is quantifier free, an equivalent n-SS automaton of doubly exponential size
can be constructed.

Proof. What follows is a simple generalization of the proof of Lemma 6.4.1. The
chain of arguments is exactly the same.

We start by writing ϕ in CNF causing an exponential blowup in the size of the
formula, followed by distributing the universal quantification over the conjunctions
and rewriting the formula as

∧
j ∀x∀y χj where each χj is of the form,

χj = α(x) ∨ β(y) ∨ ε(x, y) ∨

∨
i∈[n]

δi(x, y)

 .

Above α(x) and β(y) are unary types. The formulas in the group ε(x, y) are x = y

and x 6= y. The formula δi is a disjunction of literals from the set Oi, where

Oi= {+1li(x, y),¬+1li(x, y),+1li(y, x),¬+ 1li(y, x)} .

99

Chapter 6. Two-successor structures

It is enough to construct an n-SS automaton for each χj since the automata are
closed under intersection. We note that whenever χj describes a regular property,
we can construct an equivalent n-SS automaton by converting the finite state au-
tomaton equivalent to χj. If only one clause δi(x, y) is present in χj, the formula χj
describes a regular property over one linear order, namely the order ≤li . Therefore
we restrict our attention to those χj where at least two clauses δi and δk, i 6= k are
present. Suppose ε(x, y) ≡ x = y ∨ x 6= y. In this case, the formula is tautology
hence we construct a n-SS automaton which accepts all n-SS.

The case when ε(x, y) ≡ x 6= y, as in the proof of Lemma 6.4.1 the formula
describes a regular property.

When ε(x, y) ≡ x = y and δm(x, y) contains a negative literal for some m ∈ [n],
we can rewrite χj in the form,

χj ≡ (α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′m(x, y))→

 ∨
i∈[n],i 6=m

δi(x, y)

 ,

where α′, β′, δ′m are the negations of α, β, δ′m respectively. It follows that δ′m(x, y)

contains a positive literal and the automaton can verify the formula χj by looking
at the annotated string projection to the order ≤lm .

The interesting case is when ε(x, y) ≡ x = y, and none of δ1, . . . , δn contains
a negative literal, that is when δ1, . . . , δn are disjunctions of positive literals. We
rewrite χj in the following form,

χj = (α′(x) ∧ β′(y) ∧ x 6= y)→

∨
i∈[n]

δi(x, y)

 .

The formula says the following. Whenever α′ holds at x and β′ holds at y and
x, y are distinct then they are neighbours in at least one order ≤li as dictated by
δi. If there is no α′ in the word there can be any number of β′. Similarly there can
be any number of α′ if there is no β′ occurring in the word. The automaton can
guess both these cases and verify them easily. When there is at least one α′ and β′

present in the word the number of α′ and β′ are bounded, since all α′ and β′ has to
be neighbours in at least one of the successor relations as dictated by

∨
i∈[n] δi(x, y)

100

Chapter 6. Two-successor structures

and there are only bounded number of neighbours (atmost 2n) for any position.
Therefore in this case the formula χj can be checked by a n-SS automaton by
labelling the α′ and β′.

Lemma 6.8.3. For each FO2(Σ,+1l1 , . . . ,+1ln) formula of the form ∀x∃y ψ where
ψ is quantifier free, an equivalent 2-SS automaton of doubly exponential size can
be constructed.

Proof. The argument follows the proof of Lemma 6.4.2 with minor adjustments.
Begin by writing ψ as an exponential size conjunction of disjunctions of the form
∀x∃y

∧
s

∨
t (αs(x)→ θst(x, y)), where αs enumerates through all possible maximal

types, that is
∨
s(αs(x)) is a tautology and (αs(x) ∧ α′s(x)) is unsatisfiable for all

s 6= s′. The formula θst is either ⊥ or of the form,

β(y) ∧ ε(x, y) ∧

∧
i∈[n]

δi(x, y)

 ,

where, β is a type, ε is one of x = y, x 6= y, δi is in Oi.

The premise occurring in distinct conjuncts are distinct (and mutually ex-
clusive). Hence it is possible to distribute the ∀x∃y over the conjunction. The
resulting formula is of the form,∧

s

∀x∃y
∨
t

(αs(x)→ θst(x, y)) .

We eliminate the disjunction by adding to every disjunct a new unary predicate
Λst(x) (these predicates are chosen to be distinct for each ψ) which denotes that
at the position x, the t-th disjunct is witnessing αs. We can rewrite every conjunct
in the above formula as,

∃Λs1Λs2 . . .Λsk

(
∀x
∨
t

Λst(x)

)
∧

(∧
t

∀x∃y ((αs(x) ∧ Λst(x))→ θst(x, y))

)

An n-SS automaton can guess the predicates Λst. So it is enough to construct
an n-SS automaton for each formula of the form ∀x∃y (αs(x)→ θst(x, y)). If the

101

Chapter 6. Two-successor structures

consequent is false, the language is regular. So we concentrate on the cases where
the consequent is satisfiable.

∀x∃y

α(x)→

β(y) ∧ ε(x, y) ∧

∧
i∈[n]

δi(x, y)

We do a case analysis. If ε(x, y) ≡ x = y, the language is regular. Hence now

onwards we fix ε to be x 6= y.

As in the previous proof, we have two cases, when δm contains a positive literal
for some m ∈ [n] and when none of δ1, . . . , δn contains a positive literal. If δm
contains a positive literal for some m ∈ [n], we can easily verify the formula by
looking at the annotated string projection to the appropriate order.

The only remaining case is when none of δ1, . . . , δn contains a positive literal.
In this case, we claim that there exists a k ∈ N such that if there are at least
k many β in A then it is guaranteed that every α has a witness. Therefore the
automaton guesses one of the following,

• the number of β present in A is fewer than k. In this case the automaton
guesses the number of β and verifies that. In addition, it labels each β with
a distinct label and verifies that for every α there is at least one β witnessing
it.

• the number of β present in A is at least k. In this case the automaton just
verifies that the guess is correct.

This gives us that,

Theorem 6.8.4. A n-SS language is recognizable if and only if it is definable in
EMSO2 (Σ,+1l1 , . . . ,+1ln).

6.8.1 Discussion

We saw that there is a natural generalization 2-SS automaton to n successor struc-
tures. The proof of equivalence between 2-SS and EMSO2 (Σ,+1l1 ,+1l2) extends

102

Chapter 6. Two-successor structures

seamlessly in this case. However the emptiness problem for n-SS automaton re-
mains open. The proof for the two successor case fails to generalize because of the
presence of more than one markings.

103

7
Ordered data words

7.1 Introduction

In this chapter we study two variable logic and data automata on ordered data
words. We model ordered data words as first-order structures with a linear order
and a total preorder (as discussed in Chapter 5). Henceforth we refer to the total
preorder as preorder and totality is assumed. The contents of this chapter is part
of a joint work with Thomas Zeume [MZ11].

In the following we focus our attention to the finite satisfiability problem of
FO2 (Σ,+1l ,≤p ,+1p) (See Chapter 5 for the context). However we do not solve the
general case here. Instead, we show that finite satisfiability of FO2 (Σ,+1l ,≤p ,+1p)

is decidable over (+1l ,≤p ,+1p)-structures where each equivalence class of ≤p
contains at most k elements for a fixed k. We will shortly describe the ratio-
nale behind this restriction. Since 1-boundedness can be axiomatized in FO2 by
∀x∀y(x 6= y → ¬x ∼p y), the following is an immediate corollary: The finite
satisfiability problem for FO2(+1l1 ,≤l1 ,+1l2) is decidable.

It is known that the finite satisfiability problem of FO2 (Σ,≤l ,+1l ,∼p) and
non-emptiness problem of data automata over 2-bounded data words (data words
where class has length 2) are as hard as reachability in vector addition systems.
Not only this, the data languages described in Chapter 3, fall into this class. This
is sufficient evidence to infer that we are dealing with a non-trivial subclass of
data words. In the latter part of this chapter, we will see that in fact the finite

104

Chapter 7. Ordered data words

≤l

≤p

b

a
c

d b
d

Figure 7.1: A (+1l ,+1p ,≤p)-structure and representation in the plane. Columns
are ordered by ≤l , rows are ordered ≤p

satisfiability problem for FO2 (Σ,+1l ,≤p ,+1p) over k-bounded ordered data words
is as hard as reachability in vector addition systems.

