
Cost Functions Definable by Min/Max Automata∗

Thomas Colcombet1, Denis Kuperberg2, Amaldev Manuel3, and
Szymon Toruńczyk†3

1 CNRS & LIAFA, Université Paris Diderot, Paris 7
2 IRIT/ONERA, Toulouse
3 MIMUW, University of Warsaw

Abstract
Regular cost functions form a quantitative extension of regular languages that share the array of
characterisations the latter possess. In this theory, functions are treated only up to preservation
of boundedness on all subsets of the domain. In this work, we subject the well known distance
automata (also calledmin-automata), and their dualmax-automata to this framework, and obtain
a number of effective characterisations in terms of logic, expressions and algebra.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases distance automata, B-automata, regular cost functions, stabilisation
monoids, decidability, min-automata, max-automata

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Regular languages enjoy multiple equivalent characterisations, in terms of regular expres-
sions, automata, monoids, monadic second order (MSO) logic, etc. One of them is purely
algebraic: a language L ⊆ A∗ is regular if and only if its two-sided Myhill-Nerode congruence
on A∗ has finite index. These characterisations have been refined further for many subclasses
of regular languages. The archetypical example is the Schützenberger-McNaughton-Papert
theorem. which equates the class of star-free languages (i.e. expressible by star-free regular
expressions with complementation), the class of first-order definable languages, the class of
languages accepted by counter-free automata, and the class of languages definable by aperi-
odic monoids (i.e. those that satisfy the equation xn+1 = xn for sufficiently large n). This
gives an algebraic and effective characterisation of the class of star-free languages.

The theory of regular languages has been extended in many directions – to infinite words,
trees, infinite trees, graphs, linear orders, traces, pictures, data words, nested words, timed
words etc. With some effort, some of the above characterisations can be transferred, by
finding the right notion of a “regular” language, and by finding algebraic and logical charac-
terisations of certain subclasses of languages among the class of all the “regular” languages.

Whereas languages are qualitative objects, in this paper, we study characterisations of
classes of quantitative objects. One of the classes that we study are cost functions defined
by distance automata. A distance automaton A is like a nondeterministic finite automaton,
where each transition additionally carries a weight, i.e., a natural number. The weight of
a run is the sum of the weights of the transitions in the run. The distance automaton A

∗ The research leading to these results has received funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement n° 259454.

† Author supported by the National Science Center (decision DEC-2012/07/D/ST6/02443).

© T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Cost Functions Definable by Min/Max Automata

then associates to each input word w a value JAK (w) ∈ N ∪ {∞}, defined as the minimal
weight of an accepting run over w, and ∞ if there is no accepting run. The central decision
problem is the limitedness problem – does the function JAK have a finite range?

Distance automata were introduced by Hashiguchi in his solution of the star height
problem, which he reduced to the limitedness problem for distance automata via a strenuous
reduction. As distance automata try to minimize the value of a run, we call them min-
automata in this paper. Max-automata are the dual model, for which the value of the word
is the maximal weight of an accepted run. Min-automata and max-automata have appeared
in various contexts (see related work below for more on this) under various names.

Distance automata were extended in subtly distinct ways to nested distance-desert auto-
mata [12], R-automata [1], B-automata [4, 6] by allowing several counters instead of just
one, and allowing these counters to be reset. The limitedness problem is decidable for all
these classes. In terms of cost functions all these extended models are equivalent.

Colcombet [6, 8] discovered that functions defined by B-automata enjoy a very rich
theory of regular cost functions, extending the theory of regular languages. A cost function
is an equivalence class of functions, where two functions f, g : A∗ → N∪{∞} are equivalent
if they are bounded over precisely the same subsets of A∗. A regular cost function is the
equivalence class of a function computed by a B-automaton. Colcombet gave equivalent
characterisations of regular cost functions in terms of a quantitative extension of MSO, an
extension of monoids called stabilisation monoids, Later, analogous characterisations were
described, in terms of a quantitative extension of regular expressions, in terms of logics and
regular expressions manipulating profinite words (a completion of the set of finite words in a
certain metric) [17], and in terms of a finite index property [17, 14]. In [15] a characterisation
in terms of a quantitative extension of FO on the Σ-tree is given.

Contributions

In this paper, we propose a Schützenberger-McNaughton-Papert style characterisation of
the subclass of the class of regular cost functions, defined by distance automata – in terms
of logic, regular expressions and algebra, i.e., by conditions satisfied by the syntactic stabil-
isation monoid. The last characterisation provides a machine-independent, purely algebraic
description of the cost functions defined by distance automata – or min-automata. We also
provide similar characterisations for the dual class of max-automata. Although their defini-
tion is simply obtained by replacing min by max, the statements and their proofs are quite
different for both classes. Our characterisations are effective, i.e., given a B-automaton, it is
decidable whether the cost function it defines is recognisable by a min- or max-automaton.
Detailed proofs can be found in Appendix.

Related Work

Characterising special classes of regular cost functions in various formalisms has been done
in [11, 14]. In [11], the class of temporal cost functions was defined and studied. These
cost functions are only allowed to measure consecutive events, for instance the function
counting the number of occurrences of a letter in an input word is not temporal. Equivalent
characterisations of this class were given in terms of cost automata, regular languages,
stabilisation monoids. Additionally, in [7], an equivalent fragment of cost MSO was given.
In [14], the class of aperiodic cost functions was considered, as a generalisation of star-free
languages. It was shown that this class of function can be equivalently characterised by
definability via cost linear temporal logic, cost first order logic, or group-trivial stabilisation

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 3

monoids, generalising the Schützenberger-McNaughton-Papert theorem to cost functions.
In the papers [5] and [3], min- and max-automata were defined in a different way, as

deterministic automata with many counters, over which any sequence of instructions could
be performed in a single transition, where each instruction is either of the form c := c + 1
or c := max(d, e) (in the case of max-automata) or c := min(d, e) (in the case of min-
automata), where c, d, e are counters. As these models were studied in relationship with
logics over infinite words, rather than evaluating a finite word to a number, they were used
as acceptors of infinite words. However, their finitary counterparts are equivalent to the
models studied in this paper, up to cost function equivalence (see Proposition 2.4). Note
that nondeterminism is exchanged for multiple counters with aggregation (min or max).

In the paper [2], Cost Register Automata are studied, and are parametrised by a set of
operations. Those too are deterministic automata with many registers (i.e. counters). For
the set of operations denoted (min,+c), one obtains a model equivalent to the min-automata
of [5], and for the set of operations denoted (max,+c), one obtains a model equivalent to
the max-automata [3].

Min-automata can be equivalently described as nondeterministic weighted automata over
the semiring (N ∪ {∞},min,+), where min plays the role of addition and + of multiplica-
tion. Similarly, max automata can be equivalently described as nondeterministic weighted
automata over the semiring (N∪{∞,⊥},max,+), where max plays the role of addition and
+ of multiplication (and ⊥ is neutral with respect to max and absorbing with respect to
+). Using this formalism, decidability results about precision of approximation of functions
computed by min-automata are shown in [9]. Similar results on max-automata are presented
in [10], together with an application to evaluation of time complexity of programs.

2 Preliminaries

In this section, we recall various models of cost automata, and the theory of regular cost
functions. For more details, the reader should confer [6, 8, 11]. We write N∞ for the set
N ∪ {∞}. We follow the convention that inf ∅ = min ∅ =∞ and sup ∅ = max ∅ = 0.

2.1 Automata
We recall the notions of B- and S-automata, and relate them to min- and max-automata.

B-automata and S-automata. B- and S-automata are nondeterministic automata over
finite words, which are moreover equipped with a finite set of counters. Each counter
admits three basic operations: incrementation by one, denoted i, reset to zero, denoted
r, and the idle operation, denoted ε. Initially, all counters are set to 0, and during the
run each transition of the automaton performs one operation on each counter separately
(formally, a transition is a tuple (p, a, o, q), where p is its source state, q is its target state,
a is the label and o = (oc)c is a vector of operations, one per each counter c). Additionally,
we allow counters to be reset after the run terminates in an accepting state, depending on
the state. If in a run ρ some transition resets a counter currently storing a value n, then we
say that n is a reset value for the considered run ρ.

We now define the value of a word under a B-automaton; the defintion for S-automata
is dual and will be given later. Let B be a B-automaton and w be an input word. For a run
ρ over the word w, define the cost of ρ as the maximum of the set of its reset values:

cost(ρ) = max{n ∈ N : n is a reset value for ρ}.

4 Cost Functions Definable by Min/Max Automata

Recall that the maximum of the empty set is equal to 0. Finally, define JBK (w) as the
minimal value of an accepting (initial-to-accepting state) run over w:

JBK (w) = min{cost(ρ) | ρ is an accepting run of B over w}.

Note that this value can be infinite, if there is no accepting run of B over w. In particular,
if the set of counters is empty, then JBK (w) = 0 if B has an accepting run over w, otherwise
JBK (w) =∞. In this way, B-automata generalize finite automata.

If A is an S-automaton, the definitions are obtained by swapping min with max. In
particular, the cost of the run is the minimum of the set of its reset values (recall that
min ∅ = ∞) and JAK (w) is the maximal value of an accepting run over w. If A has no
counters, then JAK (w) =∞ if A has an accepting run over w, otherwise JAK (w) = 0.

For a B- or S-automaton A, we call JAK the function computed by A.

I Example 2.1. We construct a B-automaton that computes the smallest length of a block
of consecutive a’s in an input word consisting of a’s and b’s. In other words, for an input
word w of the form an1ban2 . . . bank , the computed value is fmin(w) = minkj=1 nj . The
automaton has one counter, and is depicted in Figure 1.

r r

b : ε
a, b : ε a : i

b : ε
a, b : ε

Figure 1 A B-automaton, which is also a min-automaton. Edges with no source state mark
initial states, and edges without a target state mark accepting states and may reset the counter.

I Example 2.2. Another example of a function computed by a B-automaton is the following.
For a given word w over the alphabet {a, b, c} of the form w1cw2 . . . cwk, where the words
w1, . . . , wk are over the alphabet {a, b}, define f(w) = maxkj=1 fmin(wj). The function f is
computed by a B-automaton obtained from the automaton in Figure 1 by adding a c-labeled,
resetting transition from every accepting state to every initial state.

I Example 2.3. The automaton in Figure 1 can be interpreted as an S-automaton which,
for an input word w of the form an1ban2 . . . bank , computes the value fmax(w) = maxkj=1 nj .

Min-automata and max-automata. A min-automaton is a one-counter B-automaton B,
with only two operations allowed: i (increment) and ε (do nothing). In particular, resets are
not allowed during the run. However, every counter is reset at the end of the run. Therefore
the last counter value is a reset value. In other words, a min-automaton is a nondetermin-
istic finite automaton in which every edge carries one of the two operations i or ε which
manipulate the only counter. The cost of a run is the last value attained by the counter,
and JBK (w) is the minimum of the costs of all accepting runs. This corresponds exactly to
the definition of a distance automaton given in the introduction, with i corresponding to 1
and ε corresponding to 0 in the distance automaton. The automaton from Example 2.1 is a
min-automaton.

Dually, a max-automaton A is a one-counter S-automaton, with only the two operations
i and ε allowed, and where the automaton may, depending of the last state assumed, reset
or not the counter at the end of the run. Therefore, the cost of a run is again the last
value attained by the counter if it is reset, and +∞ if it is not reset. The value of a word

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 5

JAK (w) is the maximum of the costs of all accepting runs. Example 2.3 gives an example of
a max-automaton.

As mentioned in the related work in the introduction, min/max-automata are related
to other notions from the literature. We establish this connection in the proposition below,
and later on in this paper, we will only talk about min- and max-automata.

A weighted automaton over a semiring S specifies a n × n matrix h(a) over S for each
letter a in the input alphabet, and two vectors I, F of length n over S. The value associated
to a word a1 . . . al over the input alphabet is the product of the matrices IT ·h(a1) · · ·h(al)·F ,
which is a 1×1 matrix, identified with an element of S. In the proposition below, a value ⊥
returned by a weighted automaton is interpreted as 0.

I Proposition 2.4 ([2, 5]). Min-automata are equivalent to distance automata, to non-
deterministic weighted automata over the semiring (N∞,min,+), and to deterministic auto-
mata with many registers storing elements of N∞, allowing the binary min operation and
unary incrementation operation.

Dually, max-automata are equivalent to nondeterministic weighted automata over the
semiring (N∞ ∪ {⊥},max,+), and to deterministic automata with many registers storing
elements of N∞, allowing the binary max operation and unary incrementation operation.

The goal of this paper is to find effective algebraic characterisations of functions comput-
able by min- and max-automata amongst all functions computable by B- and S-automata.
These characterisations are up to equivalence of cost functions.

2.2 Theory of regular cost functions.
Throughout this paper, fix a finite input alphabet Σ. Given two functions f, g : Σ∗ → N∞,
we write f ≈ g if for all X ⊆ Σ∗, if g is bounded over X (meaning sup g|X <∞), then f is
bounded over X, and vice-versa. A cost function over the alphabet Σ is an equivalence class
of ≈. Let [f] denote the equivalence class of f : Σ∗ → N∞. We will often identify a cost
function with any of its representatives and say that f is a cost function, implicitly talking
about [f].

Regular cost functions. A cost function is regular if it is the cost function of the function
computed by some B-automaton. For example, the (equivalence classes of the) functions
described in Examples 2.1 and 2.2 are regular cost functions. It turns out [6] that B- and
S-automata define equal classes of cost functions (see Theorem 2.15 below). Not every cost
function is regular – indeed, there are uncountably many cost functions.

The reason we prefer to study cost functions computed by B-automata rather than the
functions themselves is due to the following results, and to the fact that information about
boundedness properties suffice in the contexts we will be interested in.

I Theorem 2.5 (Krob [13]). Given two min-automata A and B, it is undecidable whether
the functions JAK and JBK are equal.

I Theorem 2.6 (Colcombet [6]). Given two B- or S-automata A and B, it is decidable
whether the functions JAK and JBK define the same cost function.

If we take B in the theorem above to be such that JBK (w) = 0 for all words w, we see
that in particular, it is decidable whether the function JAK is bounded over all words. The
limitedness problem for B-automata easily reduces to this problem.

