
September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Class Counting Automata on Datawords

Amaldev Manuel

Institute of Mathematical Sciences,
Taramani, Chennai, India - 600113

amal@imsc.res.in
http://www.imsc.res.in/̃ amal

R. Ramanujam

Institute of Mathematical Sciences,

Taramani, Chennai, India - 600113
jam@imsc.res.in

http://www.imsc.res.in/̃ jam

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

In the theory of automata over infinite alphabets, a central difficulty is that of finding

a suitable compromise between expressiveness and algorithmic complexity. We propose

an automaton model where we count the multiplicity of data values on an input word.
This is particularly useful when such languages represent behaviour of systems with

unboundedly many processes, where system states carry such counts as summaries. A

typical recognizable language is: “every process does at most k actions labelled a”. We
show that emptiness is elementarily decidable, by reduction to the covering problem on

Petri nets.

Keywords: Automata on infinite alphabet; dataword; decidability.

1991 Mathematics Subject Classification: 22E46, 53C35, 57S20

1. Introduction

Many widely used systems of today, most importantly web servers and other dis-

tributed systems, are machines which concurrently run many sequential processes.

When there is no a priori bound on the number of processes, though at any point

of time only finitely many are active, the necessity of the system to distinguish one

process from another involves potentially unbounded data. Typically, system states

carry summary information about processes that are known to be active, and hence

the set of system configurations is infinite. Such systems arise in the study of web

services, communication protocols and software systems with recursive concurrent

threads of execution.

Infinite state systems are not unfamiliar in theory of computation; a rich body

1

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

2 Amaldev Manuel and R. Ramanujam

of results exists on counter systems, pushdown systems and Petri nets. Most reach-

ability properties of such infinite state systems are either undecidable or have such

high complexity that algorithmic verification is impractical. On the other hand, if

we restrict ourselves to only finite state systems, we can reason only about systems

where the set of processes is fixed and known a priori, and we do not (as yet) have

clear abstractions that allow us to transfer the results of such reasoning to systems of

unbounded processes. Hence there is a clear need for formal models that work with

unbounded systems but yet restrict expressiveness to allow decidable verification.

Notice that interesting properties of such systems do not involve process names

(or identifiers) explicitly. A specification that restricts attention only to processes

P1, P2 and P3 can be implemented by a finite state system. On the other hand,

consider a specification such as: “at least k processes get to perform an a action”:

this necessitates remembering potentially unboundedly many values, thus leading

to infinite state systems.

This paper is situated in such a context and while we have no definitive answers,

we consider “state summaries” that allow elementary decidability. The model we use

is that of finite automata over infinite alphabets and we use counters to record the

intended ”summaries”. The main result is that emptiness is Expspace-complete

for such a class of automata. Unfortunately, the automata are not closed under

complementation, and even the word problem is intractable, suggesting that we

have more work to do to further restrict expressiveness.

The study of automaton mechanisms over infinite alphabets has gained interest

in recent years, especially from the viewpoint of database theory. In this approach,

data values are modelled using a countably infinite domain, and structures are finite

words labelled by this infinite alphabet. Typically the alphabet is presented as a

product (Σ × D), where Σ is finite and D is countable. For our purposes, we can

think of D as process names and Σ as the finite set of events they participate in, or

conditions that hold.

The study of languages over infinite alphabets was initiated in [2] and [19], where

the approach was to define the notion of regularity for languages over infinite al-

phabets in terms of morphisms to languages over finite alphabets. There are many

automaton mechanisms for studying word languages over infinite alphabets: register

automata [9], pebble automata [17, 18], data automata [5], nested words [1], class

memory automata [4] and automata on Gauss words [16], with different expressive

power and complexity. Logic based approaches include monadic second order logics

[6, 3], two variable first order logics [5] and temporal logics with special “freeze”

quantifiers [8] or predicate abstraction [14, 15]. Algebraic approaches involve quasi-

regular expressions [10], or register monoid mechanisms [7]. All these involve inter-

esting trade-offs between expressiveness and complexity of decision procedures. A

unifying framework placing all these models in perspective is as yet awaited (see

[20] for an excellent survey).

While register automata have polynomial complexity, they are effectively finite

state; data automata are more expressive, but emptiness is not known to be elemen-

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 3

tarily decidable. What we present here is a restriction of class memory automata:

these automata can not only test for existence of data values, but can also count

the multiplicity of occurrences of data values, subject to constraints on such counts.

However, these counters are monotone, and hence the constraints are limited in

expressive power: we can compare counts against constants, but not much more.

We show that such a model of Class counting automata (CCA) is interest-

ing, for several reasons; specifically, we get elementary decidability. We see this as

“populating the landscape” of classes of data languages, in the sense of [4].

From the viewpoint of reasoning about unbounded systems of processes, it is

unclear what exactly is the expressiveness needed. For instance, consider the spec-

ification: “No two successive positions carry the same data value”; this is naturally

implemented using a register mechanism. But this is a “hard” global scheduling con-

straint: after any process event is scheduled, the succeeding event must necessarily

be from a different process; it is hardly clear that such a constraint is important

for loosely coupled systems of processes. This indicates that while we do want to

specify combinations of global and local properties, we need to nonetheless allow

for sufficient flexibility.

2. Class counting automata

Below, for k > 0, we denote by [k] the set {1, 2, . . . k}. When we say [k]0, we mean

the set {0} ∪ [k]. By N, we mean the set of natural numbers {0, 1, . . .}. When

f : A→ B, (a, b) ∈ (A×B), by f ⊕ (a, b), we mean the function f ′ : A→ B, where

f ′(a′) = f(a′) for all a′ ∈ A, a′ 6= a, and f ′(a) = b.

Customarily, the infinite alphabet is split into two parts: it is of the form Σ×D,

where Σ is a finite set, and D is a countably infinite set. Usually, Σ is called the

letter alphabet and D is called the data alphabet. Elements of D are referred to as

data values. We use letters a, b etc to denote elements of Σ and use d, d′ to denote

elements of D.

A data word w is an element of (Σ×D)∗. A collection of data words L ⊆ (Σ×D)∗

is called a data language. In this article, by default, we refer to data words simply

as words and data languages as languages. As usual, by |w| we denote the length

of w.

Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word. The string projection of

w, denoted as str(w) = a1a2 . . . an, the projection of w to its Σ components. Let

i ∈ [n]. The data class of di in w is the set {j ∈ [n] | di = dj}. A subset of [n] is

called a data class of w if it is the data class of some di, i ∈ [n]. Note that the set

of data classes of w form a partition of [n].