7.2 Automata over ordered data words

We observe that ordered data words (words with an additional total preorder on
their positions) – have a natural representation as sets of labeled points in the
two-dimensional plane, see Figure 7.1 for the representation of the ordered data
word w,

w =

(
d c b a b d

4 3 1 2 4 5

)

We will use this intuition in the following constructions and proofs.

In the following, we introduce some vocabulary for (+1l ; +1p ,≤p)-structures.
These structures are also called ordered data words. An ordered data word is
k-bounded if ≤p is k-bounded. We call such structures k-ordered data words
(abbreviated as k-o.d.w). Let A be a k-bounded (+1l ; +1p ,≤p)-structure over
universe A. The string projection (≤l-projection) sp(A) of A is the restriction of
A to unary relations as well as the +1l-relation, i.e. sp(A) = (A,Σ,+1l). The
≤l-projection is identified with the sequence of the labels of all elements in linear
order. For example, the ≤l-projection of the (+1l ; +1p ,≤p)-structure from Figure

105

Chapter 7. Ordered data words

≤l

≤p

b

a
c

d b
d

Figure 7.2: A (+1l ,+1p ,≤p)-structure and markings. Columns are ordered by ≤l ,
rows are ordered ≤p , i.e. every box represents the intersection of one ≤p-class and
one ≤l-class. The markings of the a, b, d are respectively +∞,+1,−1.

7.1 is d, c, b, a, b, d.

For alphabet Σ, define parikh(Σ) = N|Σ|.

Slightly abusing the notation we use +1p and ≤p to denote the successor re-
lation and linear order relation on A/∼p that are induced by ≤p . Let parikhk(Σ)

be the set of parikh vectors over Σ whose sum of components is at most k. Ev-
ery [a] ∈ A/∼p can be labeled by a symbol p from parikhk(Σ) such that, for
every σ ∈ Σ, p indicates the number of σ-labeled elements in [a]. The pre-
order projection (≤p-projection) of A is pp(A) = (A/∼p , parikhk(Σ),+1p ,≤p),
i.e. the ≤p-projection of A considers ∼p-equivalence classes as single elements.
We will identify the preorder projection with the sequence p1, . . . , pm where pi ∈
parikhk(Σ) is the parikh image of the ith element of A/∼p with respect to ≤p .
Thus the preorder projection of the (+1l ; +1p ,≤p)-structure from Figure 7.2 is
(0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 1), (0, 0, 0, 1) where, for instance, the sec-
ond component of all vectors represents the number of occurrences of the label
b.

Recall that we write +1sp(u, v) if the equivalence class of v with respect to ≤p is
the successor of the equivalence class of u. Further we say u and v are +1p-close,
if either u+1spv or u ∼p v or v + 1spu. If u ≤p v and if they are not +1p-close, we
denote it by u�p v.

Let Γl be the alphabet {−∞,−1, 0, 1,+∞}. As before, we annotate the string

106

Chapter 7. Ordered data words

projection with a marking as follows. Given a ∈ A we define the marking of a on
+1l , Ml(a) ∈ Γl as,

Ml(a) =

−∞ if ∃b (a+ 1lb ∧ b�p a)

−1 if ∃b (a+ 1lb ∧ b+ 1spa)

0 if ∃b (a+ 1lb ∧ a ∼ b)

+1 if ∃b (a+ 1lb ∧ a+ 1spb)

+∞ if ∃b (a+ 1lb ∧ a�p b) ∨ ¬∃b (a+ 1lb)

The above marking we call the ≤p-marking as it encodes the distance between
two consecutive positions of the linear order with respect to the preorder. Given
A = (A,Σ,+1l ,≤p ,+1p), we define the marked string projection of A as the word
(A,Σ,Γl,+1l) where each position is annotated with its marking.

7.3 k-bounded Ordered Data Automaton

We propose a variant of Data automata on k-class bounded ordered data words.
Register automata have been extended to the case of ordered data words recently
[ST11]. However, the automata presented below are incomparable with the men-
tioned generalization.

Definition 7.3.1. A k-bounded Ordered Data Automaton (k-ODA) is a composite
automaton A = (B, C) where B is a non-deterministic finite state transducer with
an input alphabet Σ × Γl and an output alphabet Π. The automaton C is a finite
state automaton working on words over the alphabet parikhk(Π).

The set-up of k-ODA is very similar to that of 2-SS automaton seen in the last
chapter, except that instead of a linear successor relation +1l2 , we have a total
preorder. Intuitively the transducer B is running over A with respect to the linear
order induced by +1l . The automaton C runs on the result of B with respect to
≤p .

Given a (+1l ,+1p ,≤p)-structure A a k-ODA A = (B, C) works on A as follows.
The transducer B works on the marked string projection of A yielding a run ρB

which in turn defines the unique (for each run) new structure A′. The automaton C

107

Chapter 7. Ordered data words

q0 qa qb

(a, 1), a

(a,−∞), a

(b, 1), b

(b,∞), b

q0

(
1
1

)

Figure 7.3: 2-ODA accepting Lww

runs over the preorder projection of the structure A′ yielding a run ρC . Automaton
A accepts the structure A if both ρB and ρC are accepting. The set of all k-bounded
structures accepted by A is denoted by L(A). The transducer B is called linear
order automaton, the automaton C is called preorder automaton.

Example 7.3.2. Let A = (B,C) the 2-ODA over the alphabet Σ = {a, b} shown
in Figure 7.3. The transducer B is a copy machine and accepts the language
(a, 1)∗(a,−∞)(b, 1)∗(b,∞). This ensures that any two identically labelled positions
u and v, if they are consecutive in the linear order then they are consecutive in the
preorder as well. The preorder automaton accepts the language (1, 1)∗, that is C
specifies that all equivalence classes of ≤p contain exactly an ‘a’ and a ‘b’.

Let w be the following 2-o.d.w.

w =
a a a a a a b b b b b b

1 2 3 4 5 6 1 2 3 4 5 6

The marked string projection of w is,

sp(w) =
a a a a a a b b b b b b

1 1 1 1 1 −∞ 1 1 1 1 1 ∞

The preorder projection of w is,

108

Chapter 7. Ordered data words

pp(w) =

(
1

1

)(
1

1

)(
1

1

)(
1

1

)(
1

1

)(
1

1

)

Transducer B has a successful run on sp(w) and the automaton C has an
accepting run on pp(w). Hence w is accepted by the automaton A. Let Lww be the
language accepted by the automaton A. We claim that,

Lww = {(a, d1) . . . (a, dn)(b, d1) . . . (b, dn) | n ≥ 3,∀i ≤ n : +1p (i, i+ 1)}

Observe that B specifies that the data values under a as well as b are strictly
increasing and all a’s are preceded by b’s in the linear order. Since C ensures that
all equivalence classes contain exactly an ‘a’ and a ‘b’, it is easy to see that number
of a’s in w is same as number of b’s. These two facts together imply our claim.

Example 7.3.3. Consider the automaton A = (B,C) the 2-ODA over the alphabet
Σ = {a, b} shown in Figure 7.4. The transducer B is a copy machine and accepts
the language (a, 1)∗(a, 0)(b,−1)∗(b,∞). This ensures two a-labelled positions u
and v, if they are consecutive in the linear order then they are consecutive in the
preorder as well. Similarly, if u and v are labelled by b and +1l(u, v) then +1p(v, u).
As in the previous example the preorder automaton accepts the language (1, 1)∗, that
is C specifies that all equivalence classes of ≤p contain exactly an ‘a’ and a ‘b’.

