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Abstract
We study fragments of a µ-calculus over data words whose primary modalities are ‘go to next
position’ (Xg), ‘go to previous position’ (Yg), ‘go to next position with the same data value’ (Xc),
‘go to previous position with the same data value (Yc)’. Our focus is on two fragments that are
called the bounded mode alternation fragment (BMA) and the bounded reversal fragment (BR).
BMA is the fragment of those formulas that whose unfoldings contain only a bounded number of
alternations between global modalities (Xg, Yg) and class modalities (Xc, Yc). Similarly BR is the
fragment of formulas whose unfoldings contain only a bounded number of alternations between
left modalities (Yg, Yc) and right modalities (Xg, Xc). We show that these fragments are decidable
(by inclusion in Data Automata), enjoy effective Boolean closure, and contain previously defined
logics such as the two variable fragment of first- order logic and DataLTL. More precisely the
definable language in each formalism obey the following inclusions that are effective.

FO2 ( DataLTL ( BMA ( BR ( ν ⊆ Data Automata .

Our main contribution is a method to prove inexpressibility results on the fragment BMA by
reducing them to inexpressibility results for combinatorial expressions. More precisely we prove
the following hierarchy of definable languages,

∅ = BMA0 ( BMA1 ( · · · ( BMA ( BR ,

where BMAk is the set of all formulas whose unfoldings contain at most k−1 alternations between
global modalities (Xg, Yg) and class modalities (Xc, Yc). Since the class BMA is a generalization
of FO2 and DataLTL the inexpressibility results carry over to them as well.
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1 Introduction

Data words are words of the form (a1, d1) . . . (an, dn) ∈ (Σ × D)∗ where Σ is a finite set
of letters and D is an infinite domain of data values. Typically the alphabet Σ abstracts
a finite set of actions or events and the set of data values D models some sort of identity
information. Thus, data words can model a number of scenarios where the information is
linearly ordered and it is composed of finite as well as unbounded elements. For example
the authors of [1] imagine Σ as the actions of a finite program and D as process ids. Then,
an execution trace of a system with unbounded instances of the program can be modeled as
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a data word in which each action is associated with the identifier of the process which has
generated it.

The paradigmatic question in the study of data words is to develop suitable models (in
particular automata and logics) to specify properties of data words. Sure enough there exists
a rich variety of models for specifying properties of data words that includes Data Automata
[4], Register Automata [15, 9], Pebble Automata [19], Class Memory Automata [1], Class
Automata [2], Walking Automata [18], Variable Automata [13], First-Order logic with two
variables [4], guarded MSO logic [5], DataLTL [16], Freeze-Logics[9, 14], Logic of Repeating
Values [8], XPath [11, 12], Regular expressions [17], Data Monoids [3] etc.

In this work we further study a modal fixpoint logic on data words that we introduced in
[6]. This logic is composed of four modalities that allow to evaluate formulas on the successor,
class successor (the nearest future position with the same data value), predecessor and class
predecessor (nearest past position with the same data value) positions, Yg, Yc. In addition
there is a couple of zeroary modalities that describes whether these positions coincide or
not. To build the formulas, besides the usual Boolean operations, it is allowed to form the
least and greatest fixpoints of formulas . In [6] it is shown that the satisfiability problem
for the set of formulas that use only least fixpoints is undecidable, whereas the fragment
that consists of only greatest fixpoints is subsumed by Data Automata and hence it has
a decidable satisfiability problem. The main result of the work was the decidability of an
alternation-free fragment of the logic that further bounds the number of change of directions
in evaluating the formulas by using a generalisation of Data Automata.

Contributions
In the present paper, we aim at restricting the power of the above µ-calculus logic for data
words for obtaining classes that are closed under all Boolean connectives, mirroring, and
enjoy decidability of emptiness and universality. We consider two restricted fragments that
achieve this goal. The first one, called BMA (for Bounded Mode Alternation) syntactically
bounds the number of changes between class and global modes. The second, called BR (for
Bounded Reversal), syntactically bounds the number of changes between left modalities and
right modalities.