A constraint is a pair c = (op, e), where op ∈ {<,=, 6=, >} and e ∈ N. When

v ∈ N, we say v |= c if v op e holds. Let C denote the set of all constraints. Define a

bag to be a finite set h ⊆ (D × N) such that whenever (d, n1) ∈ h and (d, n2) ∈ h,

we have: n1 = n2. Thus h defines a partial function from D to N which is defined

on a finite subset of D. By convention, we implicitly extend it to a total function

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

4 Amaldev Manuel and R. Ramanujam

on D by considering h to represent the set h′ = h ∪ {(d, 0) | there is no n ∈ N
such that (d, n) ∈ h}. Hence we (ab)use the notation h(d) = n for a bag h. Let B
denote the set of bags. Note that the notation h ⊕ (d, n) now stands for the bag

h′ = (h− ({d} × N)) ∪ {(d, n)}.
The automaton we present below includes a bag of infinitely many monotone

counters, one for each possible data value. When it encounters a letter - data pair,

say (a, d), the multiplicity of d is checked against a given constraint, and accordingly

updated, the transition causing a change of state, as well as possible updates for

other data as well. We can think of the bag as a hash table, with elements of D as

keys, and counters as hash values. Transitions depend only on hash values (subject

to constraints) and not keys.

Below, let Inst = {↑+, ↓} stand for the set of instructions. Each instruction

takes a natural number as an argument. The ↑+ instruction with argument k tells

the automaton to increment the counter by k, whereas ↓ with argument k asks for

a reset to the value k. Note that the instruction (↑+, 0) says that we do not wish to

make any update, and (↑+, 1) causes a unit increment; we use the notation [0] and

[+1] for these instructions below.

Definition 1. A class counting automaton, abbreviated as CCA, is a tuple

CCA = (Q,∆, I, F), where Q is a finite set of states, I ⊆ Q is the set of ini-

tial states, F ⊆ Q is the set of final states. The transition relation is given by:

∆ ⊆ (Q× Σ× C × Inst× U ×Q), where C is a finite subset of C and U is a finite

subset of N.

Representation of constants : We note here that the constants in the definition

of the automata are represented in unary. The mode of representation of numbers

turns out to be crucial for the upper bound of the emptiness problem.

Let A be a CCA. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.

The initial configuration of A is given by (q0, h0), where h0 is the empty bag; that

is, ∀d ∈ D, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence

γ = (q0, h0)(q1, h1) . . . (qn, hn) such that q0 ∈ I and for all i, 0 ≤ i < n, there exists

a transition ti = (q, a, c, π,m, q′) ∈ ∆ such that q = qi, q
′ = qi+1, a = ai+1 and:

• hi(di+1) |= c.

• hi+1 is given by:

hi+1 =

{
hi ⊕ (di+1,m

′) if π =↑+,m′ = hi(di+1) +m

hi ⊕ (di+1,m) if π =↓

γ is an accepting run above if qn ∈ F . The language accepted by A is given by

L(A) = {w ∈ (Σ× D)
∗ | A has an accepting run on w}. L ⊆ (Σ× D)

∗
is said to be

recognizable if there exists a CCA A such that L = L(A). Note that the counters

are either incremented or reset to fixed values.

We first observe that CCA runs have some useful properties. To see this, consider

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 5

a bag h and d1, d2 ∈ D, d1 6= d2 such that at a configuration (q, h), we have two

transitions enabled on inputs (a1, d1) and (a2, d2) leading to configurations (q1, h1)

and (q2, h2) respectively. Notice that for any condition c, if h(d2) |= c then so also

h1(d2) |= c. Similarly, for any condition c′, if h(d1) |= c′ then so also h2(d1) |= c′.

Thus when we have distinct data values, tests on them do not “interfere” with each

other. We can extend this observation further: given data words u and v such that

the data values in u are pairwise disjoint from those in v, if we have a run from

(q, h) on u to (q, h1) and on v from (q, h1) to (q′, h2), then there is a configuration

(q′, h′) and a run from (q, h) on v to (q′, h′). This will be useful in the following.

Example 2. The language L1 = “Data values under a are all distinct” is accepted

by a CCA. The CCA accepting this language is the automaton A = (Q,∆, q0, F)

where Q = {q0, q1}, q0 is the only initial state and F = {q0}. ∆ consists of:

• (q0, a, (=, 0), q0, [+1]); (q0, a, (=, 1), q1, [0]);

• (q0, b, (≥, 0), q0, [0]); (q1,Σ, (≥, 0), q1, [0]).

q0 q1

a, (=, 0), [+1]
b, (≥, 0), [0] Σ, (≥, 0), [0]

a, (=, 1), [0]

Fig. 1. Automaton in the Example 2

Since the automaton above is deterministic, by complementing it, that is, setting

F = {q1}, we can accept the language L1 = “There exists a data value appearing

at least twice under a”.

Example 3. Fix Σ to be {a}. Let the language L2 be “There exists a data value

whose multiplicity is not two.” is accepted by a CCA. The CCA accepting this

language is the automaton A = (Q,∆, q0, F) where Q = {q0, q1, q2, q3}, q0 is the

only initial state and F = {q1, q3}. ∆ consists of:

• (q0, a, (=, 0), q1, [+1]); (q0, a, (=, 0), q0, [0]);

• (q1, a, (=, 1), q2, [+1]); (q1, a, (=, 0), q1, [0]);

• (q2, a, (=, 2), q3, [+1]); (q2, a, (=, 0), q2, [0]);

• (q3, a, (≥, 3), q3, [+1]); (q3, a, (=, 0), q3, [0]).

The idea is that the automaton chooses non-deterministically a data value and

faithfully counts its multiplicity, while keeping the counters of other data values

zero. Finally the automaton accepts the word, if the current count is not two.

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

6 Amaldev Manuel and R. Ramanujam

q0 q1 q2 q3

a, (=, 0), [0] a, (=, 0), [0] a, (=, 0), [0]
a, (=, 0), [0]

a, (≥, 3), [+1]

a, (=, 0), [+1] a, (=, 1), [+1] a, (=, 2), [+1]

Fig. 2. Automaton in the Example 3

But as we show below, its complement language, L2 = “All data values occur

exactly twice” is not recognizable. Thus, CCA- recognizable data languages are not

closed under complementation.

Proposition 4. The language L2 = “All data values occur exactly twice” is not

recognizable.