Let w be the following 2-o.d.w.

w =
a a a a a a b b b b b b

1 2 3 4 5 6 6 5 4 3 2 1

sp(w) =
a a a a a a b b b b b b

1 1 1 1 1 0 −1 −1 −1 −1 −1 ∞

The preorder projection of w is,

pp(w) =

(
1

1

)(
1

1

)(
1

1

)(
1

1

)(
1

1

)(
1

1

)

109

Chapter 7. Ordered data words

q0 qa qb

(a, 1), a

(a, 0), a

(b,−1), b

(b,∞), b

q0

(
1
1

)

Figure 7.4: 2-ODA accepting Lwwr

The automaton B and C, both have a successful run on sp(w) and pp(w) re-
spectively. Hence w is accepted by the automaton A. Let Lwwr be the language
accepted by the automaton A. We claim that,

Lwwr = {(a, d1) . . . (a, dn)(b, dn) . . . (b, d1) | n ≥ 2, ∀1 ≤ i ≤ n : +1p (i, i+ 1) ,

∀n ≤ i ≤ 2n : +1p (i+ 1, i)}

The transducer B ensures that the data values under a are strictly increasing
and that the data values under b are strictly decreasing and all a’s are preceded by
b’s in the linear order. Since C ensures that all equivalence classes contain exactly
an ‘a’ and a ‘b’, it is easy to observe that number of a’s in w is same as number
of b’s. These two facts together imply our claim.

Firstly, we examine some properties of k-ODA. The following lemmata can be
proved straightforwardly as in the case of 2-SS automata.

Lemma 7.3.4. There exist k-ODA A∅ and A∅̄ which accept no k-bounded (+1l ,+1p ,≤p)-
structure and all k-bounded (+1l ,+1p ,≤p)-structures, respectively.

Lemma 7.3.5. Languages accepted by k-ODA are closed under union, intersection
and renaming.

110

Chapter 7. Ordered data words

Proof. Closure under union and intersection are proved by using the usual product
construction, closure under renaming by using the non-determinism of B.

The following proposition can be proved like Lemma 6.3.8 from Chapter 5.

Proposition 7.3.6. Languages accepted by k-ODA are not closed under comple-
mentation.

Given a formula ϕ ∈ EMSO2 (Σ,+1l ,+1p ,≤p) we define Lk (ϕ) as the set of all
k-o.d.w. w such that w |= ϕ.

Proposition 7.3.7. Given a k-ODA A there is a formula ϕA ∈ EMSO2 (Σ,+1l ,+1p ,≤p)
such that L(A) = Lk(ϕA).

Proof. We know that there is a formula ϕB in EMSO2(Σ,Γl,Π,+1l) which encodes
a successful run ofB. It is easy to write down a formula in ϕΓl

in FO2 (Γl,+1l ,+1p ,≤p)
which verify the validity of the Γl predicates.

Assume that the input structure is labelled by unary predicates from Π accord-
ing to ϕB. We write a formula in ϕC in EMSO2 (Π,+1p) which encodes a successful
run of C. Let C = (Q,Π,∆, I, F). Using unary predicates Xδi for each δi ∈ ∆ and
Yi for each 0 ≤ i ≤ k we write down a formula ϕC encoding a successful run of C
over the structure in the following way.

ϕC = ∃Xδ1 . . . Xδn∃Y1 . . . Yk

(
ϕX ∧ ϕY ∧ ϕ∼ ∧

∧
δ∈∆

ϕδ ∧ ϕ∆ ∧ ϕI ∧ ϕF

)

where the individual formulas verify the following;

ϕX = ∀x
∨
δi∈∆

Xδi(x) ∧ ∀x
∧
δi 6=δj

¬
(
Xδi(x) ∧Xδj(x)

)
ϕX says that every element is labelled by exactly one X predicate.

ϕY = ∀x
∧
i 6=j

¬ (Yi(x) ∧ Yj(x))∧∀x∀y

(
x ∼p y ∧ Pa(x) ∧ Pa(y)→

∧
i

¬ (Yi(x) ∧ Yi(y))

)

111

Chapter 7. Ordered data words

ϕY says that all elements in the same equivalence class labelled by the same Π

predicate have distinct Y labels.

ϕ∼ = ∀xy
∧
δi∈∆

(x ∼ y ∧Xδi(x)→ Xδi(y))

ϕ∼ states that all elements in the same class has precisely the same Xδ label.

Let δ = (p, c̄, q) where c̄ = (c1, . . . , cn) ∈ parikhk(Π). The formula ϕδ verifies
that if an element is labelled by Xδ then the class satisfies the constraint. This is
achieved by counting the number of Y predicates in each class.

ϕδ = ∀x

(
Xδ(x)→

∧
ai∈Π

ϕciai(x)

)

where;

ϕciai(x) = ∀y

(
x ∼ y ∧ Pai(x)→

∨
0≤j≤ci

Yj

)
∧

(∧
0≤j≤ci

(∃y Pa(y) ∧ Yj(y) ∧ x ∼ y)

)

Finally we ensure that the automaton has a valid run. It starts in the initial
state (ensured by formula ϕI), ends in a final state (ensured by formula ϕF) and
every two consecutive transitions share a common state (ensured by ϕ∆).

ϕ∆ = ∀xy

+1p(x, y) ∧ ¬+1p(y, x)→
∨

end(δi)=start(δj)

(
Xδi(x) ∧Xδj(y)

)

ϕI = ∀x

(
¬∃y (+1p(y, x) ∧ ¬+1p(x, y))→

∨
δ∈∆init

Xδ(x)

)

ϕF = ∀x

¬∃y (+1p(x, y) ∧ ¬+1p(y, x))→
∨

δ∈∆final

Xδ(x)

112

Chapter 7. Ordered data words

Finally, (after pulling out the second order quantifiers) our desired formula
expressing the run of A is,

ϕA = ∃Γl . . . ∃Π . . . ∃Y . . .∃Xδ . . . (ϕΓl
∧ ϕB ∧ ϕC).

Next we want to show that given a formula ϕ ∈ EMSO2 (Σ,+1l ,+1p ,≤p) there
is an automaton Aϕ such that L(Aϕ) = Lk(ϕ). The logics EMSO2 (Σ,+1l ,+1p ,≤p)
and EMSO2

(
Σ,+1l ,∼p,+1sp ,�p

)
are identical in expressive power since the sets

of predicates {+1p ,≤p} and {∼p,+1sp ,�p} are mutually definable as shown below.

x ∼p y := +1p(x, y) ∧+1p(y, x)

+1sp(x, y) := +1p(x, y) ∧ ¬+1p(y, x)

x�p y := x ≤p y ∧ ¬+1p(x, y)

+1p(x, y) := +1sp(x, y) ∨ x ∼p y

x ≤p y := x�p y ∨+1sp(x, y) ∨ x ∼p y

We will be using the logic EMSO2
(
Σ,+1l ,∼p,+1sp ,�p

)
for convenience. Given

a formula ϕ in EMSO2
(
Σ,+1l ,∼p,+1sp ,�p

)
we proceed by writing it in Scott

Normal Form as

∃X1 . . . Xn

(
∀x∀y ψ ∧

∧
i

∀x∃y χi

)

where ψ and χi are quantifier-free formulas. Since k-ODA are closed under union,
intersection and renaming it is sufficient to show that there exist k-ODA accepting
models of formulas of the form ∀x∀y ψ and ∀x∃y χ.

Lemma 7.3.8. Given a formula of the form ∀x∀y ψ there is a k-ODA accepting
its k-class bounded models.

113

Chapter 7. Ordered data words

Proof. We first write ψ in CNF and distribute the universal quantifier over the con-
junction. This allows us to restrict our attention to formulas of the form (because
of closure under intersection)

ϕ = ∀x∀y (α(x) ∨ β(y) ∨ γ=(x, y) ∨ δl(x, y) ∨ δp(x, y)) ,

where α, β are unary types and the rest of the formulas are as follows. If S is a
set of formulas we denote by Disj(S) the set of disjunctive formulas over S. The
formulas γ=(x, y) ∈ Disj (Γ=), δl(x, y) ∈ Disj (∆l), δp(x, y) ∈ Disj (Γ∼ ∪∆p ∪Θp)

where,
Γ= = {x = y, x 6= y}
Γ∼ = {x ∼p y, x 6∼p y}
∆l = {+1l(x, y),¬+1l(x, y),+1l(y, x),¬+1l(y, x)}
∆p = {+1sp(x, y),¬+1sp(x, y),+1sp(y, x),¬+1sp(y, x)}
Θp = {x�p y,¬(x�p y), y �p x,¬(y �p x)}

We can further rewrite δp(x, y) upto logical equivalence as a disjunction of two
variable order types on ≤p , that is δp(x, y) ∈ Disj(Op) where

Op = {x ∼p y,+1sp(x, y),+1sp(y, x), x�p y, y �p x}.