It is easy to show that BMA is contained in Data Automata. It is not very difficult
to show that BMA is subsumed by BR, that is to say for every formula in BMA there is
an equivalent one in BR. Our main result is the strictness of this last inclusion, i.e. that
there is a formula in BR for which there is no equivalent formula in BMA. This proof uses
a deep result from combinatorics called the Hales-Jewett theorem. As a proof device we
use a sort of circuits called combinatorial expressions that were introduced in [7]. These
expressions define functions over an infinite domain (for instance the integers). They are
built by composing gates that are functions of two kinds, either the function has a bounded
arity, or the function has a bounded domain. In [7] it is shown that certain properties
(a property is a function that has a binary codomain) for instance the given sequence of
positive integers has gcd 1 or the given sequence of integers sum to 0 cannot be computed
by expressions of fixed depth. We use a variant of this theorem in this paper to show that
there is a formula in BR for which there is no equivalent one in BMA. More precisely it
is shown that there is a specific formula in BR such that if it has an equivalent formula in
BMA, then it is possible to construct expressions of fixed depth for a particular property
and since that particular property cannot be computed by fixed depth expressions, we derive
a contradiction. One thing to note is that since the techniques developed in [7] are general
enough to derive impossibility results for a large family of properties, correspondingly the
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proof method developed here can be used to show inexpressibility results for a variety of
formulas.

Now we examine the implications of our result in a larger context. As mentioned earlier,
the results mentioned here have very close connection with Data Automata (DA for short).
The well known feature of DA is that it subsumes the logic FO2 (Σ, <,+1,∼,+c1) on data
words where Σ denotes the unary predicates indicating the letters, < is the linear order on
positions, +1 is the successor relation on positions, ∼ is the equivalence relation on positions
with respect to the data values (i.e. i ∼ j if di = dj), and +c1 is the class successor relation.
It is known that data languages recognisable by DA are closed under union, intersection and
letter-to-letter projection, but not under complementation [4]. Since FO2 formulas are closed
under Boolean operations, it is evident that Data Automata strictly subsumes the logic FO2.
This observation prompts the question that if there are other classes subsumed by DA that
are closed under Boolean operations. The fragments introduced in the paper answer this
question positively. Note only that, there are automata theoretic characterisations that are
natural variants of DA for both these fragments (we only present the one for BMA).

Another and perhaps more important question is how to show that a given data language
is not expressible in FO2. Note that in some cases, using the techniques on words over
finite alphabets it is possible to show that a given data language is not definable in FO2 (for
instance to show that data words of even length are not definable in FO2). We are interested
in those cases where such reductions are not possible, in particular where the property given
is dependent on the data values. We don’t have a complete solution to this problem yet,
but our method to prove inexpressibility results on BMA offers a partial answer. This is
because the logic FO2 (Σ, <,+1,∼,+c1), as it is shown in this paper, is equivalent to the
unary fragment of a temporal logic, namely DataLTL [16], which is a strict subfragment of
BMA. DataLTL is the temporal logic where usual temporal operators such as until, future,
past etc. exist both on the linear order on positions (called the global order) as well as
on the suborders formed by subsets of positions that share the same data value (called the
class orders). For instance the temporal operator Fgϕ is true a position if there is a position
in the future that satisfies the formula ϕ, whereas the formula Fcϕ is true at a position if
there is a future position that has the same data value as the current position and that
satisfies the formula ϕ. The unary fragment of DataLTL is the subclass of formulas that
uses only the unary temporal operators (such as Fg, Pg, Fc etc). Since every such operator is
expressible in FO2 it is immediate that unary DataLTL is subsumed by the logic FO2. But
the converse direction, which is shown in the paper, is not obvious, since it is not immediate
how to translate formulas like ∃y (a(x)∧ b(y)∧ x < y ∧ x 6∼ y). Thus inexpressibility results
on the fragment BMA renders directly corresponding results on all sublogics including FO2

and DataLTL.
Finally let us also note that the translations outlined in this paper, namely

FO2 ( DataLTL ( BMA ( BR ( ν ⊆ DA,

constitutes an alternate proof the main result of [4] that FO2 is subsumed by DA. The
proof in [4] is a direct translation of FO2 formulas by a intricate case analysis. Our proof,
however, is modular and makes use of analogous constructions from automata theory on
finite words.

Related work
As mentioned already this work is strongly related to DataLTL, FO2 and DA. One other
very popular ecosystem on data words is that of Register Automata and the associated lo-
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Figure 1 A data word and its graph. Dotted and thick arrows denote the successor and class
successor relations respectively.

gics such as Freeze LTL, Freeze µ-calculus, Xpath [9, 14, 8, 11, 12] etc. Our inexpressibility
result implies that BMA is incomparable to Register Automata (in particular nondetermin-
istic 1-Register Automata). Since all our modalities are expressible in terms of successor,
predecessor, freeze operator and fixpoint operators, our fixpoint logic is subsumed by Freeze
µ-calculus of [14]. However it should be noted that the latter logic is highly undecidable
[9]. The decidable fragment of Freeze µ-calculus (and also Freeze LTL) is unidirectional
(only future modalities) but our logic is naturally two-way. Finally the decidable two-way
fragment of Freeze LTL, namely Simple Freeze LTL is equivalent to FO2 and hence it is
subsumed by BMA. Therefore our method of proving inexpressibility extends to this logic
as well.