Proof. Suppose there is a CCA A with m states accepting this language. Consider

the data word

w = (a, d1)(a, d2)... (a, dm+1)(a, d1)(a, d2).. (a, dm+1)

Clearly, w ∈ L2. Therefore, there is a successful run of A on w. Then there is a

state q repeating in the suffix of length m+ 1. Let us say this splits w as u · v · v′,
such that the configuration after u is (q, h) and after v it is (q, h1). Then by the

remarks we made earlier, we can find an accepting run for u · v′ as well. But then

u · v′ is not in L2.

Proposition 5. CCA-recognizable data languages are closed under union and in-

tersection but not under complementation.

Proof. Closure under union and intersection is easily obtained by product con-

struction.

The following observation will be useful for decision questions that follow. Given

a CCA A = (Q,∆, q0, F) let m be the maximum constant used in ∆. We define the

following equivalence relation on N, c 'm+1 c
′ iff c < (m+1)∨c′ < (m+1)⇒ c = c′.

Note that if c 'm+1 c
′ then a transition is enabled at c if and only if it is enabled

at c′. We can extend this equivalence to configurations of the CCA as follows. Let

(q1, h1) 'm+1 (q2, h2) iff q1 = q2 and ∀d ∈ D, h1(d) 'm+1 h2(d).

Lemma 6. If C1, C2 are two configurations of the CCA such that C1 'm+1 C2,

then ∀w ∈ (Σ× D)
∗
, C1 `∗w C ′1 =⇒ ∃C ′2, C2 `∗w C ′2 and C ′1 'm+1 C

′
2.

Proof. Proof by induction on the length of w. For the base case observe that any

transition enabled at C1 is enabled at C2 and the counter updates respects the

equivalence. For the inductive case consider the word w.a. By induction hypothesis

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 7

C1 `∗w C ′1 =⇒ ∃C ′2, C2 `∗w C ′2 and C ′1 'm+1 C
′
2. If C ′1 `a C ′′1 then using the above

argument there exists C ′′2 such that C ′2 `a C ′′2 and C ′′1 'm+1 C
′′
2 .

In fact the lemma holds for any N ≥ m + 1, where m is the maximum con-

stant used in ∆. This observation paves the way for proving the decidability of the

emptiness problem.

3. Decision problems

Since the space of configurations of a CCA is infinite, reachability is in general

non-trivial to decide. We now show that the emptiness problem is elementarily

decidable.

Theorem 7. The non-emptiness problem for CCA is Expspace-complete.

3.1. Upper bound

We reduce the emptiness problem of CCA to the covering problem on Petri nets

([11]). For checking emptiness, we can omit the Σ × D labels from the configura-

tion graph; we are then left only with counter behaviour. However since we have

unboundedly many counters, we are led to the realm of multi-counter automata, or

vector addition systems.

Definition 8. An ω-counter machine B is a tuple (Q,∆, q0) where Q is a finite

set of states, q0 ∈ Q is the initial state and ∆ ⊆ (Q× C × Inst× U ×Q), where C

is a finite subset of C and U is a finite subset of N.

A configuration of B is a pair (q, h), where q ∈ Q and h : N → N. The initial

configuration of B is (q0, h0) where h0(i) = 0 for all i in N. A run of B is a sequence

γ = (q0, h0)(q1, h1) . . . (qn, hn) such that for all i such that 0 ≤ i < n, there exists a

transition ti = (p, c, π,m, q) ∈ ∆ such that p = qi, q = qi+1 and there exists j such

that h(j) |= c, and the counters are updated in a similar fashion to that of CCA.

The reachability problem for B asks, given q ∈ Q, whether there exists a run of

B from (q0, h0) ending in (q, h) for some h (“Can B reach q?”).

Lemma 9. Checking emptiness for CCA can be reduced to checking reachability for

ω-counter machines.

Proof. It suffices to show, given a CCA, A = (Q,∆, q0, F), where F = {q}, that

there exists a counter machine BA = (Q,∆′, q0) such that A has an accepting run

on some data word exactly when BA can reach q. (When F is not a singleton,

we simply repeat the construction.) ∆′ is obtained from ∆ by converting every

transition (p, a, c, π,m, q) to (p, c, π,m, q). Now, let L(A) 6= ∅. Then there exists a

data word w and an accepting run γ = (q0, h0)(q1, h1) . . . (qn, hn) of A on w, with

qn = q. Let g : N → D be an enumeration of data values. It is easy to see that

γ′ = (q1, h0 ◦ g)(q1, h1 ◦ g) . . . (qn, hn ◦ g) is a run of BA reaching q.

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

8 Amaldev Manuel and R. Ramanujam

(⇐) Suppose that BA has a run η = (q0, h0)(q1, h1) . . . (qn, hn), qn = q. It can

be seen that η′ = (q0, h0 ◦ g−1)(q1, h1 ◦ g−1) . . . (qn, hn ◦ g−1) is an accepting run of

A on w = (a1, d1) . . . (an, dn) where w satisfies the following. Let (p, c, π,m, q) be

the transition of BA taken in the configuration (qi, hi), and dk such that hi(dk) |= c.

Then by the definition of BA there exists a transition (p, a, c, π,m, q) in ∆. Then it

should be the case that ai+1 = a and di+1 = g(dk).

Proposition 10. Checking non-emptiness of ω-counter machines is decidable.

Let s ⊆ N, and c a constraint. We say s |= c, if for all n ∈ s, n |= c.

We define the following partial function Bnd on all finite and co-finite subsets

of N. Given s ⊆fin N, Bnd(s) is defined to be the least number greater than all the

elements in s. Given s ⊆co−finite N, Bnd(s) is defined to be Bnd(N\s). Given an

ω-counter machine B = (Q,∆, q0) let mB = max{Bnd(s) | s |= c, c is used in ∆}.
It is worth noting that mB is O(|A|).

We construct a Petri net NB = (S, T, F,M0) where,

• S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ mB}.
• T is defined according to ∆ as follows. Let (p, c, π, n, q) ∈ ∆ and let i be

such that 0 ≤ i ≤ mB and i |= c. Then we add a transition t such that
•t = {p, i} and t• = {q, i′}, where (i) if π is ↑+ then i′ = min{mB , i + n},
and (ii) if π is ↓ then i′ = min{mB , n}. Note that i can be zero, in which

case we add edges only for the places in [mB].

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if

p 6= q0 then M0(p) = 0.

Let M be any marking of NB . We say that M is a state marking if there exists

q ∈ Q such that M(q) = 1 and ∀p ∈ Q such that p 6= q, M(p) = 0. When M is a

state marking, and M(q) = 1, we speak of q as the state marked by M . For q ∈ Q,

define Mf (q) to be set of state markings that mark q. It can be shown, from the

construction of NB , that in any reachable marking M of NB , if there exists q ∈ Q
such that M(q) > 0, then M is a state marking, and q is the state marked by M .