What follows is a case analysis. If ϕ is a tautology then by Lemma 7.3.4 there
is an automaton accepting L(ϕ). Hence, without loss of generality assume that ϕ
is not a tautology and that each of α, β, γ=, δl, δp are not null.

If γ= is x 6= y then we can write ϕ as

ϕ = ∀x∀y (α′(x) ∧ β′(y) ∧ x = y → δl(x, y) ∨ δp(x, y)) .

Substituting x = y in the consequent reduces it to True or False. The reduced
formula can be checked by a k-ODA. Henceforth we fix γ= to be x = y.

If δl contains a negative formula we can rewrite ϕ as,

ϕ = ∀x∀y (α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′l(x, y)→ δp(x, y)) ,

114

Chapter 7. Ordered data words

where δ′l is a positive formula upto logical equivalence. It can be seen immediately
that ϕ can be checked by a k-ODA by looking at the marked string projection.
Henceforth we assume that δl is a positive formula.

To handle this case we bring the δp formula to the left of the implication as

ϕ = ∀x∀y
(
α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′p(x, y)→ δl(x, y)

)
,

where δ′p is a conjunction of negative literals. By virtue of the fact that Op is
a complete set of order types in two variables, we can rewrite δ′p as a disjunction
of positive formulas. Again using the fact that order types are mutually exclusive,
the above sentence is logically equivalent to a conjunction of sentences of the form,

ϕ = ∀x∀y (α′(x) ∧ β′(y) ∧ x 6= y ∧ op(x, y)→ δl(x, y)) ,

where op(x, y) ∈ Op(x, y) or is False. Next we show how to construct a k-ODA
for each of these sentences.

When op(x, y) is False : In this case the sentence is always true. Hence we
construct a k-ODA accepting all k-o.d.w.

When op(x, y) ∈ {+1sp(x, y),+1sp(y, x), x ∼p y} : To verify this sentence we use
the following scheme. Let C = ({s, t} × [k]) ∪ ({s′, t′} × [k]) be a set of colours.
Whenever +1l(x, y) and Ml(x) 6= ±∞ the transducer B labels position x and y in
the following way and output. (1) IfMl(x) = 1, x is labelled by some (s, i) and y is
labelled by (t, i). (2) IfMl(x) = −1, x is labelled by some (t, i) and y is labelled by
(s, i). (3) If Ml(x) = 0, x is labelled by some (s′, i) and y is labelled by (t′, i). The
automaton C verifies that in every class the labels appear uniquely (there may be
positions with more than one label). In this way, automaton C is able to make out
the neighbourhood relationship in the linear order between positions appearing in
the same class or in adjacent classes. Thus the automaton C can easily verify the
formula.

115

Chapter 7. Ordered data words

When op(x, y) ∈ {x �p y, y �p x} : All sentences of this form are verified in
the similar fashion. We describe only one case. Consider when op(x, y) is x�p y.
We observe that there are only boundedly many (say l, l ≤ k) β′ occurring after
the first occurrence of α′ (if there is an α′ in the structure) in the order ≤p .
The automaton verifies the sentence in the following fashion. If α′ or β′ does
not occur in the structure the automaton guesses this and verifies it. Otherwise
the B automaton guesses the β′ which occur before the first α′ in the preorder
projection and labels them by β̄. For the other β′, of which there are boundedly
many, the automaton assigns unique labels β1, . . . , βl, l ≤ k. It also records the
neighbourhood relationship in the linear order of each α′ with β1, . . . , βl, l ≤ k

using some label. The C automaton verifies that all β′ occur before any of the α′.
It also verifies that every α′ satisfies the neighbourhood relationship given by δl
with those βi which follows it (strictly) in the preorder projection.

Lemma 7.3.9. Given a formula of the form ∀x∃y χ there is a k-ODA accepting
its k-class bounded models.

Proof. We begin by writing χ as an exponential-sized conjunction of disjunctions
of the form ∀x∃y ∧i ∨j (αi(x)→ θij) where αi are maximal types, that is to say
∨iαi is a tautology and αi ∧ αj is a contradiction for i 6= j. This is achieved using
the truth table for χ. The formula θij is either False or of the form

β(y) ∧ γ=(x, y) ∧ δl(x, y) ∧ δp(x, y)

where β is a type, γ=(x, y) ∈ Γ=, δl ∈ Conj (∆l) and δp ∈ Conj (Γp ∪∆p ∪Θp). In
the previous sentence, Conj(S) denotes a conjunction of formulas from the set S.
By virtue of the fact that Op is a set of complete and mutually exclusive set of
order types in two variables we can rewrite δp as a disjunction of literals from Op

and rewrite the formula as ∀x∃y∧i ∨j′ (αi(x)→ θij′) where θij′ is either False or of
the form

β(y) ∧ γ=(x, y) ∧ δl(x, y) ∧ op(x, y)

where op ∈ Op.

116

Chapter 7. Ordered data words

Since αi are maximal we can pull out the outer conjunction rewriting χ as
∧i∀x∃y∨j′ (αi(x)→ θij′). We can eliminate the disjunction by adding a new unary
predicate Λij′ for each θij′ expressing the fact that for the premise αi then disjunct
θij′ is chosen as the witness. Every conjunct ∀x∃y∨j′ (αi(x)→ θij′) is rewritten as

∃Λi1 . . . ∃Λij′ (∀x ∨j′ Λij′(x)) ∧
∧
j′

∀x∃y [(αi(x) ∧ Λj′(x))→ θij′(x, y)] .

The automaton can guess and verify the Λ predicates, so it is enough to con-
struct a k-ODA for each formula of the form ϕ = ∀x∃y (α(x)→ θij′(x, y)). If θij′ is
False, then ϕ is regular. When γ=(x, y) ≡ x = y then also ϕ is regular. Henceforth
we fix γ=(x, y) ≡ ¬x = y.

Whenever δl(x, y) contains a positive literal, the sentence ϕ can be verified by
looking at the marked string projection. Henceforth we fix δl to be a negative
formula. Next we show how to construct a k-ODA for each of these sentences.

When op(x, y) ∈ {+1sp(x, y),+1sp(y, x), x ∼p y} : In this case we use the scheme
used in the last proof to verify the sentence.

When op(x, y) ∈ {x �p y, y �p x} : The cases are analogous. We treat only
the case when x �p y. We observe that there is a bound k such that if there are
at least k many β′ following an α′ in the preorder projection then that α′ can be
witnessed always, irrespective of the linear order. We call those α′ with at least k
many β′ following them in the preorder projection good α′. The remaining α′ are
called bad α′.

In two cases the sentence is satisfied trivially, when α′ is absent in the structure
and when there is no bad α′. Both these cases can be guessed and verified easily.
So assume that there is a bad α′ occurring in the structure.

This case is verified in the following way. First of all the B automaton guesses
the good α′ and bad α′ by means of some labelling. Let α′1 be the first occurrence
of a bad α′ in the preorder projection. All α′ following α′1 in the preorder are also
bad α′. The B automaton guesses the β′ which follows the α′1 in the preorder and

117

Chapter 7. Ordered data words

labels them by β1, . . . , βm. It also guesses the bad α′ and labels them by their
neighbourhood relationship to β1, . . . , βm in the linear order. The C automaton
verifies the following; (1) The guesses made by the B automaton are correct. (2)
Every bad α′ has some witness which satisfies the neighbourhood relationship given
by δl. This completes the proof.

Proposition 7.3.7, Lemma 7.3.8 and Lemma 7.3.9 immediately give the following
proposition, which in turn shows that satisfiability of FO2 (Σ,+1l ,+1p ,≤p) over
k-o.d.w reduces to the nonemptiness problem of k-ODA.

Proposition 7.3.10. A language L of k-o.d.w is accepted by a k-ODA if and only
if there is a formula ϕ ∈ EMSO2 (Σ,+1l ,+1p ,≤p) such that L = Lk (ϕ).