6 Cost Functions Definable by Min/Max Automata

Cost regular expressions. Cost regular expressions are weighted extensions of classical
regular expressions. They come in two forms, B-expressions and their dual S-expressions.
A B-expression is given by the grammar,

E ::= a ∈ Σ | ∅ | E · E | E + E | E≤n | E∗,

where n is a variable (there is only one variable available). Note that by substituting k ∈ N
for n in a cost regular expression E, denoted by E[k → n], one obtains a regular expression
of finite words. Given a B-expression E the cost function computed by E is defined as:

JEK (u) = inf{k | u ∈ E[k → n]}.

Similarly one defines S-expressions, with the difference that we are allowed to use > n instead
of ≤ n, and at the end we take sup instead of inf.

Both kinds of expressions define exactly all regular cost functions. Indeed, it is not
difficult to convert between B-expressions and B-automata (and between S-expressions and
S-automata), similarly to the conversions between regular expressions and finite automata.

I Example 2.7. The cost function fmax is defined by the B-expression (a≤nb)∗ and the
S-expression (a∗b)∗a>n(ba∗)∗. Dually, the cost function fmin is defined by the B-expression
(a∗b)∗a≤n(ba∗)∗ and the S-expression (a>nb)∗a>n.

Cost monadic second order logic. We recall the basics of monadic second order logic
(abbreviated as MSO) over words. The formulas use first order variables x, y, z . . . that
range over positions of the word and second order variables X,Y, Z . . . that range over sets
of positions of the word. MSO formulas are build using the atomic predicates x ≤ y, x ∈ X,
a(x) (denoting that the label at position x is a, where a ∈ Σ), the connectives ¬ϕ, ϕ ∨ ψ,
ϕ→ ψ and quantifiers ∃x.ϕ , ∀x.ϕ (ranging over single elements) and ∃X.ϕ,∀X.ϕ (ranging
over sets of elements). Cost monadic second order logic (cost-MSO) extends the logic by
allowing formulas of the form |X| ≤ n, where |X| denotes the size of the set X and n

is a fixed variable ranging over the natural numbers, with the restriction that they occur
only positively (under even number of negations). Given a cost-MSO formula ϕ(n) the cost
function defined by ϕ(n) is

JϕK (u) = inf{n | u, n |= ϕ}.

I Example 2.8. The cost function fmin is expressed by ∃X.blocka(X) ∧ (|X| ≤ n), where
ablocka(X) is the first-order formula expressing that X is a maximal block of consecutive
a’s. Dually, fmax is expressed by the formula ∀X.blocka(X)→ (|X| ≤ n).

Stabilisation monoids. Recall that if M is a finite monoid, h : Σ → M is a mapping,
and F is a subset of M, then the triple (M, h, F) defines a regular language L = ĥ−1(F),
where ĥ : Σ∗ → M is the unique homomorphism extending h. Conversely, any regular
language L is induced by some triple (M, h, F) of this form. In this section we recall how
this correspondence lifts to regular cost functions, by replacing finite monoids to stabilisation
monoids. Let E(M) = {e ∈M |ee = e} denote the set of idempotents of the monoid M.

A stabilisation monoid M = 〈M, ·,≤,]〉 is a finite monoid equipped with a partial order

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 7

≤ and an operation] : E(M)→ E(M) (called stabilisation), satisfying the following axioms:

a · x ≤ b · y for a ≤ b, x ≤ y (1)
e] ≤ f] for e ≤ f, e, f ∈ E(M) (2)

(a · b)] = a · (b · a)] · b for a, b ∈M such that a · b, b · a ∈ E(M) (3)
e] ≤ e for e ∈ E(M) (4)

(e])] = e] for e ∈ E(M) (5)

I Example 2.9. Any finite monoid can be seen as a stabilisation monoid, in which e] = e

for every idempotent, and where the order is trivial, i.e., x ≤ y iff x = y.

I Example 2.10. Every min-automaton A defines a finite transition stabilisation monoid,
defined as follows. Let T denote the tropical semiring or the (min,+)-semiring, with do-
main N∞ and min playing the role of addition, and + of multiplication. We equip N∞ with
the usual topology, in which ∞ is the limit of every strictly increasing sequence.

First we define an infinite monoid, parametrised by a finite set of states Q. Let MQ

denote the set of Q×Q matrices with entries from T . Matrices can be multiplied using the
semiring operations of T , and the set of matrices MQ inherits the product topology from T ,
i.e., a sequence (Mn)∞n=1 of matrices is convergent if Mn[p, q] is convergent in N∞ for each
p, q ∈ Q. Matrix multiplication is continuous, and moreover, one can show that for every
matrix M ∈ MQ, when n → ∞, the sequence Mn! is convergent to a matrix denoted M];
moreover, the mapping M 7→M] is continuous.

An automaton A with state space Q defines a mapping h : Σ∗ → M which assigns to a
word w ∈ Σ the matrix h(w) such that for two states p, q of A, the value h(w)[p, q] is the
minimal cost of a run of A over w which starts in state p, ending in state q. The mapping
h is a monoid homomorphism.

Define an equivalence relation ∼1 on MQ so that two matrices are equivalent iff they yield
the same result when each finite, positive entry is replaced by 1. Define M1

Q to be the set of
∼1-equivalence classes. We identify an element of M1

Q with its unique representative which
is a matrix with entries in {0, 1,∞}. It turns out [17] that the equivalence ∼1 preserves
multiplication and the operation]. It follows that M1

Q inherits the structure of a monoid,
and also an operation]; we restrict this operation only to idempotents (for a non-idempotent
M , we can still recover M] as E], where E is the idempotent power of M).

One way to compute a product of two matricesM,N ∈M1
Q is to take a min-automatonA

with states Q and with h(a) = M and h(b) = N ; then M · N is obtained by substituting
1 for every finite positive number in h(ab). Similarly, if M ∈ M1

Q is idempotent, then
M] is obtained by taking an automaton A with h(a) = M and writing M][p, q] = 0 if for
arbitrarily large n, h(an)[p, q] = 0, otherwiseM][p, q] = 1 if for arbitrarily large n h(an)[p, q]
remains bounded, and finally, M][p, q] =∞ if h(an)[p, q] converges to∞ when n→∞. The
computations can be performed purely mechanically (see Appendix). For example, for the
automaton from Example 2.1, we compute h(a) · h(b) and h(a)] in M1

Q: 0 ∞ ∞
∞ 1 ∞
∞ ∞ 0

·
 0 ∞ ∞

0 ∞ ∞
∞ 0 0

=

 0 ∞ ∞
1 ∞ ∞
∞ 0 0

,
 0 ∞ ∞
∞ 1 ∞
∞ ∞ 0

]

=

 0 ∞ ∞
∞ ∞ ∞
∞ ∞ 0

ForM,N ∈M1

Q, writeM � N if there is a sequence of representatives of N which converges
to a representative of M . In other words, M can be obtained from N by replacing some 1’s
by∞’s. (The order � is the specialisation order associated to the quotient topology on M1

Q

inherited from MQ.)

8 Cost Functions Definable by Min/Max Automata

It can be shown [17] that 〈M1
Q, ·,�,]〉 is a stabilisation monoid. The axiom (1) is a

remnant of continuity of multiplication in MQ, (2) – of continuity of the operationM 7→M],
(3) – of associativity, (4) – of the fact that M] is the limit of Mn!, and (5) – of an analogous
property which holds in MQ.

Let h1 : Σ→M1
Q be defined so that for a letter a ∈ Σ, the matrix h1(a) is equal to h(a)

(this is a matrix with entries in {0, 1,∞}). The mapping h1 encodes the transition structure
of the automaton A. Let I be the set of matrices M ∈ M1

Q such that M [p, q] = ∞ for all
initial states p and accepting states q of A. The set I encodes the acceptance condition of
A. The cost function JAK defined by A can be recovered from the triple (M1

Q, h
1, I), as we

will now describe.

I Definition 2.11 (Computation tree). An n-computation tree t is a finite rooted ordered
unranked tree in which each node x has an associated output in M and is of one of four types:
Leaf x has no children and has an associated label a ∈ Σ, and the output of x is h(a);
Binary node x has exactly two children and and the output of x is the product of the output

of the first child and the output of the second child;
Idempotent node x has k children with k ≤ n and for some idempotent e ∈M, the output

of each child is equal to e and the output of x is equal to e.
Stabilisation node x has k children with k > n and for some idempotent e ∈M, the output

of each child is equal to e and the output of x is equal to e].
The input of the tree t is the word formed by the labels of the leaves of the tree, read left
to right. The output of the tree t is the output of the root, and the neutral element of M if
t is the empty tree.

An ideal in a stabilisation monoid M is a subset I which is downward-closed, i.e., x ≤ y
and y ∈ I imply x ∈ I. Let h : Σ→M be a mapping from a finite alphabet to a stabilisation
monoid M, and let I be an ideal in M. The triple (M, h, I) induces a cost function, denoted
JM, h, IK, and defined as follows. For a fixed height k ∈ N, let

JM, h, IKk (w) = inf{n | there is a n-computation on w with output in M \ I, height ≤ k}.

It turns out [6] that the cost function JM, h, IKk does not depend on the choice of k ≥ 3|M |.
We define JM, h, IK as JM, h, IKk for k = 3|M |.

I Example 2.12. Let Mmax = 〈{1, a, b, a]}, ·,],≤〉 be the stabilisation monoid with iden-
tity 1, zero a], such that ab = ba = b = bb = b], aa = a and a] ≤ a. The monoid Mmax
defines the function fmax with ideal {a]} and mapping h(a) = a and h(b) = b.

I Example 2.13. Let Mmin = 〈{1, a, a], b, ba], a]b, 0}, ·,],≤〉 be the stabilisation monoid
with identity 1, zero 0, product a]ba] = a], ba]b = b = ab = ba, bb = 0, stabilisation
(ba])] = ba], (a]b)] = a]b, and order a] ≤ a, a]b ≤ b, ba] ≤ b ≤ 0. The monoid Mmin defines
the function fmin with ideal {a]} and mapping h(a) = a and h(b) = b.

I Proposition 2.14. For a min-automaton A with states Q, define (M1
Q, h

1, I) as in Ex-
ample 2.10. Then I is an ideal and the cost functions

q
M1

Q, h
1, I

y
and JAK are equal.

Example 2.10 and Proposition 2.14 are a special case of a more general construction for B-
and S-automata [17].

Closure properties. Regular cost functions have several closure properties, described below.
The fundamental cost function is the function count : {a, b} → N∞, defined by count(u) =
|u|a, the number of occurrences of letter a. A regular language L ⊆ Σ∗ is viewed as a

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 9

(regular) cost function mapping a word w to 0 if w ∈ L and to ∞ if w 6∈ L. Note that since
regular languages are closed under complements, exchanging 0 with ∞ in this definition
would give the same class of cost functions.

Let C be a class of cost functions, possibly over different input alphabets. We define
several closure properties for the class C:
composition with morphisms if the cost function f : Σ∗ → N∞ is in C and α : Γ∗ → Σ∗ is

a morphism, then the cost function α ◦ f : Γ∗ → N∞ is in C;
min if for any two cost functions f, g : Σ∗ → N∞ in C, the function w 7→ min(f(w), g(w))

also belongs to C;
max defined dually, with max instead of min;
min with regular languages if for any cost function f : Σ∗ → N∞ and regular language g

viewed as a cost function (see above) the function w 7→ min(f(w), g(w)) also belongs to C;
sup-projections if the cost function f : Σ∗ → N∞ is in C and α : Σ∗ → Γ∗ is a morphism,

then the cost function v 7→ sup{f(w) : w ∈ α−1(v)} is in C;
inf-projections defined dually, with inf instead of sup.

The main theorem of regular cost functions. The theorem below shows that all the
introduced notions give rise to the same class of cost functions, namely regular cost functions.

I Theorem 2.15 (Colcombet [7]). The following formalisms are effectively equivalent as
recognisers of regular cost functions: B-automata, S-automata, B-expressions, S-expressions,
cost MSO formulas, and stabilisation monoids. Moreover, the class of regular cost functions
is the smallest class of cost functions which is closed under min, max, inf-projections, sup-
projections, contains the function count, and all regular languages.

We may now specify the goal of this paper more precisely. Among all regular cost func-
tions, we characterise those which are of the form JAK for a min- or max-automaton JAK.
Our characterisations (Theorem 3.2 and Theorem 4.2) are in terms of cost regular expres-
sions, fragments of cost MSO, and stabilisation monoids. Moreover, the characterisations
are effective. In algebraic language theory, the usual way of providing effective characterisa-
tions is by means of certain algebraic conditions satisfied by the syntactic monoid. For this
reason, we need to recall the notion of a syntactic stabilisation monoid.

Syntactic stabilisation monoid. A homomorphism of stabilisation monoids is a mapping
h : M → N of stabilisation monoids which is monotone (i.e., u ≤ v =⇒ h(u) ≤ h(v)),
preserves multiplication (i.e., h(u · v) = h(u) · h(v)) and stabilisation (i.e., h(e]) = h(e)] for
every idempotent e ∈M).

I Theorem 2.16. [11] Let f : Σ∗ → N∞ be a regular cost function. There is a unique (up
to isomorphism) triple (Mf , hf , If) recognising f with the following property. For any triple
(M, h, I) recognising f , there is a unique surjective homomorphism φ : M→Mf such that
hf = φ ◦ h and I = φ−1(If). Mf is called the syntactic stabilisation monoid of f .

Moreover, for any triple (M, h, I) recognising f , the triple (Mf , hf , If) can be computed
in polynomial time from (M, h, I).

Idempotent power. It is a standard fact that every element a in a finite monoid has a
unique idempotent power, denoted aω. It can be shown that aω = an! where n is the size of
the monoid. We use the notation aω] to denote the element (aω)].

10 Cost Functions Definable by Min/Max Automata

3 Max-automata

In this section we characterise cost functions computed by max-automata. First we introduce
the algebraic condition that characterises this class.

I Definition 3.1 (Max-property). Let M = 〈M, ·,],≤〉 be a stabilisation monoid and I ⊆M
be an ideal. The pair M, I has Max-property if for every u, v, x, y, z ∈M ,

1. if xuω]yvω]z ∈ I, then either xuω]yvωz ∈ I, or xuωyvω]z ∈ I, and
2. if x(uyω]v)ω]z ∈ I, then either x(uyω]v)ωz ∈ I, or x(uyωv)ω]z ∈ I.