We now show that the counter machine B can reach a state q iff NB has a reach-

able marking which covers a marking in Mf (q). We define the following equivalence

relation on N, m 'mB
n iff (m < mB) ∨ (n < mB) ⇒ m = n. We can lift this to

the bags (in ω-counters) in the natural way: h 'mB
h′ iff ∀i (h(i) < mB)∨ (h′(i) <

mB) ⇒ h(i) = h′(i). It can be easily shown that if h 'mB
h′ then a transition is

enabled at h if and only if it is enabled at h′.

Let µ be a mapping of B-configurations to NB-configurations as follows: given

χ = (q, h), define µ(χ) = Mχ, where

Mχ(p) =

1 iff p = q

0 iff p ∈ Q\{q}
|[p]| iff p ∈ P\Q, p 6= 0

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 9

Above [p] denotes the equivalence class of p under 'mB
on N in h. Now suppose

that B reaches q. Let the resulting configuration be χ = (q, h). We claim that

the marking µ(χ) of NB is reachable (from M0) and covers Mf (q). Conversely if

a reachable marking M of NB covers Mf (q), for some q ∈ Q, then there exists a

reachable configuration χ = (q, h) of B such that µ(χ) = M . This is proved by a

simple induction on the length of the run.

Since the covering problem for Petri nets is decidable, so is reachability for

ω-counter machines and hence emptiness checking for CCA is decidable.

Complexity of Emptiness checking : The decision procedure discussed above

runs in Expspace[11], and thus we have elementary decidability. Note that the

representation of constants in unary is a crucial assumption about the Expspace

upper bound. When the constants are represented in binary, we do not know whether

the upper bound still holds.

3.2. Lower bound

We now show that the emptiness problem is also Expspace-hard. Effectively this

is a reduction of the covering problem again, but for technical convenience, we use

multicounter automata.

A k-multicounter automaton with weak acceptance is a tuple A =

(Q,Σ,∆, q0, F) where Q is a finite set of states, q0 ∈ Q is the initial state and

F ⊆ Q is a set of final states. The transition relation is of the form ∆ ⊆fin
(Q × Σ × Nk × Nk × Q). The two vectors in the transition specify decrements

and increments of the counters.

The automaton works as follows: it has k-counters, denoted by v̄ = (v1, . . . vk)

which hold non-negative counter values. A configuration of the machine is of the

form (q, v̄) where q ∈ Q and v̄ ∈ Nk. The initial configuration is (q0, 0̄). Given

a configuration (q, v̄) the automaton can go to a configuration (q′, v̄′) on letter a

if there is a transition (q, a, ¯vdec , ¯vinc , q
′) such that v̄ − ¯vdec ≥ 0̄ (pointwise) and

v̄′ = v̄ − ¯vdec + ¯vinc . A final configuration is one in which the state is final.

The problem of checking non-emptiness of a multicounter automaton with weak

acceptance is known to be Expspace-hard [12].

Any multicounter automaton M = (Q,Σ,∆, q0, F) can be converted to another

(in a “normal form”): M ′ = (Q′,Σ,∆′, q0, F) such that L(M) is non-empty if and

only if L(M ′) is non-empty and M ′ uses only unit vectors or zero vectors in its

transitions. A unit vector is of the form (b1, b2, . . . , bk) where there is a unique

i ∈ [k] such that bi = 1 and for j 6= i, bj = 0. That is M ′ decrements or increments

at most one counter in each transition.

∆′ is obtained as follows. Let t = (q, a, ¯vdec , ¯vinc , q
′). Let ū1, ū2, . . . , ūn be a

sequence of unit vectors such that ¯vdec = Σiūi and ū1
′, ū2

′, . . . , ūm
′ be a sequence

of unit vectors such that ¯vinc = Σiūi
′. We add intermediate states to rewrite t by

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

10 Amaldev Manuel and R. Ramanujam

the ‘ following sequence of transitions,

(q, a, ū1, 0̄, q(t,ū1)), (q(t,ū1), a, ū2, 0̄, q(t,ū2)), . . . ,

(q(t,ūn), a, 0̄, ū1
′, q(t,ū1

′)), (q(t,ū1
′), a, 0̄, ū2

′, q(t,ū2
′)), . . . ,

(q(t, ¯um−1
′), a, 0̄, ūm

′, q′)

Lemma 11. L(M) is non-empty if and only if L(M ′) is non-empty.

Proof. By an easy induction on the length of the run. It is easy to see that for every

accepting run ρ of M we have an accepting run ρ′ of M ′, this is achieved by replacing

every transition t in the run ρ by the corresponding sequence of transitions. For the

reverse direction, we need to show that every run accepting run ρ′ of M ′ can be

translated to an accepting run ρ of M . This is possible since the intermediate states

added to obtain the transitions in M ′ are unique for each transition t in M . Hence

for every sequence of transitions taking M ′ from q1 to q2 where q1, q2 ∈ Q there is

a unique transition t which takes M from q1 to q2. By doing an induction on the

number of states occurring in ρ′ which are from Q we can show that there is a valid

run ρ which is accepting.

Next we convert M ′ to a CCA thus establishing a lower bound of Expspace

for the emptiness problem. Let M ′ = (Q,Σ,∆, q0, F) be a k-multicounter au-

tomaton in normal form. We construct the automaton A = (Q,Σ,∆A, q0, F). Let

t = (q, a, ū, ū′, q′) where ū, ū′ are either unit or zero vectors. If ū is a i-th unit

vector and ū′ is a zero vector, we add a transition tA = (q, a, (x = i), (↓, 0), q′)

to ∆A. If ū is a i-th unit vector and ū′ is j-th unit vector, we add a transition

tA = (q, a, (x = i), (↓, j), q′) to ∆A. If ū is a zero vector and ū′ is a j-th unit vector,

we add a transition tA = (q, a, (x = 0), (↓, j), q′) to ∆A.

Lemma 12. L(M ′) is non-empty if and only if L(A) is non-empty.

Proof. The proof is by induction on the length of the run. First we define a mapping

from configurations of A to configurations of M ′ in the following manner, µ((q, h̄)) =

(q, v̄) where vi = |{j | h̄(j) = i}|. We show, by induction on the length of the run,

that for every configuration χ reachable by A there is a configuration ψ of M ′ such

that µ(χ) = ψ and conversely for every configuration ψ reachable by M ′ there is a

configuration χ reachable by A such that µ(χ) = ψ.

For the base case, it is evident that µ((q0, h̄0)) = (q0, 0̄).