7.3.1 Deciding the Emptiness Problem for k-ODA

Now, we prove the decidability of the emptiness problem of k-ODA by a reduction
to the emptiness problem of multicounter automata. Roughly speaking, the run of
a k-ODA A = (B, C) on an input structure A will be simulated by a multicounter
automaton that reads the preorder projection of A, guesses and verifies a run of C,
and, meanwhile, builds up a run of B in the counters. The intricate part of recon-
structing a run of B is that B sees the ≤p-marking. The proof proceeds as follows.
Lemma 7.3.12 deals with those parts of runs of B that process consecutive positions
with ≤p-marking +1, 0 and −1, called block later. Constructing a complete run
of B from different blocks will mainly be done in Proposition 7.3.13 and Theorem
7.3.15. The former prepares for the latter by introducing some techniques, and
solving the 1-bounded case. Theorem 7.3.15 then solves the general case.

A block B is a maximal sequence u1, . . . , un of elements from A such that, for
all i in {1, . . . , n−1}, ui and ui+1 are close with respect to both the linear order and
the preorder. The elements u1 and un are called leftmost and rightmost positions
of B. We denote the leftmost and rightmost positions by L(B) and R(B). Note
that the elements u0 and un+1 with +1l(u0, u1) and +1l(un, un+1) (in case they
exist) are not ≤p-close to u1 and un, respectively. If u1 ≤p u0 we sometimes write
L+(B) instead of L(B). Similarly for L−(B), R+(B) and R−(B). From now on

118

Chapter 7. Ordered data words

we will assume that u1 and un are labelled by the appropriate L+ or L− and R+

or R−. The preorder projection pp(B) of a block B is the preorder projection
of A restricted to B. Likewise for the linear order projection. As before, we
identify the preorder projection [p1] ≤p . . . ≤p [pm] of a block with the sequence
parikh([p1]), . . . , parikh([pm]) over parikhk(Σ). We observe that the image of a
block B in the linear order projection and in the preorder projection of A is a
contiguous interval.

Example 7.3.11. Let A = (A,+1l ,≤p ,+1p) be the following k-o.d.w (we avoid
the unary labelling),

A = {a1, . . . , a18}

+1l = {(ai, ai+1) | 1 ≤ i ≤ 18}

The equivalence classes of ≤p are ordered as,

{a6}, {a5, a7, a18}, {a4, a8, a17}, {a9, a16}, {a10, a15}, {a1, a11}, {a2, a12, a14}, {a3, a13}

See Figure 7.5 for the pictorial representation of A. In this structure the blocks
are,

B1 = {a1, a2, a3}

B2 = {a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14}

B3 = {a15, a16, a17, a18}

The elements a4, a15 are labelled L+ since their predecessors in the linear order
a3, a14 (respectively) are such that a4 �p a3 and a15 �p a14. Likewise, elements
a3, a14 are labelled R− since their successors a4 and a15 (resp.) are such that
a4 �p a3 and a15 �p a14.

A partial run of an automaton A is a pair (p, q) of states of A. Two partial
runs r = (p, q) and s = (q, r) can be concatenated (or connected) to a partial run
t = r · s = (p, r). For a partial run r = (p, q), p and q are called start and end of
the run, respectively.

119

Chapter 7. Ordered data words

≤l

≤p

TB 1

L

R−

a1
a2

a3

L+

a4

a5

B 2

a6

a7

a8

a9

a10

a11

a12R−

a13

a14

B
3

L+

R

a15

a16

a17 a18

Figure 7.5: Blocks in a snippet of a 3-bounded (+1l ,+1p ,≤p)-structure.

Lemma 7.3.12. For a given finite state transducer B and two states s, t of B, there
is a finite state automaton accepting exactly those sequences p over parikhk(Π) for
which there is a block B = u1, . . . , un with

• The preorder projection of B is p.

• There is a run of B on B starting in state s and ending in state t.

• u1 and un are the only elements labelled by L ∈ {L+, L−} and R ∈ {R+, R−}.

Proof. We describe how a finite state automaton A for a finite state transducer B
works on an input sequence p = p1, . . . , pm over parikhk(Π).

The automaton A successively constructs a run of B while reading p. Therefore
A stores a multiset of at most k partial runs in its memory. At the beginning no
partial runs are stored. Now A performs, for every input symbol pi, one round of
the following two steps. First, A guesses for every element u represented by pi, a
partial run (p, q) and a symbol σ ∈ Σ such that when B is in state p and reads σ, it
outputs the label of u and goes into state q. If u is marked with L ∈ {L+, L−} (or

120

Chapter 7. Ordered data words

R ∈ {R+, R−}), a partial run (s, q) (or (q, t)) is guessed, where q is an arbitrary
state from B. In this case the start (end) of this partial run is marked as dead
and will never be connected in what follows. Secondly, to starts and ends (that
are not marked dead) of partial runs stored in the memory, A connects a partial
run obtained in the first step. Note that one partial run obtained in the first step
can be connected to none, one or two partial runs from the memory. After every
round A makes sure that at most k partial runs are stored. A accepts, when only
the partial run (s, t) is stored after the last round.

7.3.2 When ≤p is a linear order

We introduce some of the ideas for the k-ODA case by warming up with the 1-ODA
case. In 1-bounded (+1l ,+1p ,≤p)-structures the preorder is a linear order, hence
elements from parikh1(Π) can be identified with Π. Further, in the 1-bounded case
L(B) and R(B) are the highest and lowest elements with respect to ≤p .

Proposition 7.3.13. The emptiness problem of 1-ODA can be reduced to the
emptiness problem of multicounter automata.

Proof. Given a 1-ODA A = (B, C) we construct a multicounter automatonM such
that A accepts a 1-bounded (+1l ,+1p ,≤p)-structure if and only if M accepts a
sequence over parikh1 (Σ).

For a (+1l ,+1p ,≤p)-structure A with blocks B1, . . . , Bl (ordered by the pre-
order), the automaton M on input pp(A) works as follows. While running over
pp(A) it guesses and verifies a run of C. In parallelM constructs a run of B. In a
nutshell this comprises the following two simultaneous steps:

• M guesses for every block Bi a partial run (s, t) such that B can reach Bi in
state s and leave Bi in state t.

• M combines those partial runs into one complete run of B.

We make this more precise. The multicounter automaton guesses those posi-
tions in pp(A) in which the blocks B1, . . . , Bl start and end.

121

Chapter 7. Ordered data words

Note that the linear order projection (string projection) of A is a permutation
C1 = Bπ(i1), . . . , Cl = Bπ(il) of the blocks B1, . . . , Bl where π : [l] → [l] is a
permutation of [l], such that the following conditions are met;

Let j ∈ [l], Ch = Bπ(j), Ch−1 = Bπ(i) and Ch+1 = Bπ(k) such that h− 1 ≥ 1 and
h+ 1 ≤ l,

• if the leftmost position of Bj is labelled by L− then R(Bi)�p L(Bj),

• if the leftmost position of Bj is labelled by L+ then L(Bj)�p R(Bi).

• if the rightmost position of Bj is labelled by R− then L(Bk)�p R(Bj),

• if the rightmost position of Bj is labelled by R+ then R(Bj)�p L(Bk).

These conditions state that the linear order projection (the permutation π)
is consistent with the preorder marking. The way the automaton guesses such a
permutation is a la the proof of Lemma 6.5.3.

The multicounter works as follows. Everytime the counter automaton guesses
that a new block Bj starts, it guesses a partial run (s, t) of B on Bj and verifies
the guess using Lemma 7.3.12. To obtain a complete run of B, the partial runs
for the blocks need to be arranged properly according to the L,R markings on
the blocks. ThereforeM has counters from the set Q × Q where, intuitively, the
counter (s, t) stores the number of partial runs of B from s to t that have already
been seen during the simulation.

We describe how a complete run of B is successively constructed, by outlining
what happens if M processes block Bj. Intuitively, the partial run (s, t) is con-
nected to those partial runs that have already been seen. We assume that Bj is
neither the first nor the last block, i.e. j 6= 1 and j 6= l. Further, we assume that
the leftmost position u of Bj occurs before the rightmost position v of Bj in the
preorder projection. When encountering u, the multicounter automatonM stores
a partial run r in its state, depending on whether u is labelled with L+ or L−:

• If u is marked by L+, the block Ch−1 did not occur in the preorder projection
yet. The partial run r = (s, t) is stored in the state.