Now we present the main theorem of Section 3.

I Theorem 3.2. The following are effectively equivalent for a regular cost function f :

1. f is accepted by a max-automaton,
2. f is definable by a formula of the form ψ ∧ ∀X (ϕ(X)→ |X| ≤ n) where ψ,ϕ are MSO

formulas, i.e. they do not contain cost predicates,
3. f is in the smallest class (call it MAX) of cost functions that contains the function

count and regular languages, and closed under min with regular languages, max, sup-
projections, and composition with morphisms,

4. f is equivalent to JM, h, IK for some mapping h from Σ to a stabilisation monoid M with
ideal I having Max-property,

5. The syntactic stabilisation monoid and ideal of f has Max-property,
6. f is definable by an S-regular expression of the form h +

∑
i ei where h is a regular

expression and each ei is of the form ef>ng where e, f and g are regular expressions.

I Example 3.3. The stabilisation monoid Mmax with ideal {a]} recognising fmax has Max-
property. But Mmin with ideal I = {a]} recognising fmin violates the Max-property since
a]ba] = a] is in I, but neither of a]ba = a]b, aba] = ba] belongs to I.

Since Mmin is the syntactic monoid of the function fmin, the example above implies that
fmin is not accepted a max-automata; in particular, max-automata are not closed under
inf-projection. Similarly one verifies that cost functions computed by max automata are not
closed under min (for instance the functions u ∈ {a, b}∗ → |u|a and u ∈ {a, b}∗ → |u|b, as
well as their max, is in MAX, but not their min).

Proof sketch. We sketch the implications: 1→ 2→ 3→ 4→ 5→ 6→ 1.
1→ 2 is by observing that there is a cost MSO formula encoding the runs of a 1-counter

S-automata, of the form described in item 2.
To prove 2→ 3, it is enough to observe that all the subformulas (including the formula

itself) of ψ ∧ ∀X (ϕ→ |X| ≤ n) (where ψ,ϕ are cost free) define cost functions in the class
MAX. For this, we remark that the cost function count is in MAX, so it is also the case
of J|X| ≤ nK, using the usual semantic for formulae with free variables, i.e. enriching the
alphabet with a {0, 1}-component. Moreover MAX is closed under the operation min with
regular languages, composition with morphisms (together they imply J¬ϕ ∨ |X| ≤ nK is in
MAX) and sup-projections (hence J∀X (ϕ(X)→ |X| ≤ n)K is in MAX). Finally closure under
max implies that the formula defines a function in MAX.

To show 3→ 4, we show that the monoid constructions corresponding to the operations
of max, min with a regular language, sup-projection and composition with a morphism
preserve the Max-property, and also that the syntactic stabilisation monoids computing the
function count as well as regular languages have the Max-property.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 11

4→ 5 follows from Theorem 2.16. Implication 5→ 6 is the hardest part of the theorem.
By definition, the value of a word w given by the cost function JM, h, IK is the maximum
n ∈ N∞ such that there is an n-computation tree of height 3|M | with input w and output
in the ideal I. A way to attain this value using a cost regular expression is to write an
expression that encodes all such computation trees by induction on the tree height; binary
nodes translate to concatenation, idempotent nodes stand for Kleene star, and stabilisation
nodes translate to the operator >n. But as such, this idea results in an expression with
multiple occurrences of >n (as there could be many stabilisations in the tree). This difficulty
is circumvented by showing that it is sufficient to consider trees with only one stabilisation
node. This is achieved by repeated use of the Max-property of the monoid M and ideal I.

For 6 → 1, note that the standard construction from cost regular expressions to S-
automata (analogous to the translation from regular expressions to finite state automata) ap-
plied to the cost regular expressions of the form described in item 6, gives a max-automaton.

We note that all the transformations are effectively computable. J

Given a stabilisation monoid M and ideal I it is computable in polynomial time whether
M, I has Max-property. Hence by Theorem 2.15 and Theorem 2.16 we obtain,

I Theorem 3.4. It is decidable if a regular cost function satisfies a condition of Theorem 3.2.

4 Min-automata

In this section we characterise cost functions definable by min-automata.

IDefinition 4.1 (Min-property). We define the relation R ⊆M×M as the smallest reflexive
relation satisfying the following implications: (1) if xR y and aR b, then (x ·a)R (y · b), and
(2) if xR y then xωR yω] and xω]R yω]. A monoid M satisfies the Min-property if for all
elements x, y, if xω]R y, then xω] = xω]yxω].

I Theorem 4.2. The following are effectively equivalent for a regular cost function f :

1. f is accepted by a min-automaton,
2. f is definable by a formula of the form ∃X (ϕ(X) ∧ |X| ≤ n) where ϕ does not contain

any cost predicates,
3. f belongs to the smallest class of cost functions containing count and regular languages

that is closed under min, max and inf-projections,
4. f is recognised by a stabilisation monoid M with Min-property,
5. The syntactic stabilisation monoid of f has Min-property,
6. f is accepted by a B-regular expression E that is generated by the grammar

E := F | E + E | E · E | E≤n F := a | F + F | F · F | F ∗

i.e. any subexpression of E of the form F ∗ is a regular expression (without X≤n),
7. f is accepted by a B-automaton without reset.

I Example 4.3. The monoid Mmax of fmax violates the Min-property since b = b]R a] (to
see this, observe aR a], bR b and hence ab = bR a] = a]b), but b = b] 6= b]a]b] = ba]b = a]

. On the contrary, it can be verified that the monoid Mmin has Min-property.

Whereas max automata are not closed under min, min automata are closed under max.
The class MIN falls only short of sup-projections, comparing to all regular cost functions.

The Min-property can be expressed in terms of identities, as follows. Consider the set T
of terms involving variables from an infinite set of variables, a binary multiplication operation

12 Cost Functions Definable by Min/Max Automata

and unary operations ω and ω]. Let R be the smallest binary relation on T that is reflexive
and satisfies the implications 1 and 2 from Definition 4.1. Then, Min-property is expressed
as the family of identities xω] = xω]yxω], indexed by pairs of terms x, y such that xω]Ry.

Proof sketch. We sketch the implications: 1→ 2→ 3→ 1→ 4→ 5→ 1→ 6→ 7→ 1.
1→ 2, 2→ 3, 6→ 7 are analogous to the corresponding cases in Theorem 3.2, and 3→ 1

is demonstrated by verifying that all functions and operations in item 3 can be carried out
in the framework of min-automata.

1 → 4 proceeds by studying the transition monoid of a min-automaton, described in
Example 2.10, and checking that the equation of the Min-property is verified for any x � y
(where � is the ordering used in the transition monoid). In particular, the equation is true
for the relation R , which is a subset of any stabilisation order.

4→ 5 uses the fact that Min-property is equational, so is preserved by quotients.
5 → 1 is obtained by performing substitutions in computation trees: any idempotent

node that is the descendant of a stabilisation node can be transformed into a stabilisation
node itself. We get a normal form for computation trees over monoids of this fragment, that
we call frontier trees. We then design min-automata that witness the existence of frontier
trees for any input word.

We show 1→ 6 by adapting the classical automaton-to-expression algorithm performing
inductive state removal. Here, new transitions are labeled by regular expressions together
with an action from {ε, i}. When the classical algorithm produces a Kleene star, we do so
if the looping transition is labeled ε; otherwise if it is i, we replace the Kleene star by ≤ n,
and the resulting edge is again labeled i. This way, a Kleene star cannot be produced on
top of a subexpression containing a ≤ n.

We show 6 → 7 by induction on the structure of the expression. We build an ad-
hoc generalisation of the expression→ automaton algorithm, and show that the output
B-automaton contains no reset.

Finally, 7 → 1 is obtained by observing that in the absence of resets, increments per-
formed on k distinct counters can be performed on a single counter, by increasing the result
at most k times. J

By a saturation algorithm, we can verify whether a given stabilisation monoid has Min-
property in polynomial time. Hence by Theorem 2.15 and Theorem 2.16 we obtain:

I Theorem 4.4. It is decidable if a regular cost function satisfies a condition of Theorem 4.2.

5 Conclusion

We studied two dual classes of cost functions, defined by min-automata (also called distance
automata), and max-automata. Both these classes have been studied in detail in other
works. We showed that these classes enjoy many equivalent characterisations — such as
restrictions of automata, logics, and expressions, and algebraic conditions. In both cases,
the algebraic characterisation leads to decidability of membership in the class, in the spirit
of Schützenberger’s seminal work on star-free languages [16]. Combining with the finite-
index characterisation of regular cost functions from [17], we obtain a purely algebraic
characterisation of cost functions defined by min- or max-automata.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 13

References
1 Parosh Aziz Abdulla, Pavel Krcál, and Wang Yi. R-automata. In CONCUR 2008, volume

5201, pages 67–81, 2008.
2 Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei

Yuan. Regular functions and cost register automata. In LICS 2013, pages 13–22, 2013.
3 Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,

48(3):554–576, 2011.
4 Mikolaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS 06, pages

285–296, 2006.
5 Mikolaj Bojanczyk and Szymon Torunczyk. Deterministic automata and extensions of weak

mso. In FSTTCS, pages 73–84, 2009.
6 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In

Automata, Languages and Programming, Internatilonal Collogquium, ICALP 2009, Pro-
ceedings, Part II, pages 139–150, 2009.

7 Thomas Colcombet. Fonctions régulières de coût. Habilitation thesis, Université Paris
Diderot–Paris, 2013.

8 Thomas Colcombet. Regular cost functions, part I: logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013.

9 Thomas Colcombet and Laure Daviaud. Approximate comparison of distance automata.
In STACS 2013, volume 20 of LIPIcs, pages 574–585, 2013.

10 Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Size-change abstraction and
max-plus automata. In MFCS 2014, volume 8634 of Lecture Notes in Computer Science,
pages 208–219, 2014.

11 Thomas Colcombet, Denis Kuperberg, and Sylvain Lombardy. Regular temporal cost func-
tions. Automata, Languages and Programming, pages 563–574, 2010.

12 Daniel Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455–509,
2005.

13 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Internat. J. Algebra Comput., 4(3):405–425, 1994.

14 Denis Kuperberg. Linear temporal logic for regular cost functions. Logical Methods in
Computer Science, 10(1), 2014.

15 Martin Lang, Christof Löding, and Amaldev Manuel. Definability and transformations for
cost logics and automatic structures. In MFCS 2014, volume 8634 of Lecture Notes in
Computer Science, pages 390–401. Springer, 2014.

16 M.P. Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190 – 194, 1965.

17 Szymon Torunczyk. Languages of profinite words and the limitedness problem. PhD thesis,
PhD thesis, University of Warsaw, 2011.

14 Cost Functions Definable by Min/Max Automata

A Characterisation of Max-automata

In this section we prove Theorem 3.2.

1 → 2: Max-automata to Cost-MSO Formula
Assume that the cost function f is accepted by a max-automaton A with the transition
relation ∆ = {δ1, . . . , δk}, set of initial states I, set of final states that are resetting F1, and
set of final final states that are not resetting F0. As usual the idea is to encode the runs of
the automaton A as a formula.

We write ϕ(X) to mean that the second order variable X is free in the formula ϕ. Let
ψ(Xδ1 , . . . , Xδk

, X) be an MSO formula over words over the alphabet Σ that defines the
following: On a given word w,

taking Xδi to be the set of positions where the transition δi is applied, the monadic
predicates Xδ1 , . . . , Xδn

corresponds to a successful run of the automaton A on the word
w and,
the predicate X contains precisely the set of positions where a transition that increments
the counter.

Let χ1(Xδ1 , . . . , Xδk
) (respectively χ0(Xδ1 , . . . , Xδk

)) be the formula that expresses that
the last transition of the correponding run ends in a final state that is (respectively is not)
resetting. We claim that the formula ϕ where

ϕ = ϕ1 ∧ ϕ2

ϕ0 = ∃X∃Xδ1 · · · ,∃Xδk
(ψ ∧ χ0)

ϕ1 = ∀X (∃Xδ1 · · · ,∃Xδk
(ψ ∧ χ1)→ |X| ≤ n)

defines the cost function f . Let A0 (respectively A1) be the restriction of A to the set of
final states F0 (respectively F1). We prove that JAiK = JϕiK for i = 0, 1. Since JAK =
max (JA0K , JA1K) this immediately yields the claim:

JϕK = max(Jϕ0K , Jϕ1K) = max(JA0K , JA1K) = JA1K .

Since ϕ0 is an MSO formula for all words w, Jϕ0K (w) ∈ {0,∞}.
In particular Jϕ0K (w) =∞,
iff the formula ϕ0 is true over the word w,
iff there is a successful run of A0 over w,
iff JA0K (w) =∞, since A0 does not reset.

Next we prove Jϕ1K = JA1K. Let w be a word. We have two cases depending on whether
the formula ∃Xδ1 · · · ,∃Xδk

(ψ ∧ χ1) is true over the word w or not. Assume the first case.
Then,

Jϕ1K (w) = n ∈ N (it can never be ∞),
iff the least value for which the formula ϕ1 is true over the word w is n,
iff n is precisely the highest number of increments among all the successful runs of A1

on w
iff JA1K (w) = n.

For the second case, when ∃Xδ1 · · · ,∃Xδk
(ψ ∧ χ1) is false over the word w, then Jϕ1K

is true for value 0 as well as JA1K (w) = 0 since A1 does not have a successful run over w.
This completes the proof.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 15

2 → 3: From cost-MSO formula to the class MAX
For alphabet Σ, and ϕ a formula of cost-MSO, we write ϕ(Σ) to mean that ϕ contain free
second order variables denoting a labelling of positions by letters in Σ. Similarly we write
ϕ(X) to mean that the second order variable X is free in ϕ.