Suppose that χ = (q, h̄) is a configuration reachable in l steps, and that the

transition t = (q, a, x = j, (↓, i), q′) is enabled at χ. Therefore there is a counter

holding the value j. By induction hypothesis there exists a configuration ψ such that

µ(χ) = ψ = (q, v̄) such that vj > 0. After the transition t, the number of counters

holding the value j decreases by one and the number of counters holding the value

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 11

i increases by one(if i 6= 0). This is achieved by the transition (q, a, ūj , ūi, q
′) in ∆′,

preserving the map µ.

Conversely, suppose a configuration ψ = (q, v̄) is reachable byM ′ in l steps. Then

by induction hypothesis we have a configuration χ reachable by the automaton A

such that µ(χ) = ψ. Suppose a transition t′ = (q, a, ūi, ūj , q
′) is enabled in ψ

resulting in ψ′.

Consider the case where ūi 6= 0̄ and ūj 6= 0̄. By construction t′ is obtained from

a transition t = (q, a, (x = i), ↓, j, q′). We choose the smallest counter holding the

value zero and apply the transition t, resulting in ξ′ such that µ(ξ′) = ψ′. The

remaining cases are similar.

The reduction from M to M ′ is not in polynomial time when the constants

in the transitions of the Multicounter automata are encoded in binary. However,

we observe that the Expspace-hardness for covering problem from [11, 12] can be

obtained with updates restricted to the values −1, 0 and 1. Hence, the lower bound

extends to the scenario where the constants are represented in binary.

3.3. Word problem

Since emptiness checking is of such high complexity, one may wonder whether the

model is complex enough to render even the word problem to be hard: the simplest

algorithmic question of how one can check whether a given word is accepted or not.

The important thing to note is that during a run, the size of the configuration is

bounded by the length of the input data word. Therefore a non-deterministic Turing

machine can easily guess a path in polynomial time and check for acceptance. Hence

the word problem is easily seen to be in NP. Interestingly, it turns out to be NP-

hard as well.

Theorem 13. The word problem for CCA is NP -complete.

The proof is by reduction of the satisfiability problem for 3-CNF formulas to

the word problem for CCAs. Given the 3-CNF formula, we code it up as a data

word, where data values are used to remember the identity of literals in clauses.

We use a two letter alphabet with +,− indicating whether a propositional variable

occurs positively or negatively. Data values stand for the propositional variables

themselves. Thus a pair (+, d1) asserts that the first boolean variable occurs posi-

tively.

We show the coding by an example, let ϕ ≡ (p1 ∨ ¬p3 ∨ p4) ∧ (¬p2 ∨
p5 ∨ p1) ∧ (¬p3 ∨ ¬p4 ∨ p5), we construct the corresponding word w =

(+, d1)(−, d3)(+, d4)(#, d)(−, d2)(+, d5)(+, d1)(#, d)(−, d3)(−, d4)(+, d5)(#, d) ∈
({+,−,#} × D)∗.

The non-deterministic automaton checks satisfiability in the following way. Ev-

ery time the automaton encounters a new data value (representing a propositional

variable), the automaton non-deterministically assigns a boolean value and stores

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

12 Amaldev Manuel and R. Ramanujam

it in the counter (1 for ⊥ and 2 for >) corresponding to the data value, in the

future whenever the same data value occurs the counter is consulted to obtain the

assigned value to the propositional variable. The automaton evaluates each clause

and carries the partial evaluation in its state. Finally the automaton accepts the

word if the formula evaluates to >.

4. Extensions

We observe that the model admits many extensions, without substantially affecting

the main decidability result.

4.1. Many bags

Instead of working with one bag of counters, the automaton can use several bags of

counters, much as multiple registers are used in the register automaton. It is easy

to formally define CCA with k-bags, using k-tuples of constraints on guards. An

interesting fact is that a CCA with k-bags can be converted to a CCA with one

bag. This can be achieved because of the following:

• Any CCA, no matter how many bags it has, can be converted to a CCA

whose counter values are bounded (We take the maximum constant used

in ∆ and rewrite the transitions in such a way that we never increment a

counter once it reaches that value).

• A k-bag CCA, whose counters are bounded can be simulated by a CCA with

one bag, by using a bit representation. Since the counters are bounded, we

know a priori how many bits are needed to represent each bag.

4.2. Checking any counter

Another strengthening involves checking for the presence of any counter satisfying

a given constraint and updating it. The idea is to extend the transitions to the

following form, t = (q, a, τ0, τ1, . . . , τn, q
′) where each τi ∈ C × Inst × U is of the

form (ci, πi,mi). The intended semantics of the transition is as follows. Suppose

that the current letter is a and data value is d0. The transition t is enabled if there

exist distinct data values d1, . . . , dn such that, for every i ∈ [n]0, di satisfies τi. On

the occurrence of t each di is updated with respect to τi. Note that in this way we

can modify the counter of a data value which is not the current data value.

Formally a CCA with context check, denoted CCAC, is a tuple (Q,∆, I, F), where

the transition relation is modified to be ∆ ⊆ (Q× Σ× (C × Inst× U)n ×Q),

where C is a finite subset of C, U is a finite subset of N, while everything else

remain the same.

Let A be a CCAC. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.

The initial configuration of A is given by (q0, h0), where h0 is the empty bag; that

is, ∀d ∈ D, h0(d) = 0 and q0 ∈ I.

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 13

Given a data word w = (a1, d1), . . . (am, dm), a run of A on w is a sequence

γ = (q0, h0)(q1, h1) . . . (qm, hm) such that q0 ∈ I and for all i, 0 ≤ i < m, there

exists a transition ti = (q, a, τ0, τ1, . . . , τn, q
′) ∈ ∆ where τj = (cj , πj ,mj) such that

q = qi, q
′ = qi+1, a = ai+1 and:

• hi(di+1) |= c0 and there exist distinct e1, . . . en in D such that for all j ∈
{1, . . . , n}, ej 6= di+1 and hi(ej) |= cj .

• hi+1 is given by:

hi+1 =

hi ⊕ (di+1,m

′) if π0 =↑+,m′ = hi(di+1) +m0

hi ⊕ (di+1,m0) if π0 =↓
hi ⊕ (ej ,m

′) if πj =↑+,m′ = hi(ei) +mj

hi ⊕ (ej ,mj) if πj =↓

We define ω-counter machines with context in a similar way: such a machine

is a tuple (Q,∆, q0) where Q is finite set of states, q0 is the initial state and ∆ ⊆
(Q× (C × Inst× U)n ×Q), where C is a finite subset of C, U is a finite subset

of N. A run of an ω-counter machine with context is defined analogously to that

of CCA with context. We can then easily show that checking emptiness for CCA

with context can be reduced to checking reachability for ω-counter machines with

context.