122

Chapter 7. Ordered data words

• If u is marked by L−, the block Ch−1 did already occur in the preorder
projection. Therefore M can guess a partial run (s′, s) that ends at the
leftmost position of Ch = Bπ(j) and is already saved in the counters. If the
last position in the preorder was an R+ position with partial run (s′, s), then
M makes sure that the counter corresponding to (s′, s) is at least 2. Now,
M stores the partial run r = (s′, t) in its state and decrements the counter
(s′, s).

When encountering v, block Bj was read completely and a partial run r′, that
depends on whether v is labelled with R− or R+, is saved in the counter r′. The
partial run r′ is obtained as follows:

• If v is marked by R+, the block Ch+1 did not occur in the preorder projection
yet. The register for the partial run r′ = r is incremented.

• If v is marked by R−, the block Ch+1 did already occur in the preorder
projection. Therefore M can guess a partial run (t, t′) that starts at the
rightmost position of Ch = Bπ(j) and is already saved in the counters. If
the last position in the preorder was an L− position with partial run (t, t′),
then M makes sure that the counter corresponding to (t, t′) is at least 2.
The register for the partial run r′ = r(t, t′) is incremented and the register
for (t, t′) is decremented. (Here, r(t, t′) denotes the concatenation of the two
partial runs.)

The cases where Bj is the first or last blocks as well as the case when M
encounters the rightmost position v of Bj first can be settled similarly.

We claim that L(A) is non-empty if and only if L(M) is nonempty.

For the left to right direction, assume thatM has a successful run on a sequence
of Blocks B1, . . . , Bn. This implies that there is a successful run of C on B1, . . . Bn.
What remains to be shown is that B has a run on a permutation of B1, . . . , Bn

which is
C1 = Bπ(i1), . . . , Cn = Bπ(in)

where π : [n] → [n] is the permutation and π is consistent with the marking on
the blocks.

123

Chapter 7. Ordered data words

For 1 ≤ j ≤ n, πj : [j] → [n] be an injective function. We call πj a partial
permutation. Given Range(πj) it can be partitioned into Range(πj) =

⋃
1≤i≤k si

for some k ≤ j, where each si ⊆ Range(πj) is a maximal interval in Range(πj). For
a maximal interval si = [l, u], let π−1(si) be the sequence

π−1(si) = π−1(l), π−1(l + 1), . . . , π−1(u).

We call the set of sequences {π−1(si) | 1 ≤ i ≤ k} the sequence representation of
πj, denoted by seq(πj). Define the following equivalence relation ∼j on the set of
partial permutations from [j] to [n] as follows. Given π : [j]→ [n] and π′ : [j]→ [n]

π ∼j π′ if Seq(π) = Seq(π′). Given a sequence s =< i1, . . . , ik > and i ∈ N, we
denote by s · i the sequence < i1, . . . , ik, i >.

Given B1, . . . , Bj a partial permutation πj, the concaternation of Bi0 . . . Bik

where s =< i0, . . . , ik >∈ Seq(πj) is called the maximal segment defined by s in
πj.

We claim that when the automaton has finished reading the block Bj then
there is a partial permutation (partial function) πj : [j] → [n] of blocks B1 . . . Bj

consistent with the markings such that (1) if the counter (s, t) is k, there are k
maximal segments defined by πj taking B from s to t. (2) if the partial permutation
π′j : [j] → [n] is such that πj ∼j π′j then in the permutation π′j of the blocks
B1, . . . , Bj there are k maximal segments defined by π′j+1 taking B from s to t.

Observe that if the permutation πj of B1, . . . , Bj is consistent with the marking
then any other permutation π′j of B1, . . . , Bj is also consistent with the marking.

The claim implies that B has an accepting run since the claim implies a per-
mutation π : [n]→ [n] of B1, . . . , Bn which is consistent with the marking and on
which B has a successful run.

We prove the claim using induction on j. The base step is trivial. For the
inductive step assume that the claim is true on the j-th step. Assume that the
partial run corresponding to Bj+1 is verified to be (s, t) and the leftmost and
rightmost positions of Bj+1 are labelled by L− and R+ respectively. In this case
the automaton nondeterministically chooses a pair (s′, s).

Assume that the leftmost position of Bj+1 was not preceded by the rightmost
position of Bi. The automaton decreases the counter (s′, s) and increases a counter

124

Chapter 7. Ordered data words

(s′, t). Observe that since counter (s′, s) is non-empty, by induction hypothesis,
there is a maximal segment (corresponding to say the sequence si ∈ Seq (πj))
defined by πj let which corresponds to a run from s′ to s. We define Seq (πj+1) =

Seq (πj)− {si} ∪ {si · (j + 1)}. The fact that there is such a πj+1 is guaranteed by
the definition of Seq and the fact that j + 1 ≤ n. Observe that claim (1) follows
from the fact that all segments except the one corresponding to si are untouched
(and their respective (Q × Q)-counts), and the the count of segments having run
(s′, t) increased by one (by the addition of si · (j + 1)}) and the count of segments
having run (s′, s) decreased by one (by the deletion of si). This change is reflected
in the counters. Claim (2) follows trivially by definition.

Consider the case when the leftmost position of Bj+1 was preceded by the
rightmost position of Bj which was labelled by R+ and Bj had a partial run (s′, s).
In this case the automaton decreases the counter twice. This ensures that there is a
sequence in Seq(πj) which does not end in j but corresponds to a maximal segment
which has a run from s′ to s. We proceed by adding (j + 1) to this sequence and
repeat the above argument. Thus we preserve the consistency of πj+1 with respect
to the marking.

The case when Bj+1 has its leftmost and rightmost positions are marked by R−

and L+ is symmetric.

When the leftmost and rightmost positions of Bj+1 is L− and R−, then The
automaton decreases two counters (s′, s), (t, t′) nondeterministically and increases
the counter (s′, t′). By induction hypothesis, there are two sequences si, sk in
Seq(πj) whose segments have runs from s′ to s and t to t′. We define the sequence
Seq (πj+1) = Seq (πj)− {si, sk} ∪ {si · (j + 1) · sk}. The argument is similar to the
previous case.

When the leftmost and rightmost positions of Bj+1 is L+ and R+, then The
automaton increases the counter (s, t). This corresponds to defining Seq (πj+1) =

Seq (πj) ∪ {< (j + 1) >}. In this case the number of segments corresponding to
the run (s, t) increases by one which is reflected in the counter.

To show that if A is accepted by A then there is a sequence of blocks B1, . . . , Bn

accepted by the multicounter automata, we take w = B1, . . . , Bn as the blocks in
the preorder projection of A′ where A′ is the relabelling of A by the transducer B.

125

Chapter 7. Ordered data words

Observe that C has a successful run over w. We know that there is a permutation
π : [n] → [n] of w such that B has a successful run on π(w). To show that the
mutlicounter automaton has a successful run we proceed as follows. Define the
counter configurations of the automaton after the j-th step as; the counter (s, t)

carry the value k if there are k-maximal segments defined by Seq(πj) where πj is
π restricted to [j]. The automaton chooses a transition based on the marking as
in the proof of Lemma 6.5.3.

From this we can conclude that,

Theorem 7.3.14. Finite satisfiability of FO2 (Σ,≤l1 ,+1l1 ,+1l2) is decidable.

7.3.3 When k > 1.

For k-bounded preorders with k > 1 we extend the construction of Proposition
7.3.13. However, this situation is more complicated for several reasons:

• While reading the preorder projection, the multicounter automaton has to
process several blocks at once.

• The L and R markers can appear anywhere in the preorder projection of a
block.

• The interaction L and R markers of several blocks has to be considered.

Those problems can be solved.

Theorem 7.3.15. The emptiness problem of k-ODA can be reduced to the empti-
ness problem of multicounter automata.

Proof. Again, for a given k-ODA A = (B, C) we construct a multicounter automa-
tonM such that A accepts a k-bounded (+1l ,+1p ,≤p)-structure if and only ifM
accepts a sequence over parikhk(Σ).