Assume we are given a formula

χ = ψ ∧ ∀X (ϕ(Σ, X)→ |X| ≤ n) ≡ ψ ∧ ∀X (¬ϕ(Σ, X) ∨ |X| ≤ n)

where ¬ψ(Σ, X) is cost-free. We want to show that the cost function JχK : Σ∗ → N∞ is
in the class MAX. First observe that since ¬ψ(Σ, X) is cost-free, J¬ψK : (Σ× {0, 1})∗ → N∞
is a regular language, where the second component of the alphabet Σ× {0, 1} indicates the
valuation of the second order variable X. Next, let g : (Σ× {0, 1})→ {a, b} be the function
defined as g((`, 1)) = a and g((`, 0)) = b for all ` ∈ Σ. Extend g uniquely to a morphism from
(Σ× {0, 1})∗ to {a, b}∗. The cost function g◦count : (Σ× {0, 1})∗ → N∞ is in the class MAX
since the function count is in MAX and MAX is closed under composition with morphisms.
Furthermore g ◦count is precisely the cost function defined by the formula |X| ≤ n on words
labelled by the alphabet Σ× {0, 1}. Since MAX is closed under minimum with regular lan-
guages, the cost function J¬ϕ ∨ |X| ≤ nK = min (J¬ϕK , J|X| ≤ nK) = min (J¬ϕK , g ◦ count)
is in MAX. Finally let h be the morphism from Σ × {0, 1} → Σ defined canonically
by extending the function h((`, i)) = ` for all ` ∈ Σ and i ∈ {0, 1}. By definition,
J∀X (¬ϕ(Σ, X) ∨ |X| ≤ n)K = hsup(g◦count) and since MAX is closed under sup-projections.
Appealing to closure under maximum, JχK = Jψ ∧ ∀X (¬ϕ(Σ, X) ∨ |X| ≤ n)K is in MAX.
This completes the proof.

3 → 4: From the class MAX to stabilisation monoids with Max-property
It suffices to show that every cost function in the class MAX is recognised by stabilisation
monoid, ideal pair that has Max-property.

First we show that,

I Lemma 1.1. The stabilisation monoid C = 〈{1, a, 0}, ·,],≤〉, I = {0} satisfies the max
property.

Proof. By simple verification. For every u, v, x, y, z ∈ {1, a, 0},

1. if xuω]yvω]z = 0, then one of x, uω], y, vω], z is 0, and hence either xuω]yvωz = 0, or
xuωyvω]z = 0, and

2. if x(uyω]v)ω]z = 0, then one of x, u, yω], v, (uyωv)ω], z is 0, and hence either x(uyω]v)ωz =
0, or x(uyωv)ω]z = 0.

J

The above Lemma shows that the cost function count is recognised by a stabilisation
monoid, ideal pair that satisfies the Max-property.

Since every regular language is recognised by an ordered monoid (also a stabilisation
monoid with trivial stabilisation, i.e. identity) we get that,

I Lemma 1.2. Every regular language is recognised by a stabilisation monoid, ideal pair
that has Max-property.

Next we introduce the notion of]-expressions that is used in the remaining proofs.

16 Cost Functions Definable by Min/Max Automata

I Definition 1.3 (]-expressions). Let M = 〈M, ·,],≤〉 be a stabilisation monoid. A]-
expression E over a set X ⊆ M is an expression composed of letters from X, products,
ω-powers, and exponents with ω]. It naturally evaluates to an element of M , denoted
val(E), and called the value of E.

Next we introduce some conventions we follow with]-expressions. For convenience, some-
times we drop the product operation while writing the]-expressions. For]-expressions E1
and E2, we write E1 = E2 (respectively E1 ≤ E2) to mean val(E1) = val(E2) (respectively
val(E1) ≤ val(E2)). Similarly when E is a]-expression and Y ⊆ M is a set, then we write
E ∈ Y to mean val(E) ∈ Y . To express the syntactical equivalence we write E1 =syn E2.
Clearly, if E1 =syn E2, then E1 = E2.

Sometimes we manipulate]-expressions syntactically. For convenience we allow the use
of the empty]-expression. It is straightforward to eliminate the empty]-expression from a
]-expression. In particular, we don’t distinguish between]-expressions that are unique upto
removal of ε, i.e. E1 =syn E2 if removing ε from E1 and E2 results in the same expression.

The stabilisation rank of a]-expression is the number of ω] in it. A]-expression is called
strict if it has stabilisation rank at least 1.

We write 〈X〉ω] for the set of values of] expressions over X. Equivalently, it is the least
set which contains X and is closed under product and stabilisation of idempotents. One
also denotes 〈X〉ω]+ for the set of values of strict]-expressions over X.

Next we want to show that if f is a cost function that is recognised by a stabilisation
monoid M, ideal I pair that has max property, then the inf-projections of f under morphisms
as well as minimum of f with a regular language, both are recognised by stabilisation
monoid, ideal pairs that have Max-property. Our strategy is as follows. We use the standard
constructions on M, I (namely powerset and product) that give stabilisation monoid, ideal
pairs that recognise the said functions and show that the resulting monoid, ideal pairs satisfy
the Max-property. The details are postponed until we establish some lemmas that allow us
to extend the Max-property, i.e. conversion of ω] to ω, to all]-expressions.

I Definition 1.4. If E is a]-expression then E denotes the]-expression obtained from E

by replacing all ω] by ω. For example (abω]c)ω] = (abωc)ω.

I Lemma 1.5. Let M = 〈M, ·,],≤〉 be a stabilisation monoid and I be an ideal such that
M, I has Max-property. If E is a]-expression over M , of positive stabilisation rank, that is
in I, then there is a]-expression E′ with stabilisation rank 1, that is also in I, such that E′
is obtained from E by replacing all but one ω] by ω.

Proof. Fix an n ∈ N such that an = aω for all elements a of the monoid. Below, we use the
usual descendant order on the nodes of the tree. Two nodes are incomparable if neither of
them is a descendant of the other.

We treat the expression E as a labelled tree, called]-tree, whose nodes correspond to
the subexpressions of E, and where each node is of one of the following types: a binary
multiplication node (from now on, simply binary node) with label ·, a unary stabilisation
node with label ω], a unary idempotent node with label ω, or a leaf labelled by an element
of the monoid. It is easy to inductively define the translations between]-expressions and
]-trees.

An expanded tree is similar to the]-tree, except that an idempotent node with label ω
has exactly n children. Here also we obtain a]-expression E(x) corresponding to a node
x inductively: a when it is a leaf labelled a, E(y1) · E(y2) when x is a binary node with
children y1 and y2, E(y1) · · ·E(yn) when x is an idempotent node with children y1, . . . , yn,

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 17

E(y)ω] when x is a stabilisation node with child y. We define the value of a subtree to be
the value of the]-expression corresponding to the root of the subtree.

Given a]-tree it is straightforward to convert it to an expanded tree, for every idempotent
node in the]-tree we duplicate the subtree rooted at its child n times and do it inductively.
We observe that since n is an idempotent power of all the elements in the monoid, the]
expressions corresponding to the]-tree and its expanded tree have the same value.

Fix a height k. To every expanded tree of height k we associate a k-ary vector (i1, . . . , ik) ∈
Nk, called level vector, where ij is the number of stabilisation nodes present at level j (we
follow the convention that level 1 is the root). We put a preorder on the set of all expanded
trees of height k according to the lexicographic order on their level vectors. In the following
we perform the operation sharp removal on an exapanded tree, that replaces a stabilisation
node with an idempotent node and duplicate the subtree rooted at its sole child n-times. We
note that the resulting expanded tree is strictly smaller according to the preorder defined
just now.

Our strategy is as follows. Given a]-expression we construct the corresponding]-tree,
and then convert it to an expanded tree. The]-expression corresponding to the expanded
tree does not contain any ω-powers, hence we can inductively replace the ω] occurring in the
tree with ω-power. But the resulting tree is no longer an expanded tree, thus we are forced
to expand the newly created idempotent node, by duplicating its children which increases
the number of ω] used in the tree. However, the resulting tree is smaller according to the
preorder, which ensures termination of the procedure. At the end we are left with a tree
with exactly one]-node and we reconstruct the]-expression ensuring that all but one ω] is
replaced by ω.

Next we describe the construction. Let E be the given]-expression that has value in
the ideal I. We construct the] corresponding to E and convert it to an expanded tree.
With each node x of the expanded tree we associate the corresponding subexpression of
E inherited via the]-tree, called the old expression of x. We preserve the associated old
expressions while we duplicate nodes.

During the construction, we preserve the invariant that the intermediate trees have value
in the ideal. To begin with this is true since E has value in I.

At any stage during the construction, when the expanded tree has at least two stabilisa-
tion nodes, one of the following two cases occurs.

There are two incomparable stabilisation nodes u, v, neither of which is a descendant of
a stabilisation node.
There are two stabilisation nodes u, v, such that u is not a descendant of a stabilisation
node, and v is the descendant of u, and there is no other stabilisation node between u
and v.

In each case we proceed by making one of the stabilisation nodes an idempotent node and
duplicating its children.

First case. Let z denote the least common ancestor of u and v. Observe that the path πu
from the root to u contains no stabilisation nodes, likewise the path πv from the root to v.

a to be the product of the values of the subtrees whose roots are left siblings of some node
in πu,

x to be the value of the subtree rooted at u,
b1 to be the product of the values of the subtrees whose roots are right siblings of some
node in πu which is a descendant of z,

18 Cost Functions Definable by Min/Max Automata

b2 to be the product of the values of the subtrees whose roots are left siblings of some node
in πv which is a descendant of z,

y to be the value of the subtree rooted at v,
c to be the product of the values of the subtrees whose roots are right siblings of some node
in πv.

Note that value of the tree is equal to axω]byω]c and by assumption, this value belongs
to I. We apply the first case in the definition of the Max-property, and derive that one of the
values axω]byωc or axωbyω]c belongs to I. Suppose that axω]byωc ∈ I, the other case being
symmetric. Convert the node v in the expanded tree to an idempotent node and duplicate
the subtrees rooted at its child n-times.

Observe that the value of the tree is axω]byωc and belongs to I, and that the resulting
tree has dropped strictly in the preorder.

Next we treat the second case.

Second case. In this case, there are two stabilisation nodes u, v, and u is not a descendant
of any stabilisation node, whereas v is a descendant of u and has no other stabilisation
ancestor.

Denote the path from the root to u by π, and the path from u to v by σ. Observe that
both paths contain no stabilisation nodes, apart from their terminal vertices (respectively,
u and v).

Define
x to be the product of the values of the subtrees whose roots are left siblings of some node
in π,

a to be the product of the values of the subtrees whose roots are left siblings of some node
in σ,

y to be the value of the subtree rooted at v,
b to be the product of the values of the subtrees whose roots are right siblings of some node

in σ,
z to be the product of the values of the subtrees whose roots are right siblings of some
node in π.

Note that value of the tree is x(ayω]b)ω]z, and by assumption, this value belongs to I.
We apply the second case in the definition of the Max-property, and derive that one of

the values x(ayωb)ω]z or x(ayω]b)ωz belongs to I. Suppose that x(ayωb)ω]z ∈ I. Convert
the node v to an idempotent node and duplicate the subtrees rooted at its children n-times
yielding an expanded tree whose value is x(ayωb)ω]z ∈ I. Furthermore, the expanded tree
has one less stabilisation node in the level of v. Hence the resulting tree has fallen strictly
in the preorder.

On the other hand, if x(ayω]b)ωz ∈ I, we proceed similarly, by converting the node u
into an idempotent node and duplicate the subtrees rooted at its children n-times. The
resulting tree, has value x(ayω]b)ωz ∈ I, and has dropped strictly in the preorder.

This completes the second case.
Proceeding inductively one obtains an expanded tree t with exactly one stabilisations

node and that has value in the ideal I.
We next use this expanded tree to construct the]-expression E′. Let us call the unique

stabilisation node good node and let F be its old expression. We observe the following
inductively:

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 19

1. The]-expressions corresponding to the children of an idempotent node that is not an
ancestor of the good node are syntactically equivalent and is equal to H (in fact syn-
tactically equivalent to the expression obtained from H by inductively duplicating every
subexpression of the form Gω by Gn), where H is the old expression for them.

2. For the good node, its] expression is equal to Fω].
3. For every idempotent node that is an ancestor of the good node, if G is the expres-

sion corresponding to a child which is not an ancestor of the good node, and H is the
expression corresponding to the child that is an ancestor of the good node, then G ≤ H.

We associate a new expression every node such that the new expression has value smaller
than the value of its corresponding]-expression. For every node that is not an ancestor of
the good node the new expression is simply H where H is its old expression. For the good
node, the new expression is Fω]. Next we inductively compute the new expression, by taking
products of new expressions on binary nodes, and taking Fω on idempotent nodes where F
is the new expression of the unique child that is the ancestor of the good node. The new
expression of the root is an expression that is syntactically equivalent to E, belongs to the
ideal, and has stabilisation rank 1. This completes the proof.

J

As a corollary we obtain the following lemma:

I Lemma 1.6. Let M = 〈M, ·,],≤〉 be a stabilisation monoid and I be an ideal in M such
that M, I has Max-property. Let E1, E2 be]-expressions over the monoid M. Then for every
x, y ∈M ,

1. If xE1E2y ∈ I, then either xE1E2y ∈ I or xE1E2y ∈ I.
2. If xEω]1 y ∈ I, then either xE1

ω]
y ∈ I or xEω1 y ∈ I.

Next we continue with the proof:
Let f be a cost function over Σ recognised by the monoid M = 〈M, ·,],≤〉, ideal I and

morphism h : Σ∗ → M. Let g : Σ∗ → Σ∗1 be a morphism. Then the sup-projection of f
under g is given by

gsup(f)(w) = sup{f(u) | g(u) = w}.

We next define a stabilisation monoid M↑ that recognises the cost function gsup(f).
Let X be a subset of M , we define X↑ to be the upward closure of X, that is,

X↑ = {y | ∃x ∈ X. x ≤ y}.

A co-ideal of M is a set which is upward-closed. Let M↑ be the set of all co-ideals of M
equipped with the order

X ≤′ Y iff X ⊇ Y.

We equip M↑ with the product and stabilisation,

X � Y = {x · y | x ∈ X, y ∈ Y }↑

X] = 〈X〉ω]+↑

The sup-projection of f under g is recognised by M↑ = 〈M↑,�,] ,≤′〉, h1,K where h1
is the morphism from Σ∗1 to M↑ defined as h1(w) = h(g−1(w))↑ and K ⊆ M↑ is the set
K = {X ∈M↑ | X ∩ I 6= ∅}.

For X,Y ⊆M , let X · Y denote the set {x · y | x ∈ X, y ∈ Y }.