Finally, the following proposition shows that checking emptiness of CCA with

context is decidable in Expspace.

Proposition 14. Checking non-emptiness of ω-counter machines with context is

decidable.

Proof. Given an ω-counter machine B = (Q,∆, q0), we define mB as in the proof

of Proposition 10.

We construct a Petri net NB = (S, T, F,M0) where,

• S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ mB}.
• T is defined according to ∆ as follows. Let t = (q, a, τ0, τ1, . . . , τn, q

′) be a

transition in ∆ where τj = (cj , πj ,mj) and let i0, i1, . . . , in be such that

0 ≤ ij ≤ mB and ij |= cj . Then we add a transition t such that •t =

{p, i0, i1, . . . , in} and t• = {q, i′0, i′1, . . . , i′n} (take note of the fact that •t

and t• are multisets), where (i) if πj is ↑+ then i′j = min{mB , ij +nj}, and

(ii) if πj is ↓ then i′j = min{mB , nj}. Note that ij can be zero, in which

case we add edges only for the places in [mB].

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if

p 6= q0 then M0(p) = 0.

The rest of the proof is similar to the proof of Proposition 10 with obvious

modifications.

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

14 Amaldev Manuel and R. Ramanujam

4.3. The language of constraints

The language of constraints can be strengthened. Previously, the constraints where

of the form c = (op, e). Consider the following language, the language of Presburger

arithmetic. The terms in this language are given by the grammar,

t ::= 0 | 1 | t1 + t2 |x, x ∈ V

where V is a countably infinite set of variables. The formulas of this language are

given by:

ϕ ::= t1 ≤ t2 | ¬ϕ |ϕ1 ∨ ϕ2 | ∃x.ϕ.

The semantics is given as follows. The variables takes natural numbers as their

values and + is interpreted as addition. We call a formula ϕ(x) with one free variable,

a Presburger constraint. We say that k ∈ N satisfies ϕ(x) if k |= ϕ(x). Note that

the set of numbers satisfying a constraint may be neither finite nor co-finite. For

example, the formula ∃y.y + y = x defines the set of even numbers.

Let Cp be the set of all Presburger constraints. We define CCA with Presburger

constraints, abbreviated as CCA + Presburger, as a tuple CCA = (Q,∆, I, F),

where the transition relation is modified to be ∆ ⊆ (Q× Σ× Cp × Inst× U ×Q),

where C is a finite subset of Cp, while everything else remain the same. The defini-

tions of run and acceptance condition is defined in the obvious way.

A set of natural numbers D is eventually periodic iff there exists positive numbers

m and p such that for all n greater than m, n ∈ D iff n+p ∈ D. From the following

theorem we know that the set of numbers satisfying a Presburger constraint is

eventually periodic.

Theorem 15 ([13]) A set of natural numbers is representable in Presburger arith-

metic iff it is eventually periodic.

Using this, the decision procedure in Section 3 can be modified to check the

emptiness of CCA with Presburger constraints. As above, we define ω-counter ma-

chines with Presburger constraints: such a machine is a tuple (Q,∆, q0) where Q is

a finite set of states, q0 ∈ Q is the initial state and ∆ ⊆ (Q× Cp × Inst× U ×Q),

where Cp is a finite subset of Cp and U is a finite subset of N. Runs are defined in

the natural way.

We can then easily show that checking emptiness for CCA with Presburger

constraints can be reduced to checking reachability for ω-counter machines with

Presburger constraints. Then the following proposition shows that checking empti-

ness of CCA with Presburger constraints is decidable in Expspace.

Proposition 16. Checking non-emptiness of ω-counter machines with Presburger

constraints is decidable.

Proof. Given an ω-counter machine B = (Q,∆, q0), let c1, . . . cn be the constraints

used in ∆. From the theorem above, we know that c1, . . . cn are eventually periodic

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 15

with the pairs (m1, p1), . . . (mn, pn). We take m = m1 + . . .+mn and p as the least

common multiple of p1, . . . pn.

We construct a Petri net NB = (S, T, F,M0) where,

• S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ m+ p}.
• T is defined according to ∆ as follows. Let (p, c, π, n, q) ∈ ∆ and let i be

such that 0 ≤ i ≤ m + p and i |= c. Then we add a transition t such that
•t = {p, i} and t• = {q, i′}, where (i) if π is ↑+ then i′ = min{i + n,m +

(i+ n−m) mod p}, and (ii) if π is ↓ then i′ = min{n,m+ (n−m) mod p}.
Note that i can be zero, in which case we add edges only for the places in

[mB].

• The flow relation F is defined according to •t and t• for each t ∈ T .

• The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if

p 6= q0 then M0(p) = 0.

The rest of the proof is similar to the proof of Proposition 10 with obvious

modifications.

4.4. Two-way CCA

A two-way CCA is system (Q,∆, I, F), where Q, I, F are as usual, the transition

relation is ∆ ⊆ (Q× Σ× C × Inst× U ×Q× {L,R, S}). A configuration of A is a

triple (q, i, h), where q ∈ Q, i ∈ N and h ∈ B, where the variable i denotes the

position of the head. The initial configuration of A is given by (q0, 1, h0), where h0

is the empty bag; that is, ∀d ∈ D, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence

γ = (q0, i0, h0)(q1, i1, h1) . . . (ql, il, hl) such that q0 ∈ I and for all j, 0 ≤ j < l, there

exists a transition tj = (q, a, c, π,m, q′, µ) ∈ ∆ such that q = qj , q
′ = qj+1, a = aij

and hj(dij) |= c. The resulting counter configuration hj+1 is defined as in the case

of CCA. Finally, the updated position of the head is determined in the following

way,

ij+1 =

ij − 1 if µ = L

ij + 1 if µ = R

ij if µ = S

We assume that the input word is wrapped with end markers so that if the

machine tries to go off the boundary of the word it halts erroneously. We say a run

is accepting if the machine halts in a final state.

As we will see below, the emptiness problem is undecidable for the two-way

extension of CCAs.

4.5. Alternating CCA

An alternating CCA is system (Q = Q∀]Q∃,∆, I), where Q, I,∆ are as usual. Note

that there is no designated set of final states; instead, the state set is partitioned

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

16 Amaldev Manuel and R. Ramanujam

into a set of universal states Q∀ and a set of existential states Q∃. A configuration

of A is a tuple (q, h), where q ∈ Q and h ∈ B. The initial configuration of A is given

by (q0, h0), q0 ∈ I and h0 is the empty bag; that is, ∀d ∈ D, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), assume that the automaton is at

position i with configuration (qi, hi). We say that (qi+1, hi+1) is a valid successor

configuration if there exists a transition t = (q, a, c, π,m, q′, µ) ∈ ∆ such that q = qi,

q′ = qi+1, a = ai+1 and hi(di+1) |= c. The resulting counter configuration hj+1 is

defined as in the case of CCA.