Consider an input (+1l ,+1p ,≤p)-structure A with blocks B1, . . . , Bl (ordered
by the linear order). Upto k blocks can now overlap in the preorder projection (see

126

Chapter 7. Ordered data words

≤l

≤p

T

B 1

q

s′

B
2s′

s

B 3

s

t

Figure 7.6: How a 1-ODA is simulated by a multicounter automaton M. When
M reaches the solid line T , the counter for (q, s) is one. When starting to read
block B3, the counter for (q, s) is decremented and (q, t) is stored in the state.

e.g. line T in Figure 7.5). Blocks whose start has been read, but whose end still
needs to be read, are called active. Thus there are at most k active blocks. The
automatonM guesses and verifies a run of C on pp(A). In parallelM constructs
a run of B. Here, this comprises the following simultaneous steps:

i) A symbol p ∈ parikhk(Σ) is partitioned corresponding to the active blocks.

ii) M guesses for every newly started active block Bi a partial run (s, t) such
that B can reach Bi in state s and leave Bi in state t.

iii) M combines those partial runs into one complete run of B.

We make this more precise. For verifying ii), a subautomatonMi is assigned
to every active block Ai. Mi can check ii) using Lemma 7.3.12. More precisely,
when reading p ∈ parikhk(Σ), the automatonM guesses a partition P of p into at
most k subvectors that sum up to p. For each q ∈ P it guesses whether q belongs

127

Chapter 7. Ordered data words

to some active block or starts a new block. If q belongs to an active block Ai, then
Mi gets p as input for this step. In case q starts a new active block Bi, a partial
run (s, t) of B is guessed such that B reaches Bi in s and leaves Bi in t. A new
subautomaton is created to verify the partial run, using Lemma 7.3.12. Active
blocks that do not have a q ∈ P are closed. (As there are at most k active blocks,
there are at most k subautomata running simultaneously.)

To obtain a complete run of B, the partial runs for the blocks need to be
arranged properly. As before M has counters from the set Q × Q saving the
number of partial runs of B from s to t that have already been seen during the
simulation. However, some partial runs will be cached in the states ofM, namely
runs where one, either start or end state corresponds to an active block. For every
cached run r, two pointers L(r) and R(r) are stored in the state ofM that contain
the active block that corresponds to the start or end state of r, respective, or ′−′

if there is no corresponding active block. (Since there are at most k active blocks,
such pointers can be stored.)

Furthermore, M saves, for every cached run, which of its end points can be
connected at the moment and remembers for every partial run r how many have
been added in the last round due to encountering R and how many due to L.

We describe how a complete run of B is successively constructed, by outlining
what happens if M processes block Bi. Intuitively, the partial run (s, t) will be
connected to those partial runs that have already been seen. We assume that Bi

is neither the first nor the last block, i.e. i 6= 1 and i 6= l. Further, we assume that
the leftmost position u of Bi occurs before the rightmost position v of Bi in the
preorder projection.

When encountering u, the multicounter automatonM proceeds as follows

• If u is marked by L+, the block Bi−1 did not occur in the preorder projection
yet. The partial run r = (s, t) is cached in the state with R(r) = Bi.
Furthermore L(r) is marked as non-connectable for the next step.

• If u is marked by L−, the block Bi−1 did already occur in the preorder
projection. Now, M guesses whether the run q corresponding to Bi−1 is
cached or saved in the counter q:

128

Chapter 7. Ordered data words

– If q is cached and R(q) is connectable, then q is replaced by the partial
run r′ = q · r with L(r′) = L(q) and R(r′) = Bi.

– If q is saved in q and counter q is connectable, then q is replaced by the
partial run r′ = q · r with L(r′) =′ −′ and R(r′) = Bi.

When encountering v, the multicounter automatonM proceeds as follows:

• If v is marked by R+, the block Bi+1 did not occur in the preorder projection
yet. The register for the partial run r′ = r is incremented.

• If v is marked by R−, the block Bi+1 did already occur in the preorder
projection. Therefore M can guess a partial run (t, t′) that starts at the
rightmost position of Bi and is already saved in the counters. If the last
position in the preorder was an L− position with partial run (s′, s), then
M makes sure that the counter corresponding to (t, t′) is at least 2. The
register for the partial run r′ = r(t, t′) is incremented and the register for
(t, t′) is decremented. (Here, r(t, t′) denotes the concatenation of the two
partial runs.)

The cases where Bi is the first or last blocks as well as the case when M
encounters the rightmost position v of Bi first can be settled similarly.

From this we conclude that,

Theorem 7.3.16. Finite satisfiability of FO2 (Σ,+1l1 ,≤p1 ,+1p1) on k-bounded
ordered data words is decidable.

7.3.4 A Hardness Result for FO2(≤l1,+1l1,+1l2)

In this section we prove a matching lower bound for FO2(+1l ,+1p ,≤p) over k-
bounded structures.

Proposition 7.3.17. Finite satisfiability of FO2(≤l1 ,+1l1 ,+1l2) is at least as hard
as the reachability problem for vector addition systems.

129

Chapter 7. Ordered data words

Proof. We reduce the non-emptiness of multicounter automata to satisfiability of
FO2(≤l1 ,+1l1 ,+1l2).

LetM be a multicounter automaton with counters C = {1, . . .m} and state set
Q. Transitions ∆ = {δ1, . . . , δl} are from the language Q × {Dj | j ∈ C}∗ × {Ij |
j ∈ C}∗×Q, where Dj and Ij stand for decrementing and incrementing the counter
j, respective.

We write a sentence ϕ in FO2(≤l1 ,+1l1 ; +1l2) which ensures the following:

• The string projection of the order ≤l1 is of the form δi1 . . . δin such that δi1
is a transition from the initial state, δin is a transition to a final state and
every two successive transitions have a common state.

• The string projection of the order ≤l2 is in the language Q∗(I1D1 + . . . +

IkDk)
∗.

• It is the case that
∧
j∈C ∀x∀y [(Ij(x) ∧Dj(y) ∧+1l2(x, y))→ x ≤l1 y].

Since the logic FO2(+1l ,+1p ,≤p) allows for axiomatizing 1-boundedness, we
have the following corollary.

Corollary 7.3.18. Finite satisfiability of FO2(+1l ,+1p ,≤p) over k-bounded or-
dered data words is at least as hard as the reachability problem for vector addition
systems.

7.4 Discussion

In this chapter we showed that finite satisfiability problems of FO2 (Σ,≤l1 ,+1l1 ,+1l2)

and FO2 (Σ,+1l1 ,+1p2 ,≤p2) on k-bounded structures are decidable. The automata
theoretic proof is a sophisticated version of the techniques used in Chapter 6. How-
ever the most important question is whether the restriction of k-boundedness can
be removed preserving decidability.

130

8
Conclusion

8.1 Remarks on automata for data words

We saw that finite state automata augmented with counters, namely CCA, can
give us a reasonably good automaton model for data words. They fall (roughly)
in between register automata and class-memory automata in terms of expressive
power and complexity of decision problems. Further, CCA can be strengthened to
match the expressive power of class memory automata. The main attraction of this
automaton is its comparatively lower complexity of its decision problems. However
we do not see any differences between these three automata in terms of complexity
of model checking. Moreover none of the automata are closed under complemen-
tation. Further their deterministic versions are strictly weaker compared to the
nondeterministic counterparts.

In the beginning we mentioned that one of the important questions regarding
data words is on the notion of regularity for data words, the notion which guar-
antees low complexity decision problems, good expressive power and nice closure
properties. However, none of these automata can be called regular in the true
sense of the word, an opinion which is also shared by the community [BS10].

However, the studies so far have revealed the difficulty of the problem we are
dealing with. We saw that there is a natural connection between register automata
and finite state automata in terms of reachability problem. Similarly, there is a nat-
ural correspondence between CCA (as well as CMA) and vector addition systems.

131

Chapter 8. Conclusion

Thus these automata mirror the known machine models for general infinite-state
systems for the case of data words. Hence the quest for regularity for data words
resonates well with the quest for expressive yet easily analyzable infinite-state sys-
tems – one that continues on.