20 Cost Functions Definable by Min/Max Automata

I Lemma 1.7. For X,Y ⊆M , (X · Y)↑ = (X↑ ·Y ↑)↑ and 〈X〉ω]+↑ = 〈X↑〉ω]+↑ .

Proof. By definition (X · Y)↑ ⊆ (X↑ ·Y ↑)↑ and 〈X〉ω]+↑ ⊆ 〈X↑〉ω]+↑. We show the other
direction.

Let z1 ∈ (X↑ ·Y ↑)↑. There exist z ∈ (X↑ ·Y ↑), x1 ∈ X↑, y1 ∈ Y ↑, x ∈ X and y ∈ Y
such that z1 ≥ z, z = x1 · y1, x1 ≥ x and y1 ≥ y. Then z1 ≥ z = x1 · y1 ≥ x · y. Hence
z1 ∈ (X · Y)↑.

Similarly let x ∈ 〈X↑〉ω]+↑. Then there exist a]-expression E ∈ 〈X↑〉ω]+↑ such that
x ≥ E. We prove by structural induction that (?) for every E ∈ 〈X↑〉ω]+ there is a]-
expression E1 ∈ 〈X〉ω]+ such that E ≥ E1. For the base case when a ∈ X↑ choose a1 ∈ X
such that a ≥ a1. Let E1 ≤ E and F1 ≤ F be expressions given by the induction hypothesis
for expressions E and F . Let G =syn E · F then G1 =syn E1 · F1 ≤ E · F ≤ G. Similarly
when G = Eω] observe that G1 = Eω]1 ≤ Eω] ≤ G. Therefore by (?) there is a]-expression
E1 ∈ 〈X〉ω]+ such that E1 ≤ E and hence E ∈ 〈X〉ω]+↑.

J

I Lemma 1.8. Assume E is a]-expression over the stabilisation monoid M↑. Let E1 be
the expression obtained from E by replacing each subexpression F �G by F ·G and Fω] by
〈F 〉ω]+. Then E = E1↑.

Proof. By induction on the structure of E using Lemma 1.7. When E is simply an element
of M↑, then by definition it is a co-ideal and the claim follows. When E is of the form
F � G, let F1 and G1 be the expressions given by the induction hypothesis. Then, by
Lemma 1.7, E = (F ·G)↑ = (F1↑ ·G1↑)↑ = (F1 ·G1)↑. When E is of the form Fω] and F1
is the expression corresponding to F given by induction hypothesis, Again by the Lemma,
Fω] = 〈F 〉ω]+↑ = 〈F1↑〉ω]+↑ = 〈F1〉ω]+↑. This concludes the induction. J

I Lemma 1.9. If M, I has Max-property then M↑,K has Max-property as well.

Proof. Proof is by contradiction. Assume M, I has Max-property while M↑,K does not.
We have two cases.

For the first case, let X,U, Y, V, Z ∈ M↑ be such that X � Uω] � Y � V ω � Z 6∈ K

and X � Uω � Y � V ω] � Z 6∈ K but X � Uω] � Y � V ω] � Z ∈ K (1). Using the
Lemma 1.8 we get that (X〈Uω〉ω]+Y V ωZ)↑∩I = ∅ and (XUωY 〈V ω〉ω]+Z)↑∩I = ∅ but
(X〈Uω〉ω]+Y 〈V ω〉ω]+Z)↑∩I 6= ∅. Let S be the set of sharp expressionsX〈Uω〉ω]+Y 〈V ω〉ω]+Z.
Since I is an ideal it follows that S ∩ I 6= ∅. Let x ·E1 · y ·E2 · z ∈ S ∩ I where x ∈ X, y ∈ Y ,
z ∈ Z, and E1 and E2 are strict sharp expressions over Uω and V ω respectively. Since M, I

has Max-property, by Lemma 1.5, one of of the expressions x ·E1 · y ·E2 · z, x ·E1 · y ·E2 · z
is in the Ideal. Assume it is the first one (the other case is analogous). Then, since Uω is
an idempotent, E1 ∈ Uω. It follows that x · E1 · y · E2 · z is in XUωY 〈V ω〉ω]+Z as well as
in the ideal I. This contradicts the assumption that

(
XUωY 〈V ω〉ω]+Z

)
↑∩I = ∅.

For the second case, let X,U, Y, V, Z ∈M↑ be such that X� (U �Y ω] �V)ω] �Z 6∈ K
and X � (U � Y ω � V)ω] � Z 6∈ K but X � (U � Y ω] � V)ω � Y ∈ K. Applying Lemma
1.8, we obtain that(

X · 〈(U · 〈Y ω〉ω]+ · V)ω〉ω]+ · Z
)
↑ ∩ I 6= ∅, (6)(

X · 〈(U · Y ω · V)ω〉ω]+ · Z
)
↑ ∩ I = ∅, (7)(

X · (U · 〈Y ω〉ω]+ · V)ω · Z
)
↑ ∩ I = ∅ . (8)

Let S be the set of sharp expressions
(
X · 〈(U · 〈Y ω〉ω]+ · V)ω〉ω]+ · Z

)
. Since I is an

ideal, from 6, we deduce that S ∩ I 6= ∅. Hence there exists a sharp expression x·F ·y ∈ S ∩ I

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 21

where F is a sharp expression over the set of sharp expressions T = (U · 〈Y ω〉ω]+ · V)ω. By
Lemma 1.5 there is an F ′ with stabilisation rank at most 1, obtained by replacing all but
one ω] in F by ω, such that x ·F ′ · y ∈ S ∩ I. Next we examine the F ′. If F ′ is composed of
elements from the set (U · Y ω ·V)ω then clearly x ·F ′ · y ∈

(
X · 〈(U · Y ω · V)ω〉ω]+ · Z

)
↑ ∩ I

which contradicts the Assumption 7. Otherwise F ′ contains an element from the set T .
Since F ′ has stabilisation rank at most 1, all other elements are from the set (U · Y ω · V)ω.
Notice that T is an idempotent, and (U ·Y ω ·V)ω ⊆ T↑ since Y ω is an idempotent. Therefore
F ′ ∈ T↑, which further implies that x · F ′ · y ∈ X · T · Z↑ ∩ I. This is in contradiction with
the Assumption 8. This completes the proof of the second case.

J

From the above lemma we get that:

I Lemma 1.10. If a cost function is recognised by a stabilisation monoid, ideal pair that
has Max-property then its sup-projections are also recognised by a a stabilisation monoid,
ideal pair that has Max-property.

Now we turn our attention to the closure under min with regular languages. First we
introduce the product of two stabilisation monoids.

Product of two stabilisation monoids M1 = 〈M1, ·1,]1,≤1〉 and M2 = 〈M2, ·2,]2,≤2〉 is
the stabilisation monoid M1 ×M2 = 〈M1 ×M2, ·,],≤〉 where the product and stabilisation
are defined as, for all x1, x2 ∈M1, e ∈ E(M1), y1, y2 ∈M2, f ∈ E(M2),

(x1, y1) · (x2, y2) = (x1 ·1 x2, y1 ·2 y2) ,
(e, f)] = (e]1 , f]2) ,

(x1, y1) ≤ (x2, y2) iff (x1 ≤1 x2, y1 ≤2 y2) .

Naturally the operations of min and and max of two cost functions can be computed by the
product of stabilisation monoids recognising them.

I Lemma 1.11. Let M1 = 〈M1, ·1,]1,≤1〉, I1 ⊆ M1 be a stabilisation monoid and Ideal
that satisfies the Max-property. Let M2 = 〈M2, ·2,]2,≤2〉, I2 ⊆ M2 be stabilisation monoid
recognising a regular language (i.e.,]2(e) = e for all e ∈ E(M2)). Then M1 ×M2 =
〈M1 ×M2, ·,],≤〉, I1 × I2 satisfies the Max-property.

Proof. Proof is by contradiction. For convenience we omit explicitly mentioning the product
operations.

Assume M1 ×M2, I1 × I2 does not satisfy the Max-property. We have two cases.
Let (x1, x2), (u1, u2), (y1, y2), (v1, v2), (z1, z2) ∈M1 ×M2 be such that

(x1, x2)(u1, u2)ω](y1, y2)(v1, v2)ω](z1, z2) ∈ I1 × I2 (9)
(x1, x2)(u1, u2)ω(y1, y2)(v1, v2)ω](z1, z2) 6∈ I1 × I2 (10)
(x1, x2)(u1, u2)ω](y1, y2)(v1, v2)ω(z1, z2) 6∈ I1 × I2 (11)

From Equation 9 we get that x1u
ω]1
1 y1v

ω]1
1 z1 ∈ I1 and x2u

ω]2
2 y2v

ω]2
2 z2 ∈ I2. Since

]2(e) = e for all e ∈ E(M2) we obtain x2u
ω
2 y2v

ω]2
2 z2 = x2u

ω]2
2 y2v

ω
2 z2 ∈ I2 (?). Since M1, I1

has Max-property, by Lemma 1.5 we get that either x1u
ω
1 y1v

ω]1
1 z1 ∈ I1 or x1u

ω]1
1 y1v

ω
1 z1 ∈

I1. Assume x1u
ω
1 y1v

ω]1
1 z1 ∈ I1 (the other case is analogous). Then (?) implies that

(x1, x2)(u1, u2)ω(y1, y2)(v1, v2)ω](z1, z2) 6∈ I1 × I2 which contradicts the Assumption 10.
This completes the proof of the first case.

Let (x1, x2), (u1, u2), (y1, y2), (v1, v2), (z1, z2) ∈M1 ×M2 be such that

22 Cost Functions Definable by Min/Max Automata

(x1, x2)((u1, u2)(y1, y2)ω](v1, v2))ω](z1, z2) ∈ I1 × I2 (12)
(x1, x2)((u1, u2)(y1, y2)ω(v1, v2))ω](z1, z2) 6∈ I1 × I2 (13)
(x1, x2)((u1, u2)(y1, y2)ω](v1, v2))ω(z1, z2) 6∈ I1 × I2 (14)

From 9 we obtain that x1(u1y
ω]1
1 v1)ω]1z1 ∈ I1 and x2(u2y

ω]2
2 v2)ω]2z2 ∈ I2. Since

M2, I2 is regular, x2(u2y
ω
2 v2)ω]2z2 = x2(u2y

ω]2
2 v2)ωy2 ∈ I2 (†). Since M1, I1 has Max-

property, by Lemma 1.5 we get that x1(u1y
ω
1 v1)ω]1z1 ∈ I1 or x1(u1y

ω]1
1 v1)ωz1 ∈ I1. As-

sume x1(u1y
ω
1 v1)ω]1z1 ∈ I1; the other case is analogous. Therefore from (†) we get that

(x1, x2)((u1, u2)(y1, y2)ω(v1, v2))ω](z1, z2) ∈ I1 × I2 which contradicts the Assumption 13.
This concludes the proof of the second case.

J

The previous lemma implies that:

I Lemma 1.12. If a cost function is recognised by a stabilisation monoid, ideal pair that has
Max-property then its minimum with a regular language is also recognised by a a stabilisation
monoid, ideal pair that has Max-property.

Lastly we note that, if f : Σ∗ → N∞ is a cost function recognised by the stabilisation
monoid, ideal pair M, I and morphism h, and g : Σ∗1 → Σ then the cost function g ◦ f :
Σ∗1 → N∞ is recognised by M, I and morphism g ◦ h. Therefore we obtain:

I Lemma 1.13. If a cost function is recognised by a stabilisation monoid, ideal pair that has
Max-property then its composition under a morphism is also recognised by a a stabilisation
monoid, ideal pair that has Max-property.

Next we prove closure under max.

I Lemma 1.14. Let M1 = 〈M1, ·1,]1,≤1〉, I1 ⊆ M1, and M2 = 〈M2, ·2,]2,≤2〉, I2 ⊆ M2
be stabilisation monoid and ideal pairs that satisfy the Max-property. Then M1 ×M2 =
〈M1 ×M2, ·,],≤〉, (M1 × I2) ∪ (I1 ×M2) satisfies the Max-property.

Proof. We verify both items of the Max-property on the monoid M1×M2 and ideal (M1×
I2) ∪ (I1 ×M2).

Let (x1, x2), (u1, u2), (y1, y2), (v1, v2), (z1, z2) ∈M1 ×M2 be such that

(M1 × I2) ∪ (I1 ×M2) 3 (x1, x2)(u1, u2)ω](y1, y2)(v1, v2)ω](z1, z2)

= (x1u
ω]1
1 y1v

ω]1
1 z1, x2u

ω]2
2 y2v

ω]2
2 z2)

If (x1u
ω]1
1 y1v

ω]1
1 z1, x2u

ω]2
2 y2v

ω]2
2 z2) ∈M1 × I2 (the other case being similar), then by using

Max-property of M2, I2, either (x1u
ω]1
1 y1v

ω]1
1 z1, x2u

ω2
2 y2v

ω]2
2 z2) ∈M1 × I2 (that implies

(x1u
ω
1 y1v

ω]1
1 z1, x2u

ω
2 y2v

ω]2
2 z2) = (x1, x2)(u1, u2)ω(y1, y2)(v1, v2)ω](z1, z2) ∈M1 × I2

and the property is verified), or (x1u
ω]1
1 y1v

ω]1
1 z1, x2u

ω]2
2 y2v

ω
2 z2) ∈M1 × I2 (that implies

(x1u
ω]1
1 y1v

ω
1 z1, x2u

ω]2
2 y2v

ω
2 z2) = (x1, x2)(u1, u2)ω](y1, y2)(v1, v2)ω(z1, z2) ∈M1 × I2

and the property is shown). This verifies the first item of the Max-property.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 23

Next let (x1, x2), (u1, u2), (y1, y2), (v1, v2), (z1, z2) ∈M1 ×M2 be such that

(M1 × I2) ∪ (I1 ×M2) 3 (x1, x2)
(
(u1, u2)(y1, y2)ω](v1, v2)

)ω] (z1, z2)

=
(
x1

(
u1y

ω]1
1 v1

)ω]1
z1, x2

(
u2y

ω]2
2 v2

)ω]2
z2

)

If
(
x1

(
u1y

ω]1
1 v1

)ω]1
z1, x2

(
u2y

ω]2
2 v2

)ω]2
z2

)
∈ M1 × I2 (the other case being similar),

then by using Max-property of M2, I2, either
(
x1

(
u1y

ω]1
1 v1

)ω]1
z1, x2 (u2y

ω2
2 v2)ω]2 z2

)
∈

M1 × I2 (that implies

(
x1 (u1y

ω
1 v1)ω]1 z1, x2 (u2y

ω
2 v2)ω]2 z2

)
= (x1, x2) ((u1, u2)(y1, y2)ω(v1, v2))ω] (z1, z2) ∈M1 × I2

and the property is shown), or
(
x1

(
u1y

ω]1
1 v1

)ω]1
z1, x2

(
u2y

ω]2
2 v2

)ω
z2

)
∈ M1 × I2 (that

implies(
x1

(
u1y

ω]1
1 v1

)ω
z1, x2

(
u2y

ω]2
2 v2

)ω
z2

)
= (x1, x2)

(
(u1, u2)(y1, y2)ω](v1, v2)

)ω (z1, z2) ∈M1 × I2

and the property is verified). This verifies the second item of the Max-property.
J

The above lemma implies that:

I Lemma 1.15. If two cost functions are recognised by stabilisation monoid, ideal pairs that
have Max-property, then their maximum is also recognised by a a stabilisation monoid, ideal
pair that has Max-property.