We say that a configuration (q, h) is accepting if

(1) q ∈ Q∀ and all of its valid successor configurations are accepting. (Note that a

configuration with no valid successor configurations is accepting.)

(2) q ∈ Q∃ and there is a valid successor configuration (q′, h′) which is accepting.

Finally we say that the word is accepted if the initial configuration (q0, h0) is

accepting.

Theorem 17. The emptiness problem is undecidable for Two-way CCAs and for

Alternating CCAs.

Proof.

We do the proofs simultaneously by reducing the Post’s Correspondence Prob-

lem to the emptiness of two-way CCA and of alternating CCA. Without loss of

generality, assume that we are given a PCP instance I which is a set of ordered

pairs of non-empty strings over the alphabet Σ = {l1, l2, . . . lk}, that is I = {(ui, vi) |
i ∈ [n], ui, vi ∈ Σ+}. A solution for I is a finite sequence of integers i0, i1, . . . im, all

of them from the set {1, . . . n} such that ui0ui1 . . . uim = vi0vi1 . . . vim . We define a

two-way CCA which accepts precisely all solutions of I.

For this purpose, we code the PCP solution as a dataword, in the following way.

Let Σ̄ = {l̄1, l̄2, . . . l̄k} and Σ̂ = Σ ∪ Σ̄. Given a word w = a1a2 . . . an in Σ∗, we

denote by w̄ the word ā1ā2 . . . ān in Σ̄∗.

A solution of I is a dataword w over Σ̂ such that,

(I) The string projection of the word is in (u1v̄1 + u2v̄2 . . .+ unv̄n)+.

(II) Every data value d occurring in w appears precisely twice, once labelled by a

letter from Σ and once by a letter from Σ̄. Moreover if d is labelled by li ∈ Σ

in w if and only if it is labelled by l̄i ∈ Σ̄ in v (the second occurrence).

(III) The ordering of data values in the positions labelled by Σ is exactly the same

as the ordering of data values in positions labelled by Σ̄. Formally, let d and e

are data values occurring in w. Let dΣ and eΣ be the positions where d and e

are labelled by letters from Σ. Similarly, let dΣ̄ and eΣ̄ be the positions where

d and e are labelled by letters from Σ̄.The condition says that dΣ < eΣ if and

only if dΣ̄ < eΣ.

It is easy to see that there is data word w satisfying the above three conditions

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 17

iff I has a solution. We show that two-way CCA and alternating CCA can check

these three conditions.

(1) The first condition is a regular property and can be checked by any finite state

automaton. Hence it is easily checked by a CCA.

(2) The conjunction of the following four conditions is equivalent to condition (II).

(a) Data values occurring in Σ-labelled positions are all distinct.

(b) Data values occurring in Σ̄-labelled positions are all distinct.

(c) All data values occurring under Σ̄-labels occur under Σ-labels as well.

(d) All data values occurring under Σ-labels occur under Σ̄-labels as well.

Note that each of these conditions can be checked by a CCA. Since CCAs are

closed under intersection, a CCA can verify condition (II).

(3) Condition (III) is checked by a two-way CCA in the following way. We assume

that conditions (I) and (II) are verified independently. Given a position i labelled

by a letter from Σ we say that the position j > i is the Σ-successor of i iff j is

a position labelled by a letter from Σ and all positions k, i < k < j are labelled

by letters from Σ̄. Similarly we can define Σ̄-successor of a Σ̄-labelled position.

Let i and j be Σ-successors and let di and dj be the corresponding data values.

We know that di and dj occurs under Σ̄ as well. Let those positions be ī and j̄.

For each Σ-successors i, j the automaton verifies that ī and j̄ are Σ̄ successors.

To achieve this, assume that the automaton starts in a Σ position i, it resets

the counter of di to 1 and goes to next Σ-labelled position j. It increments the

counter of dj to 2. Now, the automaton moves to left end marker and makes a

left to right sweep ignoring all Σ positions. During this sweep the automaton

stops when it sees the data value dj under a Σ̄ label. It resets counter of di to

zero and then verifies that the next Σ̄ position has the data value dj with the

help of the counter. After this step the automaton goes to the left end of the

word and again makes a right sweep. This time it stops when it sees the data

value dj under a Σ label. Then the procedure is repeated for position j. Finally

the machine halts and accepts when it reaches the last Σ position in the data

word.

(4) Condition (III) is checked by an alternating CCA in the following way. The au-

tomaton starts in state q0. In this state automaton records all the data values it

has seen till the current position. Whenever it sees a fresh data value, it makes

a universal branching, one branch continues in state q0 and one branch goes to

state q1. In the state q1 the automaton verifies the following. Assume the fresh

data value d occurs under a Σ label and let the data value on its Σ successor

position is e. The automaton verifies that the positions where d and e are occur-

ring under Σ̄ labels are Σ̄ successors. This can easily be done by incrementing

the counters corresponding to d and e to specially designated values. The q1

branching halts successfully after each verification. The q0 branching accepts at

the end of the word.

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

18 Amaldev Manuel and R. Ramanujam

An important corollary of this result is that the universality problem for CCAs

is undecidable, and hence language inclusion is undecidable as well.

Other interesting extensions relate to the kind of updates allowed and to ac-

ceptance conditions. While adding decrements to counters in CCA leads to un-

decidability of the emptiness problem, we can add resets to counters preserving

decidability. A reset operation sets the corresponding counter value to zero. The

acceptance condition we have in CCA is global in the sense that it relates only to

the global control state rather than multiplicities encountered. We can strengthen

the acceptance condition as follows: A = (Q,∆, q0, F,G) where (Q, q0, ∆, F) are

as before, and G ⊂f in N. We say a final configuration (q, h) is accepting if q ∈ F
and ∀d ∈ D, h(d) ∈ G or h(d) = 0.

We then find that the non-emptiness problem (for CCAs with reset and counter

conditions) continues to be decidable but becomes as hard as Petri net reachability,

which is not even known to be elementarily decidable. This is proved by relating

this class to that of class memory automata discussed below.

One standard restriction is the deterministic subclass. In the case of CCAs, this

necessitates checking that transitions are not only label-wise deterministic on Σ but

also that the constraints are non-intersecting. But since requirement specifications

would be non-deterministic in general, it is not clear that the deterministic subclass

is interesting.