8.2 Remarks on logics

We saw that FO2 (Σ,+1l1 ,+1l2) is elementarily decidable. However, the current
decision procedure for FO2 (Σ,+1l ,≤p ,+1p) is not of elementary complexity. This
is further worsened by the fact that reachability in vector addition systems – a no-
toriously difficult problem with no elementary decision procedure known – reduces
to this logic. The high complexity of the satisfiability problem reduces heavily the
applicability of these logics in the present scenario. Secondly, the fragments them-
selves are quite restrictive, the restriction of two variables and absence of order
relations severely affects the kinds of properties expressible in this logic.

However the theoretical importance of these fragments should not be under-
estimated, especially as part of classifying the decidable fragments of first order
logic (called the classification problem). We conclude by noting the current sta-
tus of research on two-variable logics with additional successor and order relations
(Figure 8.1).

132

Chapter 8. Conclusion

Logic Complexity (lower/upper) Comments
One linear order

FO2(+1l) Nexptime-complete [EVW02]
FO2(≤l) Nexptime-complete [EVW02]
FO2(+1l ,≤l) Nexptime-complete [EVW02]

One total preorder
FO2(+1p) Nexptime-complete
FO2(≤p) Nexptime-complete
FO2(+1p ,≤p) Expspace-complete [SZ11]

Two linear orders
FO2(+1l1 ; +1l2) Nexptime/2-Nexptime [Man10]
FO2(+1l1 ;≤l2) Nexptime/Expspace [SZ11]
FO2(+1l1 ,≤l1 ; +1l2) VASS-Reachability/Decidable Proposition 7.3.17
FO2(+1l1 ,≤l1 ;≤l2) Nxptime/Expspace [SZ11]
FO2(+1l1 ,≤l1
; +1l2 ,≤l2)

Undecidable Proposition 5.4.6

Two total preorders
FO2(+1p1 ,+1p2) Undecidable [MZ11]
FO2(+1p1 ;≤p2) Undecidable [MZ11]
FO2(≤p1 ;≤p2) Undecidable [SZ10]

One linear order and one total preorder
FO2(+1l1 ; +1p2) ?
FO2(+1l1 ,≤l1 ; +1p2) Undecidable [MZ11]
FO2(+1l1 ,≤l1 ;≤p2) Undecidable [BDM+11]
FO2(+1l1 ; +1p2 ,≤p2) ?
FO2(≤l1 ; +1p2 ,≤p2) Expspace-complete [SZ11]

Many orders
FO2(≤l1 ,≤l2 ,≤p3) Undecidable [SZ10]
FO2(≤l1 , . . . ,≤l3) Undecidable [Kie11]
FO2(+1l1 , . . . ,+1lk) ?

Figure 8.1: Summary of results on finite satisfiability of FO2 with successor and
order relations. Cases that are symmetric and where undecidability is implied are
omitted.

133

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[BDM+11] Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick,
and Luc Segoufin. Two-variable logic on data words. ACM Trans.
Comput. Log., 12(4):27, 2011.

[BS10] Henrik Björklund and Thomas Schwentick. On notions of regularity
for data languages. Theoretical Computer Science, 411(4-5):702–715,
2010.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[DL09] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier
and register automata. ACM Transactions in Computational Logic,
10(3):16:1–16:30, 2009.

[End72] Herbert B. Enderton. A mathematical introduction to logic. Academic
Press, 1972.

[Esp96] Javier Esparza. Decidability and complexity of petri net problems - an
introduction. In Advanced Courses, pages 374–428, 1996.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order
logic with two variables and unary temporal logic. Information and
Computation, 179(2):279 – 295, 2002.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the de-
cision problem for two-variable first-order logic. Bulletin of Symbolic
Logic, 3(1):53–69, 1997.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[KF94] Michael Kaminski and Nissim Francez. Finite-memory automata. The-
oretical Computer Science, 134(2):329–363, 1994.

134

Bibliography

[Kie11] Emanuel Kieronski. Decidability issues for two-variable logics with
several linear orders. In CSL, volume 12 of LIPIcs, pages 337–351,
2011.

[KO05] Emanuel Kieronski and Martin Otto. Small substructures and decid-
ability issues for first-order logic with two variables. In LICS, pages
448–457, 2005.

[Kos82] S. Rao Kosaraju. Decidability of reachability in vector addition systems
(preliminary version). In STOC, pages 267–281. ACM, 1982.

[KT09] Emanuel Kieronski and Lidia Tendera. On finite satisfiability of two-
variable first-order logic with equivalence relations. In LICS, pages
123–132, 2009.

[Lip76] R. J. Lipton. The reachability problem requires exponential space.
Technical report 62, Department of Computer Science, Yale University,
1976.

[Man10] Amaldev Manuel. Two orders and two variables. In MFCS, volume
6281 of LNCS, pages 513–524, 2010.

[May81] Ernst W. Mayr. An algorithm for the general petri net reachability
problem. In STOC ’81, pages 238–246. ACM, 1981.

[Mor75] M. Mortimer. On languages with two variables. Zeitschr. f. math. Logik
u. Grundlagen d. Math., 21:135–140, 1975.

[MR11] Amaldev Manuel and R. Ramanujam. Class counting automata on
datawords. Int. J. Found. Comput. Sci., 22(4):863–882, 2011.

[MRR+08] Anca Muscholl, R. Ramanujam, Michaël Rusinowitch, Thomas
Schwentick, and Victor Vianu. Beyond the Finite: New Challenges in
Verification and Semistructured Data. Dagstuhl Seminar 08171 Pro-
ceedings. 2008.

[MZ11] Amaldev Manuel and Thomas Zeume. Two variable logic with a linear
successor and a preorder. Under preparation, 2011.

135

Bibliography

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state ma-
chines for strings over infinite alphabets. ACM Transactions in Com-
putational Logic, 5(3):403–435, 2004.

[Ott01] Martin Otto. Two variable first-order logic over ordered domains. Jour-
nal of Symbolic Logic, 66(2):685–702, 2001.

[Sco62] D. Scott. A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27:377, 1962.

[SI00] Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision prob-
lems for finite-memory automata. Theoretical Computer Science,
231(2):297–308, 2000.

[ST11] Luc Segoufin and Szymon Torunczyk. Automata based verification over
linearly ordered data domains. In STACS, volume 9 of LIPIcs, pages
81–92, 2011.

[SZ10] Thomas Schwentick and Thomas Zeume. Two-variable logic with two
order relations. In CSL, volume 6247 of LNCS, pages 499–513, 2010.

[SZ11] Thomas Schwentick and Thomas Zeume. Two-variable logic with two
order relations. To appear, 2011.

[Zei06] Daniel Zeitlin. Look-ahead finite-memory automata. Master’s thesis,
Technion - Israel Institute of Technology, July 2006.

136

	Introduction
	Words over infinite alphabets
	Automata for data words
	Logics for data words
	Organization of the thesis

	Preliminaries
	Automata Formalisms
	Finite state automata
	Finite state transducers
	Petri nets
	Multicounter automata

	Post's Correspondence Problem

	Automata for data words
	Introduction
	Languages of data words
	Formulating an automaton mechanism
	Register automata
	Data and Class Memory automata
	Discussion

	Class counting automata
	Introduction
	Class counting automata
	Decision problems
	Upper bound
	Lower bound
	Word problem

	Extensions and subclasses
	Deterministic CCA
	Many bags
	Checking any counter
	The language of constraints
	Two-way CCA
	Alternating CCA
	Counter acceptance conditions

	Discussion

	Two-variable logics
	Introduction
	Preliminaries
	Data words

	Logics
	Scott reduction

	FO2 on data words

	Two-successor structures
	Introduction
	Preliminaries
	Automata on 2-SS
	Reducing 2-SS automata to EMSO2 (, [1], [2])
	Computing msp[2] from msp[1]

	Reducing EMSO2 (, [1], [2]) to 2-SS automata
	Decidability of 2-SS automata
	Remarks

	n-Successor Structures
	Successor Types

	Automata on n-SS
	Logical Characterization of n-SS Automata
	Discussion

	Ordered data words
	Introduction
	Automata over ordered data words
	k-bounded Ordered Data Automaton
	Deciding the Emptiness Problem for k-ODA
	When is a linear order
	When k>1.
	A Hardness Result for FO2 ([1], [1], [2])

	Discussion

	Conclusion
	Remarks on automata for data words
	Remarks on logics