This completes the proof of the implication.

4 → 5 : From stabilisation monoids to syntactic stabilisation monoids
Assume f is recognised by a stabilisation monoid M = 〈M, ·,],≤〉, ideal I, and a morphism
h : Σ∗ → M such that M, I has Max-property. We verify that the syntactic stabilisation
monoid Mf = 〈Mf , ·f ,]f ,≤f 〉, and ideal If has the Max-property. By Theorem 2.16 there
is a surjective morphism g : M→Mf such that I = g−1(If) and f = JMf , If , h ◦ gK.

Let x′, u′, y′, v′, z′ ∈ Mf be such that x′u′ω]f y′v′ω]f z′ ∈ If . Fix x, u, y, v, z ∈ M such
that g(x) = x′, g(u) = u′, g(y) = y′, g(v) = v′, g(z) = z′. Then,

xuω]yvω]z ∈ g−1 (g(xuω]f yvω]z)
)

= g−1 (g(x)g(u)ω]f g(y)g(v)ω]f g(z)
)

Since g is a morphism
= g−1 (x′u′ω]f y′v′ω]f z′

)
⊆ I By assumption and Theorem 2.16

Since M, I has Max-property, either xuωyvω]z ∈ I or xuω]yvωz ∈ I. Assume xuωyvω]z ∈ I,
the other case is similar. Then, since g(I) = If , g

(
xuωyvω]z

)
= g(x)g(u)ωg(y)g(v)ω]f g(z) =

x′u′ωy′v′ω]f z′ ∈ If . This verifies Item 1 of the Max-property.

24 Cost Functions Definable by Min/Max Automata

Next let x′, u′, y′, v′, z′ ∈ Mf be such that x′(u′y′ω]f v′)ω]z′ ∈ If . Fix x, u, y, v, z ∈ M
such that g(x) = x′, g(u) = u′, g(y) = y′, g(v) = v′, g(z) = z′. Then,

x
(
uyω]v

)ω]
z ∈ g−1

(
g
(
x
(
uyω]v

)ω]
z
))

= g−1
(
g(x)

(
g(u)g(y)ω]f g(v)

)ω]f g(z)
)

Since g is a morphism

= g−1
(
x′
(
u′y′ω]f v′

)ω]f z′
)

⊆ I By assumption and Theorem 2.16

Because M, I has Max-property, either x(uyω]v)ωz ∈ I, or x(uyωv)ω]z ∈ I. Assume the
first case, the other being similar. Then g

(
x(uyω]v)ωz

)
= g(x) (g(u)g(y)ωg(v))ω]f g(z) =

x′ (u′y′ωf v′)ω]f z′ ∈ If . This verifies the Item 2 of the Max property.
Thus the proof is completed.

5 → 6: From stabilisation monoids satisfying Max-property to cost
regular expressions
Assume that the cost function f is recognised by the stabilisation monoid M, ideal I and
morphism h : Σ∗ →M such that M, I has Max-property.

I Definition 1.16. Let M = 〈M, ·,],≤〉 be a stabilisation monoid and h : Σ∗ → M be
a morphism. For an element a ∈ M , we write Ea for a regular expression denoting the
language h−1(a) recognised by the finite monoid 〈M, ·,≤〉 and the morphism h.

Let E be the S-regular expression

E =
∑
a∈I

Ea +
∑

a·b]·c∈I,
a,b,c∈M

(
Ea · (Eb)>n · Ec

)
. (15)

Let us note that E is in the desired form. It remains to show that the expression E and
the triple M, h, I define the same cost function. First we prove the simple direction.

Computation trees are not sufficient for our purpose, we need the following extension of
computation trees.

IDefinition 1.17 (Over-computation tree [8]). An n-over-computation tree t is a finite rooted
ordered unranked tree in which each node x has an associated output in M and is of one of
four types:
Leaf x has no children and has an associated label a ∈ Σ, and the output of x is greater or

equal (according to the order ≤ of the monoid) h(a);
Binary node x has exactly two children and and the output of x greater or equal to the

product of the output of the first child and the output of the second child;
Idempotent node x has k children with k ≤ n and for some idempotent e ∈M , the output

of each child is e and the output of x is greater or equal to e.
Stabilisation node x has k children with k ≤ n and for some idempotent e ∈M , the output

of each child is equal to e and the output of x is greater equal to e].
The input of the tree t is the word formed by the labels of the leaves of the tree, read left
to right. The output of the tree t is the output of the root, and the neutral element of M if
t is the empty tree.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 25

For a fixed height k ∈ N, define

JM, h, IK++
k (w) = sup{n | there exists an n-over-computation with input w,

output not in the Ideal I, and height ≤ k} .

It turns out the cost function JM, h, IK++
k is exactly the function JM, h, IK. It also does not

depend on the choice of k ≥ 3|M |.

I Lemma 1.18. JEK 4 JM, h, IK .

Proof. We claim the following: For a word w ∈ Σ∗, if w ∈ E[m → n], then there is a m-
over-computation tree of height 3|M |+3 over the word w with output in the ideal I. Next we
prove the claim. Assume the word w ∈ E[m→ n]. Then by definition, there exist elements
a, b, c ∈M and words w1, w2, w3 ∈ Σ∗ such that a·b]·c ∈ I, w = w1·w2·w3, and w1 ∈ Ea, w2 ∈
(Eb)m , w3 ∈ Ec. Furthermore, the word w2 can be split into w2 = u1 · · ·um, ui ∈ Σ∗ such
that ui ∈ Eb. Let t1, s1, . . . , sn, t2 be m-computation trees of height 3|M | over the words
w1, u1, . . . , un, w3 respectively. By definition, v(t1) ≤ a, v(s1) ≤ b, . . . , v(sn) ≤ b, v(t2) ≤
c. Let t′1, s′1, . . . , s′n, t′2 be the m-over-computation trees obtained from t1, s1, . . . , sn, t2 by
relabelling the roots by the elements a, b, . . . , b, c respectively. Define t′ to be the tree

t′ = x

t′1 y

z

s′1 . . . s′n

t′2

The vertex x, y, z are labelled respectively by a ·b] ·c, b] ·c, and b]. In particular the vertex z
is a stabilisation node. The tree t′ is a valid n-over-computer tree over the word w of height
3|M |+ 3.

Next we show that JEK 4 JM, h, IK++
3|M |+3. Let w ∈ Σ∗ be a word and let JEK (w) = m ∈

N∞. We have two cases.
Case 1: When m ∈ N. Then by definition of JEK (w), the word w ∈ E[m → n] and hence
by the claim above there is a m-over-computation tree of height 3|M |+ 3 over the word w
with the output in the ideal I. Therefore, by definition, JM, h, IK++

3|M |+3 (w) is at leat m.
Case 2: When m = ∞. By definition of JEK (w), there exist arbitrarily large m ∈ N such
that the word w ∈ E[m→ n]. Hence by the above claim, for arbitrarily large m ∈ N, there
exist m-over-computation trees of height 3|M |+ 3 over the word w with output in the ideal
I. Therefore, by definition, JM, h, IK++

3|M |+3 (w) is ∞.
It follows that JEK 4 JM, h, IK++

3|M |+3 ≈ JM, h, IK.
J

Next we want to show that, JM, h, IK 4 JEK .
Let M be the stabilisation monoid M = 〈M, ·,]′,≤〉 where the stabilisation]′ is the

identity, i.e. e]′ = e for all idempotents e. Define the product stabilisation monoid M′ =
M×M. Let µ : M′ →M be the morphism µ((a, b)) = a.

I Lemma 1.19 ([8], Lemma 4.3). For µ a morphism of stabilisation monoids from M1
to M2, h a morphism from Σ∗ to M1 and ideal I2 of M2, we have:

q
M1, h, µ

−1(I2)
y

=
JM2, µ ◦ h, I2K.

26 Cost Functions Definable by Min/Max Automata

Let h′ be the morphism h′ : Σ∗ → M′ defined as h′(w) = (h(w), h(w)). Lastly, let
I ′ = I ×M , then by the previous lemma,

I Lemma 1.20.
q
M′, h′, I ′ = µ−1(I)

y
= JM, h = µ ◦ h′, IK.

Assume for a word w ∈ Σ∗, JM′, h′, I ′K (w) = n ∈ N. Then there exist a n-computation
tree t over the word w of height 3|M |2 with output in the ideal I ′. For a vertex x in the
tree, let us denote by v(x) the output of the vertex x. For each vertex x in t we associate a
]-expression E(x) inductively;

if x is a leaf and v(x) = (a, a) ∈M ×M : then E(x) = a,
if x is a binary node with children y and z: then E(x) = E(y) · E(z),
if x is an idempotent node with children y1, . . . , yk: then E(x) = E(y1) · · ·E(yk),
if x is an stabilisation node with children y1, . . . , yk: then E(x) = (E(y1) · · ·E(yk))ω].

We write s(x) = u to mean that the input of the vertex x is the infix u of w.

I Lemma 1.21. Let x be a vertex in t labelled by the pair (a, b) ∈ M2 and let E be the
]-expression associated with x, then

1. val(E(x)) = b = h(s(x)).

Proof. (1). By induction on the height of the vertex x. When x is a leaf, then by definition
E(x) = a. When x is a binary/idempotent node with children y1, . . . , yk that are labelled
with elements (a1, b1), · · · , (ak, bk) respectively, then

val(E(x)) = val(E(y1) · · ·E(yk)) by definition of E(x)
= a1 · · · ak by I. H.
= a by definition of the computation tree.

Similarly, when x is a stabilisation node with children y1, . . . , yk that are labelled with
elements (a1, b1), · · · , (ak, bk) respectively, then

val(E(x)) = val
(
(E(y1) · · ·E(yk))ω]

)
by definition of E(x)

= (a1 · · · ak)ω] by I. H. and since a1 = · · · = ak is an idempotent
= a By definition of the computation tree.

(2). Again, by induction on the height of the vertex x. First we show that if x is
labelled by (a, b) then val(E(x)) = b. When x is a leaf, then by definition E(x) = b. When
x is a binary/idempotent node with children y1, . . . , yk that are labelled with elements
(a1, b1), · · · , (ak, bk) respectively, then

val(E(x)) = val(E(y1) · · ·E(yk)) by definition of E(x)

= val(E(y1) · · ·E(yk))
= b1 · · · bk by I. H.
= b by definition of the computation tree.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 27

When x is a stabilisation node with children y1, . . . , yk that are labelled with elements
(a1, b1), · · · , (ak, bk) respectively, then

val(E(x)) = val((E(y1) · · ·E(yk))ω]) by definition of E(x)

= val
((
E(y1) · · ·E(yk)

)ω)
= (b1 · · · bk)ω by I. H.
= b since b1 = · · · = bk is an idempotent.

Next we show that if x is labelled by (a, b) then b = h(s(x)). When x is a leaf it is
obvious. When x is a binary/idempotent/stabilisation node with children y1, . . . , yk that
are labelled with elements (a1, b1), · · · , (ak, bk) respectively, then

h(s(x)) = h(s(y1) · · · s(yk)) by definition of s(x)
= h(s(y1)) · · ·h(s(yk)) since h is a morphism
= b1 · · · bk by I. H.
= b by definition of the computation tree.

This concludes the proof.
J

I Lemma 1.22. For a word w ∈ Σ∗, if there is a n-computation tree, n ∈ N, over w whose
output is in the ideal I ′, then

1. either h(w) ∈ I, or
2. there exists u,w1, . . . , wk, v ∈ Σ∗, k > n, such that w = uw1 · · ·wkv, h(w1) = · · · =

h(wk) = e ∈M is an idempotent, and h(u) · eω] · h(v) ∈ I.

Proof. Assume there is a n-computation tree t over w with height k whose value is in the
ideal I ′. By definition of I ′ and Lemma 1.21, it follows that val(E(x)) ∈ I for the root x
of the tree t. For a vertex x in the tree, define l(x) and r(x) to be respectively the words
u, v ∈ Σ∗ such that w = u · s(x) · v. Let P be the set of all vertices in t that satisfies the
property that h(l(x)) · val(E(x)) · h(r(x)) ∈ I. Next we prove the following claims:
Claim 1: Let x be a binary or idempotent node. If x is in the P , then there is a child of x
that is also in P .
Claim 2: Let x be a stabilisation node. If x is in the P , then either there is a child of x that is
also in P , or h(l(x)) ·(h(s(y1)) · · ·h(s(yk)))ω] ·h(r(x)) ∈ I and h(s(y1)) = · · · = h(s(yk)) = b

is an idempotent, where y1, . . . , yk are the children of x.
Before proving the claims we first show that the claims imply the lemma. Firstly the

root of the tree is in P . Inductively applying the Claims 1 and 2, we get that either
there is a leaf x that is in P (in which case h(w) = h(l(x)) · E(x) · h(r(x)) ∈ I and the
Item 1 of the lemma is satisfied), or for some stabilisation node x with children y1, . . . , yk,
h(l(x)) · (h(s(y1)) · · ·h(s(yk)))ω] · h(r(x)) ∈ I and h(s(y1)) = · · · = h(s(yk)) = b is an
idempotent. In the latter case, taking u = l(x), w1 = s(y1), . . . , wk = s(yk), v = r(x), the
Item 2 of the lemma is satisfied. This proves the lemma.