5. Other automata models

CCAs are situated among a family of automata models that have been proposed

for data languages. The simplest form of memory is a finite random access read-

write storage device, traditionally called register. In finite memory automata [9], the

machine is equipped with finitely many registers, each of which can be used to store

one data value. Every automaton transition includes access to the registers, reading

them before the transition and writing to them after the transition. The new state

after the transition depends on the current state, the input letter and whether or

not the input data value is already stored in any of the registers. If the data value is

not stored in any of the registers, the automaton can choose to write it in a register.

The transition may also depend on which register contains the encountered data

value. Because of finiteness of the number of registers, in a sufficiently long word the

automaton cannot distinguish between all data values. On the other hand, register

automata have the capability of keeping the “latest information”, a capability that

deterministic CCA do not have.

In the previous section, we considered an extension of CCAs with context. One

nice aspect of this extension is that it can recognize all data languages accepted

by register automata. This is achieved by the following scheme. Suppose that we

want to simulate a k-register automaton, we use k bags to represent each of these

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

Class Counting Automata on Datawords 19

registers. In every bag, atmost one counter has the value one, others being zero.

The intended meaning is that the data value corresponding to that counter is in the

particular register. Whenever a write operation happens, not only do we make the

counter of the current data value one, but also we decrement an arbitrary counter

as described previously. The register read operation is straightforward to simulate.

In this way, we can faithfully represent the registers using the k bags. We noted

above that k bags can be simulated by one bag.

In class memory automata (CMA, [4]), a function assigns to every data value

d the state of the automaton that was assumed after reading the previous position

with value d. We can think of this as using hash tables, with values coming from a

finite set. On reading a pair (a, d), the automaton reads the table entry correspond-

ing to d and makes a transition dependent on the table entry, the input letter a

and the current state. The transition causes a change of state as well as updating

of the table entry. The non-emptiness problem for CMAs is decidable, but as hard

as Petri net reachability, which is not known to be even elementarily decidable.

We can show that the class of CCA-recognizable languages is strictly contained

in the class of CMA-recognizable languages, but when we add resets and counter

acceptance conditions as above, the class becomes exactly as expressive as CMAs.

Indeed, we see CCAs as a natural restriction of CMAs yielding elementary decid-

ability of the non-emptiness problem. Mapping the precise relation between these

classes is interesting but part of a larger exercise and hence we omit it here.

Another simple computational model, based on transducers is the data automa-

ton model introduced in [5]. It is shown in [4] that this model is exactly as expressive

as CMAs.

6. Conclusion

We defined a class of automata on datawords and showed that its emptiness problem

is decidable and is elementary. We also considered many extensions this class of

automata which preserve elementary decidability.

But with an NP-hard word problem, Expspace-hard non-emptiness question

and undecidable language inclusion, working with data languages does seem daunt-

ing. However, given the need for verifying properties of systems with unboundedly

many processes, the abstraction of infinite alphabets is yet worth preserving. What

we need to consider are restrictions that are meaningful for systems of unbounded

processes.

Acknowledgement. We thank the anonymous reviewers for their detailed com-

ments, which have greatly helped to improve the content and presentation of the

paper.

September 29, 2014 11:34 WSPC/INSTRUCTION FILE AmalRam

20 Amaldev Manuel and R. Ramanujam

References

[1] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. In Oscar H.
Ibarra and Zhe Dang, editors, Developments in Language Theory, volume 4036 of
Lecture Notes in Computer Science, pages 1–13. Springer, 2006.

[2] Jean-Michel Autebert, Joffroy Beauquier, and Luc Boasson. Langages sur des alpha-
bets infinis. Discrete Applied Mathematics, 2:1–20, 1980.

[3] Manuel Baclet. Logical characterization of aperiodic data languages. Research Report
LSV-03-12, Laboratoire Spécification et Vérification, ENS Cachan, France, September
2003. 16 pages.

[4] Henrik Björklund and Thomas Schwentick. On notions of regularity for data lan-
guages. In Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors, FCT, volume 4639 of
Lecture Notes in Computer Science, pages 88–99. Springer, 2007.

[5] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire
David. Two-variable logic on words with data. In LICS, pages 7–16. IEEE Computer
Society, 2006.

[6] Patricia Bouyer. A logical characterization of data languages. Inf. Process. Lett.,
84(2):75–85, 2002.

[7] Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic characterization
of data and timed languages. In Kim Guldstrand Larsen and Mogens Nielsen, edi-
tors, CONCUR, volume 2154 of Lecture Notes in Computer Science, pages 248–261.
Springer, 2001.

[8] Stephane Demri and Ranko Lazic. LTL with the freeze quantifier and register au-
tomata. In LICS, pages 17–26. IEEE Computer Society, 2006.

[9] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput.
Sci., 134(2):329–363, 1994.

[10] Michael Kaminski and Tony Tan. Regular expressions for languages over infinite
alphabets. Fundam. Inform., 69(3):301–318, 2006.

[11] Javier Esparza. Decidability and complexity of Petri net problems - an Introduction.
In Advances in Petri Nets, volume 1491 of Lecture Notes in Computer Science, pages
374–428, Springer-Verlag, 1998.

[12] R. Lipton. The reachability problem requires exponential space. Research Report 62,
Yale University, 1976.

[13] Herbert B. Enderton. A Mathematical Introduction to Logic. Harcourt/Academic
Press, second edition, 2001.

[14] Alexei Lisitsa and Igor Potapov. Temporal logic with predicate lambda-abstraction.
In TIME, pages 147–155, 2005.

[15] Alexei Lisitsa and Igor Potapov. On the computational power of querying the history.
Fundam. Inform., 91(2):395–409, 2009.

[16] Alexei Lisitsa, Igor Potapov, and Rafiq Saleh. Automata on Gauss words. In LATA,
volume 5457 of Lecture Notes in Computer Science, pages 505–517, 2009.

[17] Frank Neven, Thomas Schwentick, and Victor Vianu. Towards regular languages over
infinite alphabets. In Jiri Sgall, Ales Pultr, and Petr Kolman, editors, MFCS, volume
2136 of Lecture Notes in Computer Science, pages 560–572. Springer, 2001.

[18] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings
over infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

[19] Friedrich Otto. Classes of regular and context-free languages over countably infinite
alphabets. Discrete Applied Mathematics, 12:41–56, 1985.

[20] Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In
Zoltán Ésik, editor, CSL, volume 4207 of Lecture Notes in Computer Science, pages
41–57. Springer, 2006.