Next we prove the claims.
Proof of Claim 1: Assume that x is a binary or an idempotent node that is in P and let
y1, . . . , yk, 2 ≤ k ∈ N be its children. Then E(x) = E(y1) · · ·E(yk). Applying the Lemma

28 Cost Functions Definable by Min/Max Automata

1.6 item (1), k−1 times on the]-expression h(l(x)) ·E(y1) · · ·E(yk) · h(r(x)) ∈ I yields that
there is a 1 ≤ j ≤ k such that h(l(x))·E(y1) · · ·E(yj−1)·E(yj)·E(yj+1) · · ·E(yk)·h(r(x)) ∈ I.
By Lemma 1.21 val(E(yi)) = h(s(yi)) for each i and hence

I 3 val
(
h(l(x)) · E(y1) · · ·E(yj−1) · E(yj) · E(yj+1) · · ·E(yk) · h(r(x))

)
= h(l(x)) · h(s(y1)) · · ·h(s(yj−1)) · val (E(yj)) · h(s(yj+1)) · · ·h(s(yk)) · h(r(x))
= h(l(x) · s(y1) · · · s(yj−1)) · val (E(yj)) · h(s(yj+1) · · · s(yk)) · h(r(x))
= h(l(yj)) · val (E(yj)) · h(r(yj)) .

Proof of Claim 2: Assume that x is a stabilisation node with children y1, . . . , yk, n ≤ k ∈ N
and label (a, b) ∈M2. Then by definition E(x) = (E(y1) · · ·E(yk))ω]. Applying the Lemma
1.6 item (2) on the]-expression h(l(x)) · (E(y1) · · ·E(yk))ω] · h(r(x)) ∈ I implies that either

h(l(x)) · (E(y1) · · ·E(yk))ω · h(r(x)) ∈ I

or

h(l(x)) ·
(
E(y1) · · ·E(yk)

)ω]
· h(r(x)) ∈ I .

Assume that h(l(x)) · (E(y1) · · ·E(yk))ω · h(r(x)) ∈ I. Since val(E(y1)) = · · · = val(E(yk))
is an idempotent, val ((E(y1) · · ·E(yk))ω) = val (E(y1) · · ·E(yk)), and therefore h(l(x)) ·
E(y1) · · ·E(yk) · h(r(x)) ∈ I. Next we repeat the argument for the idempotent node and
obtain that there is a vertex yj such that

h(l(yj)) · val (E(yj)) · h(r(yj)) ∈ I .

In the second case we have h(u) ·
(
E(y1) · · ·E(yk)

)ω]
· h(v) ∈ I . By Lemma 1.21,

val(E(yi)) = h(s(yi)) = b, for each i, is an idempotent, and hence h(l(x))·(h(s(y1)) · · ·h(s(yk)))ω]·
h(r(x)) ∈ I .

J

I Lemma 1.23. JM,h, IK 4 JEK

Proof. We claim that there exists a correction function α, such that for all words w ∈
Σ∗, if JM,h, IK (w) > m ∈ N =⇒ JEK (w) ≥ α(m). To verify the claim, assume that
JM,h, IK (w) > m. Let α be a correction function, guaranteed by the Lemma 1.20, such
that α(JM, h, IK (w)) = JM′, h′, I ′K (w). Therefore, if JM,h, IK (w) > m then there is a α(m)-
computation tree over h̃′(w) with output in the ideal I ′. By the Lemma 1.22 either h(w) ∈ I
(which means w ∈

∑
a∈I Ea, and hence E(w) =∞ and the lemma is satisfied) or there exists

u,w1, . . . , wk, v ∈ Σ∗, k > α(m), such that w = uw1 · · ·wkv, h(w1) = · · · = h(wk) = e ∈ M
is an idempotent, and h(u)·eω] ·h(v) ∈ I. In the latter case w ∈

(
Eh(u) · (Ee)>n · Eh(v)

)
[n←

α(m)], and hence JEK (w) > α(m). Hence the claim is proved. It follows that for all words
w ∈ Σ∗, JM,h, IK (w) ≤ JEK (w) and the lemma is proved.

J

From Lemma 1.18 and Lemma 1.23 we conclude that JM,h, IK = JEK and this proves the
direction.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 29

6→1 : From Cost regular expressions to max-automata
Assume we are given a cost regular expression r = h+

∑k
i=1 ei where h is a regular expression

and each ei is of the form ef>ng where e, f and g are regular expressions. We construct a
max-automaton A such that JAK = JrK. Let Ah be a finite state automaton that accept the
cost function corresponding to the regular expression h. We observe that it is sufficient to
show how to construct a max-automaton Ai that accepts the cost function JeiK. Then the
disjoint union A of the automata Ah,A1, . . . ,Ak accepts the cost function

JAK = max (JAhK , JA1K , . . . , JAkK) = max (JhK , Je1K , . . . , JekK) =
t

h+
k∑
i=1

ei

|

= JrK .

To construct the automaton Ai, we let Ae,Af ,Ag be finite state automata corresponding
to the regular expression e, f and g. Furthermore assume that each of these automata has a
unique initial state and a unique final state such that no transition enters the initial state and
no transition leaves the final state. This is easy to achieve making use of nondeterminism.
For convenience we allow transitions on the empty word. Note that using standard techniques
it is possible to remove the transitions the on empty word from a max-automaton; so it does
not affect the expressiveness of the class. Let A′f be the max-automaton that is obtained
from Af by adding a transition on the empty word from the final state to the initial state
that increments the unique counter. Finally we define Ai by chaining the automata Ae,A′f
and Ag, i.e. we add transitions on empty word from the final state of Ae to the initial state
of A′f , as well as from the final state of A′f to the initial state of Ag, that does not touch
the counter. Moreover we reset the counter of Ai precisely at the final states (namely the
final state of Ag). We claim that JAiK = JeiK. Let w be a word in Σ∗.

Then, JeiK (w) > m ∈ N,
iff w ∈ L(efrg), for some N 3 r > m,
iff w = xy1 · · · yrz where r > n, x ∈ L(e), y1, . . . , yr ∈ L(f) and z ∈ L(g)
iff Ae has a run on x from its initial state to its final state, and A′f has a run on y1 · · · ym

from its initial state to its final state that increments the counter r− 1 times, and Ag
has a run on z from its initial state to its final state,

iff Ai has a run on w that increments the counter r − 1 times,
iff JAiK (w) > m− 1.

It follows that JAiK = JeiK. This completes the proof.

B Characterisations of min-automata

This section is devoted to the proof of this Theorem 4.2 .

1 → 2
If A is a min-automaton we show that we can write a formula in the fragment expressing
its semantic.

Indeed, let A = (Q,A,∆, I, F), with ∆ ⊆ Q× {0, 1}. Let Q = {q1, . . . , qk}, and u ∈ A∗
be a word. We remind that the structure induced by this word is the set of positions, with
predicates indicating the label in A of each position. For short we will note a(x) the label
of position x. If X,X1, . . . , Xk are sets, we write ψ(X,X1, . . . , Xk) as a conjunction of the
following MSO-expressible statements:

30 Cost Functions Definable by Min/Max Automata

the Xi’s form a partition of the set of positions. We will note p(x) the unique pi such
that x ∈ Xi.
for all consecutive positions x ∈ Xi, y ∈ Xj , there is an action τ such that (q(x), a(x), τ, q(y)) ∈
∆. Moreover if τ must be 1 then x ∈ X.
If x0 is the first position, then q(x0) ∈ I.
If xf is the last position, there is a transition of the form (q(xf), a(xf), τ, p) with p ∈ F .

Finally, let ϕ(X) = ∃X1,∃X2, . . . ,∃Xk, ψ(X,X1, . . . , Xk). This formula expresses the
fact that there is an accepting run of A where X represents the set of increments. Finally,
φ = ∃X(ϕ(X)∧|X| ≤ N) expresses that there is a run of A with at most n increments. Since
the semantics of both cost MSO and min-automata are based on an infimum on possible
choices, we get the equality JφK = JAK. Notice that exact values are preserved by this
translation.

1 ↔ 7
The 1 ↔ 7 direction is trivial: any min-automaton is a B-automaton without reset.

Conversely, assume the cost function f is recognised by a B-automaton without reset
A = (Q,A,Γ = [k],∆, I, F). We define the min-automaton A′ that has the same set of
states and transitions as that of A such that A′ increments its (only) counter whenever A
increments some counter. Formally A′ = (Q,A, [1],∆′, I, F) where

∆′ =
{

(p, a, γ′, q)
∣∣∣ (p, a, γ, q) ∈ ∆, and γ′ =

{
ε if γ = {ε}k

ic otherwise

}
By definition of the automaton A′ it is clear that for all words w ∈ A∗, JAK (w) ≤

JA′K (w). In the other direction if JAK (w) is n ∈ N then JA′K (w) is at most k · n (the worst
case is when all the counters of A are incremented at disjoint sets of positions) and hence
JA′K (w) ≤ k · JAK (w) for all words w ∈ A∗. Therefore both automata A and A′ define the
same cost function.

2 → 3
Let D be the smallest class of cost functions containing the cost functions count and regular
languages that is closed under min, max and inf-projections.

Let ψ = ∃X(ϕ(X) ∧ |X| ≤ N), where ϕ is a MSO formula. Let f be the function
recognised by ϕ, on alphabet A. Let L be the language on A×{0, 1}, recognised by ϕ, where
the second component indicates membership in X. Let f1 be the cost function on A×{0, 1}
defined by |X| ≤ n. Let g : A×{0, 1} → {a, b} defined by g(x, 1) = a and g(x, 0) = b for all
x ∈ A. We get that for all w ∈ (A×{0, 1})∗, f1(w) = inf{count(u)|g(w) = u} and therefore
f1 ∈ D. This means that f2 = max(χL, f1) is also in D. Finally, let π : A×{0, 1} → A be the
projection on the first component, we get that for all v ∈ A∗, f(v) = inf{f2(w)|π(w) = v}.
This concludes the proof that f ∈ D.

3 → 1
Since min-automata can recognise all regular languages and the function count, it suffices
to show that there are closed under min, max, and inf-projection.

Let A1,A2 be min-automata, then their union recognises min(JA1K , JA2K), as non-
determinism resolves as a minimum.

To compute the max, we build the product A1 ×A2 of A1 and A2, where

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 31

a state is initial (resp. final) if both components are initial (resp. final),
a transition in the product performs an increment if one of the automaton performs an
increment.

Therefore, a run of A1×A2 of value n can be matched to runs of A1 and A2 with values
at most n. Conversely, any two runs of A1 and A2 of value at most n can be matched to a
run of A1 ×A2 of value at most 2n.

Therefore, JA1 ×A2K = max(JA1K , JA2K), since as soon as one automaton computes a
big value, then the product does too.

Finally, let A be a min-automaton on alphabet A, and h : A → B. We build a min-
automaton on B for the inf-projection of JAK with respect to h by simply guessing an
antecedent via h of each letter, and running A on the guessed letters in A. Since non-
determinism resolves as a minimum, this automaton computes indeed an inf-projection with
respect to h.

1 → 4
Let A = (Q,A,∆, I, F) be a min-automaton, with ∆ ⊆ Q × A × {0, 1} × Q. Let M be its
transition monoid, i.e. M is a set of matrices of size Q × Q with coefficients in {0, 1,∞}.
We show that M can be equipped with a structure of stabilisation monoid recognising f ,
and verifying the Min-property.

Product in M is the classical matrix product over the semiring {0, 1,∞} equipped with
operations (min,max), where min and max are with respect to the order ∞ ≤ 1 ≤ 0. We
will use the product notation instead of max in {0, 1,∞}.

The product in M can therefore be written E · F = inf{E(p, r)E(r, r)E(r, q) | r ∈ Q}.
We also define a] operation on {0, 1,∞} by 0] = 0 and 1] = ∞] = ∞. Stabilisation in

M is defined on idempotents y E](p, q) = inf{E(p, r)E(r, r)]E(r, q) | r ∈ Q}.
If a ∈ A, we associate to it the matrix Ma defined by Ma(p, q) = x if (p, a, x, q) ∈ ∆ and

∞ otherwise.
Finally, the support of the stabilisation monoid M is the smallest set of matrices con-

taining {Ma|a ∈ A} and close under product and stabilisation.
We define a special order / in M by using the component-wise order induced by the

order / = {(0, 0), (1, 1), (∞,∞), (∞, 1)} on coefficients.

I Lemma 2.1. M equipped with the order / is a stabilisation monoid recognising f .

Proof. The fact that M is a stabilisation monoid for f is shown in [6].
We have to verify that / verifies the order axioms of stabilisation monoids. It is clearly

an order, since it is defined as the component-wise extension of a linear order.
We have to show closure by product. For this, it suffices to show that / on actions

{0, 1,∞} is closed under min and max, i.e. for all actions a, b, c, d if a / b and c / d, then
min(a, c) /min(b, d) and max(a, c) /max(b, d).

The only interesting cases (up to symmetries) is when a = b, c = ∞ and d = 1. If
a is minimal or maximal, then the result is trivial, as it is either neutral or absorbing for
min /max. We are left with the case a = b = 1, and the result is also true: 1 / 1 and ∞ / 1.

Since the product in M is defined with respect to the (min,max) semiring, this implies
that whenever E1 / E2 and F1 / F2 then E1 · F1 / E2 · F2.
Let E ∈M be an idempotent, we verify E] /E. Let p, q ∈ Q, since E is idempotent we have
E(p, q) = inf{E(p, r)E(r, r)E(r, q) | r ∈ Q}. But E](p, q) = inf{E(p, r)E(r, r)]E(r, q) | r ∈
Q}.

32 Cost Functions Definable by Min/Max Automata

We show that there is r ∈ Q such that E(p, q) = E(p, r)E(r, r)E(r, q) and E](p, q) =
E(p, r)E(r, r)]E(r, q). If E(p, q) = ∞ then any r will do. Otherwise, if E(p, q) = 0, then
there is r with E(p, r) = E(r, r) = E(r, q) = 0, and the same r witnesses E](p, q) = 0.
Finally, if E(p, q) = 1, witnessed by some r, we are left with two cases: either E](p, q) =∞,
and we can use the same r as witness, or E](p, q) = 1, meaning there is r′ such that
E](p, q) = E(p, r′)E(r′, r′)]E(r′, q). This implies E(r′, r′) = 0, and the same r′ can be used
to show that E(p, q) = 1. Since / on is closed by product (max) on actions, and this is true
for all (p, q), we get E] / E.

We finally show closure under stabilisation: if E /F then E] / F]. Let p, q ∈ Q, we have
E(p, q) = E(p, r)E(r, r)E(r, q) for some r ∈ Q. We know that F (p, q) ≤ F (p, r)F (r, r)F (r, q).
Assume F (p, q) < F (p, r)F (r, r)F (r, q), it means that there is a pair λ ∈ {(p, r), (r, r), (r, q)}
with E(λ) 6= F (λ). But since E(λ) / F (λ), we get E(λ) = ∞ and F (λ) = ic, and there-
fore E](p, q) = ∞ and F](p, q) ∈ {1,∞}, guaranteeing E](p, q) / F](p, q). Otherwise, we
have for all three pairs λ, E(λ) = F (λ), and since E](p, q) = E(p, r)E(r, r)]E(r, q) and
F](p, q) = F (p, r′)F (r′, r′)]F (r′, q), we get E](p, q) /F](p, q). This concludes the proof that
E] / F].

All the axioms are verified, so / is indeed a stabilisation monoid order for M.
J

I Lemma 2.2. For all a, b ∈M, if aR b then b / a.

Proof. Straightforward, by definition of the relation R and Lemma 2.1. J

I Lemma 2.3. If E / Fω], then Fω] = Fω]EF].

Proof. First, we can assume that F is an idempotent, by replacing it with Fω, since we
have E / Fω.

Let p, q ∈ Q, and K = F]EF]. We remind that

K(p, q) = inf{F](p, r)E(r, s)F](s, q)|r, s ∈ Q}.

if F](p, q) =∞, then we haveK(p, q) =∞, since for anyK(p, q)/F](p, q). If F](p, q) = 0,
then there are r, s with F](p, r)F](r, s)F](s, q) = 0 (F] is idempotent). Since E(r, s) /
F](r, s), we get E(r, s) = 0 (by definition of /), and finally K(p, q) = 0.

Finally, if F](p, q) = 1, then there is r with F (p, r)F (r, r)]F (r, q) = 1. This implies
F (r, r) = 0 and F (p, r)F (r, q) = 1. Thus E(r, r) = 0, and F](p, r) ≤ F (p, r)F (r, r)] ≤ 1.
Similarly, F](r, q) ≤ F (r, r)]F (r, q) ≤ 1. We obtain K(p, q) ≤ F](p, r)E(r, r)F](r, q) ≤ 1,
i.e. K(p, q) ∈ {0, 1}. Since we know that K(p, q) / 1, we finally obtain K(p, q) = 1.

Since this is true for all p, q, we can conclude F] = F]EF]. J

Lemmas 2.2 and 2.3 put together imply that M has the Min-property.

4 → 5
Let M be a stabilisation monoid with the Min-property.

We want to show that this property is preserved by quotient, i.e. if there is a surjective
stabilisation monoid morphism π : M→M′, then M′ satisfies the same condition.

Let a′, b′ ∈ M′ such that a′ω]R b′. By induction on the definition of R , we show that
there are a, b ∈ M with aω]R b, π(a) = a′ and π(b) = b′. Indeed, if b′ = a′ω], then there
is a ∈ M such that π(a) = a′ and by taking b = aω] we get π(b) = b′, and aω]R b. The
induction cases follow straightforwardly from the fact that π is a morphism.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 33

Therefore, we have aω] = aω]baω], and since π is a morphism, a′ω] = a′ω]b′a′ω].
Thus, M′ satisfies the Min-property.
This is enough to show that if a cost function f is recognised by a monoid M with the

Min-property, then the syntactic monoid of f has the Min-property, since it is a quotient of
M.

5 → 1
We assume that the minimal stabilisation monoid M of f satisfies the Min-property.

The notion of under-computation used in this proof is defined in [8]. A tree is an under-
computation where any node can be labelled by any element smaller than what is indicated
by the rule for computation trees.

I Definition 2.4. A stabilising tree is a under-computation tree where all idempotent nodes
are in fact stabilising: if a node N has more than 3 children, all labeled by an idempotent
e, then the label of N is smaller than e].

I Lemma 2.5. Let u = u1 . . . un ∈M∗ such that there is a computation tree over a word of
value a and height h. Then for any u′ = u′1 . . . u

′
n such that for all i we have uiRu′i, there

is a stabilising tree over u′ of value b and height at most 3|M |h, such that aR b.

Proof. We prove this result by induction on the number of leaves. The rough principle is
to replace idempotent nodes by stabilisation nodes everywhere in the tree. The base case of
trees of height 0 consisting of a single node is trivial. The product case is obtained by the
fact that R is closed under product. The only interesting case is when the root of the tree
is an idempotent/stabilisation node, of root E ∈ {e, e]}. Subtrees below the root are trees
t1 . . . tk sharing the same idempotent value e. By induction hypothesis, for each i ∈ [1, k]
there is a n-stabilising tree ti of value ei and height at most 3|M |(h− 1), such that eR ei.
By another use of our induction hypothesis, there is a computation tree te on e1 . . . ek with
value e′ such that ER e′, of height at most 3|M |. . Plugging t1 . . . tk at the leaves of te
yields the wanted stabilising tree, of height at most 3|M |(h− 1) + 3|M | = 3|M |h. J

We will call frontier tree a tree such that each stabilisation node is the root of a stabilising
tree.

I Lemma 2.6. Given a n-computation tree of value a and height h over M ,there is an
n-under-computation tree of value a and height at most 3|M |h that is a frontier tree.

Proof. We proceed by induction on the height on the computation tree t. The only nontrivial
case is when the root of t is a stabilisation node of value e], with children t0 . . . tk+1 each of
value e.

We apply the induction hypothesis on t0 and tk+1, and get trees t′ and t′′ of same
value and height at most 3|M |(h − 1), that are frontier trees. Since t′ and t′′ are under-
computations, we can label their roots e] instead of e.

We now consider the tree of value e] with children t1, . . . , tl, and apply Lemma 2.5 on
it, getting a stabilising tree T of value b and height at most 3|M |(h− 1), such that e]R b.

We build a tree of height 3 with leaves e], b, e]. We can now use the fact that M has
Min-property, and conclude that the product e] · b · e] evaluates to e].

The resulting under-computation is a frontier tree, as it is obtained by combining two
frontier trees and a stabilising tree. Its height is at most 3|M |(h− 1) + 3 ≤ 3|M |h.

J

34 Cost Functions Definable by Min/Max Automata

We will now describe how to build a min-automaton recognising f .
We will build an automaton B without counters implementing Lemma 2.5. Each state of

the automaton B will be mapped to an element b ∈M that we call its value. The value of a
run of B is the value of its last state. On input word u, a run ρ of value b of the automaton
B will witness the existence of a stabilising tree of value ≤min b.

This automaton is obtained by a modification of the algorithm from [6] that builds a
B-automaton from a finite stabilisation monoid. In this algorithm, a state of the automaton
is of the form (m1, . . . ,mk) where the mi’s are elements of M from different J-classes. The
value of such state is the product m1 · · ·mk. When mk is idempotent, the automaton is
allowed to stabilise it to obtain m]

k before continuing the computation (this operation is
labeled by a reset of a corresponding counter). Here, we will always do this operation, i.e.
any idempotent encountered will be stabilised immediately. The rest of the construction is
the same. Therefore, no counter is needed, and it is straightforward to show that runs of
this automaton correspond to stabilising trees.

We can now build the main min-automaton A recognising f . The idea behind A is to
implement Lemma 2.6, i.e. guess a frontier tree witnessing that the input word is accepted
within a certain threshold.

The structure of A is defined by composition with the automaton B: A will guess a
factorisation of the input word u in u1 . . . un. The value of such a run is n: the counter is
incremented each time we enter a new factor. On each factor bi, the automaton B is used,
and a value bi is output by the guessed run.Finally, a factorisation tree is built on b1 . . . bn,
by using another variant of the construction from [6], where this time stabilisation is not
allowed (therefore no counter is needed).

I Lemma 2.7. A is a min-automaton recognising f .

Proof. We show that we can identify runs of A with frontier trees described in Lemma 2.6.
First, if f(u) ≤ n, then by Lemma 2.6, there is a frontier tree of threshold α1(n) and

value b ∈ I, where α1 depends only on |M |.
Then in the ω-part of the tree (upper part where nothing is stabilised), all idempotent

nodes have at most α1(n) children. Since the height of the tree is bounded by a fixed
constant, we get that the total number of nodes lying at the frontier is n =≤ α(n) where α
depends only on |M |. If t1, . . . , tα(n) are the tree rooted at the frontier, with leaves labelled
by u1, . . . , uα(n), respectively, then we can build a run of A following this factorisation, with
value α(n). This shows that JAK (u) ≤ α(n).

Conversely, any run of A with n increments witnesses the existence of a frontier tree of
value at most n. This achieves the proof that JAK ≈ f . J

1 → 6
We adapt the classical algorithm translating automata to regular expressions.

In this algorithm, intermediate automata have their transitions labeled by expressions.
Two new states are added: one initial i, and one final f . Transitions are updated such that
i becomes the only initial state and f the only final. Then the other states are inductively
removed, while the transition structure is updated with expressions as labels, preserving
the languages if the automaton if we interpreted transitions as accepting words from a
language instead of letters. In particular, if a state q is removed, for each path of the form
p

e−→ q
e′−→ q

e′′−→ r, a new transition p
ee′∗e′′−→ r is added. Additionally, for each path

p
e−→ q

e′−→ r, a new transition p ee′−→ r is added.

T. Colcombet, D. Kuperberg, A. Manuel, S. Toruńczyk 35

The algorithms proceeds until the automaton is of the form i
e−→ f , and returns the

expression e.
Here, each transition is additionally labeled by 0 or 1, and we only need to slightly adapt

the above algorithm. We keep track of labels 0, 1, with 1 absorbing for the concatenation.
In case of two transitions p e:0−→ q, p e′:1−→ q, we keep them separated instead of merging
them in a transition labeled e+ e′ as it was done in the different algorithm. We only merge
transitions labeled with the same action. When a state with self-loop is removed, we will
replace the Kleene star by ≤ n if the self-loop is labeled by action 1. This bounds by n the
number of times the self-loop can be performed. Since the result path is still labeled 1, it is
clear that no Kleene star can be generated on top of this ≤ n operator, and the grammar
described in item 6 will be respected.

We show the equivalence of the resulting B-regular expression e with the original min-
automaton A. Let K be the number of times two 1 are concatenated in the above algorithm.
Any run of A of value n witnesses a factorising choice for e of value at most n, since
distincts increments in e can be matched to distinct increments in the run of A. Conversely,
any factorisation choice of value n for e witnesses a run of A of value at most 2Kn, since
an increment in e can represent at most 2K increments in A. This achieves the proof of
JAK ≈ JeK.

6 → 7
Assume the cost function f is expressible by a B-regular expression E. By induction on
the structure of E we prove that there is a B-automaton with k counters with no reset that
recognises JEK, where k is the number of subexpressions of the form F≤n in E.

For the base case, when E is of the form a ∈ A or F it defines a regular language and
there is a finite state automaton recognising the cost function corresponding to E.

Next consider the inductive step. Let E1 and E2 be two cost regular expressions. By
induction hypothesis we obtain two B-automata without reset A1 and A2,

A1 = (Q1, A,Γ1 = [k1],∆1, I1, F1)
A2 = (Q2, A,Γ2 = {k1 + 1 . . . , k1 + k2},∆2, I2, F2)

such that
JA1K = JE1K,
JA2K = JE2K,
Q1 ∩Q2 = ∅,
there are no incoming transitions to states I1 and I2, and no outgoing transitions from
F1 and F2,
k1 and k2 are respectively the number of subexpressions of the form F≤n in E1 and E2
respectively.
If E is of the form E1 + E2 then disjoint union of the automata A1 and A2,

A1 ∪ A2 = (Q1 ∪Q2, A,Γ1 ∪ Γ2 = [k2],∆1 ∪∆2, I1 ∪ I2, F1 ∪ F2)

recognise the cost function JE1 + E2K since JA1 ∪ A2K = min (JA1K , JA1K) = min (JE1K , JE1K) =
JE1 + E2K.

If E is of the form E1 · E2 then we obtain the automata A1 · A2 by merging the final
states of A1 with the initial states of A2, i.e.,

A1 · A2 = (Q1 ∪Q2, A,Γ1 ∪ Γ2 = [k2],∆′, I1, F2) ,

∆′ = ∆1 ∪∆2 ∪ {(p1, a, γ, r) | (p, a, γ, q) ∈ ∆1, q ∈ F1, r ∈ I2} .

36 Cost Functions Definable by Min/Max Automata

It is easy to verify that for a word w ∈ A∗,

JA1 · A2K (w) = min
w1,w2∈A∗

{JA1K (w1) + JA2K (w2) | w = w1w2}

= min
w1,w2∈A∗

{JE1K (w1) + JE2K (w2) | w = w1w2}

= JE1 · E2K (w) .

Next assume E is of the form E≤n1 . We add a new state q′ 6∈ Q1 and a new counter k+ 1
to the automaton A1 such that

q is the only initial and final state, and
on every letter a ∈ A, A has a transition (q, a, γ,)

A≤n =
(
Q1 ∪ {q}, A,Γ1 = [k1 + 1],∆1 ∪ {(q, a, ik1+1, q0) | a ∈ A, q0 ∈ I}

∪ {(q, a, ik1+1, q0) | a ∈ A, q0 ∈ I}, {q}, F1

)

q
A≤n

y
(w) = min

n∈N
{n, {JA1K (w1) + · · ·+ JA1K (wn) | w = w1 · · ·wn, w1, . . . , wn ∈ A+}}

= min
n∈N
{n, {JE1K (w1) + · · ·+ JE1K (wn) | w = w1 · · ·wn, w1, . . . , wn ∈ A+}}

=
r
E≤n1

z
(w) .

	Introduction
	Preliminaries
	Automata
	Theory of regular cost functions.

	Max-automata
	Min-automata
	Conclusion
	Characterisation of Max-automata
	Characterisations of min-automata