Structure of the document
In Section 2 we present the definition of our fixpoint logic and give some examples. In Section
3 we recall the composition operator (comp) on sets of formulas and define the fragments
BMA and BR using it. Thereafter, a characterisation of the class BMA in terms of cascades
of automata, that is used in the proof of the separation theorem, is given. In Section 4, first
we recollect the paradigm of combinatorial expressions and state the necessary results for
our purpose. Afterwards it shown how to translate a cascade on data words with a specific
structure to expressions and the separation theorem is proved. In Section 5 we conclude.
Due to space constraints some proofs have been moved to the appendix.

2 µ-Calculus on Data Words

In this section, we recall the basics of the µ-calculus on data words [6].
Fix an infinite setD of data values. Data words are words of the form u = (a1, d1) · · · (an, dn) ∈

(Σ×D)∗ where Σ is a finite set of letters. A maximal set of positions in u with the same data
value is called a class. The set of classes in u define an equivalence relation ∼, called the
class relation, on the set of positions of u. Given a permutation σ of D, it can be applied on
a data word as expected, yielding σ(u) = (a1, σ(d1)) . . . (an, σ(dn)). The data words u and
σ(u) have the same class relation. A data language is a set of data words that is invariant
under such applications of the permutations of D.

For our purposes, it is convenient to see data words as graphs in the following manner. To
each data word w = (a1, d1) . . . (an, dn) ∈ (Σ×D)∗ associate the graph Gw = ([n], `,+1,+c1)
where [n] is the set of positions {1, . . . , n}, ` : Σ → 2[n] is the labelling function `(a) = {i |
ai = a}, the binary relation +1 denotes the successor relation on positions, i.e., +1(i, j)
if j = i + 1, and the binary relation +c1 denotes the class successor relation on positions,
i.e., +c1(i, j) if i < j, di = dj , and dm 6= di for all i < m < j. We call predecessor relation
(resp., class predecessor relation) the reverse of the successor relation (resp., class successor
relation). We implicitly identify a data word with its graph. Figure 1 shows a data word
and its corresponding graph.
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Seen as such graphs, data words are naturally prone to the use of temporal logics. Let
Prop = {p, q, . . .} and Var = {x, y, . . .} be countable sets of propositional variables and
fixpoint variables respectively. The µ-calculus on data words is the set of all formulas ϕ
respecting the following syntax:

ϕ := x | A | ¬A | Mϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | µx.ϕ | νx.ϕ
where M := Xg | Xc | Yg | Yc and A := p ∈ Prop | S | P | fstc | fstg | lstc | lstg

The elements of M are called modalities, and the ones of A, atoms. The set of zeroary
modalities {fstc, fstg, lstc, lstg,P,S} will be denoted by the symbol Z for the rest of the
paper.

The semantic of a formula ϕ, over a data word w is the set of positions of w where “ϕ is
true” (denoted as [[ϕ]]w). The formal definition is given in Figure 2. The different constructs
have their expected meaning, keeping in mind that the class modalities Xc, Yc, fstc, lstc have
to be interpreted on the word restricted to the current data value. The modality S (resp.,
P) holds at a position i if the successor and class successor i coincide (resp. the predecessor
and class predecessor coincide).

[[fstg]]w = {1} [[Xgϕ]]w = [[ϕ]]w − 1
[[lstg]]w = {n} [[Ygϕ]]w = [[ϕ]]w + 1
[[fstc]]w = {i | @j = i−c 1} [[Xcϕ]]w = [[ϕ]]w −c 1
[[lstc]]w = {i | @j = i+c 1} [[Ycϕ]]w = [[ϕ]]w +c 1

[[ϕ1 ∧ ϕ2]]w = [[ϕ1]]w ∩ [[ϕ2]]w [[S]]w = {i | i+ 1 = i+c 1}
[[ϕ1 ∨ ϕ2]]w = [[ϕ1]]w ∪ [[ϕ2]]w [[P]]w = {i | i− 1 = i−c 1}

[[µx.ϕ]]w = ∩{S ⊆ [n] | [[ϕ]]w[`(x):=S] ⊆ S} [[p]]w = `(p)
[[νx.ϕ]]w = ∪{S ⊆ [n] | S ⊆ [[ϕ]]w[`(x):=S]} [[¬p]]w = [n] \ `(p)

[[x]]w = `(x)

Figure 2 Semantics of µ-calculus on data words w = ([n],+1,+c1, `).

Note that in this definition of the logic, negations in a formula are located at the leaves.
It is nevertheless possible, as usual, to negate such formulas by pushing the negation toward
the leaves, but this requires a bit of care when negating modalities. For instance, ¬Xcϕ

is not equivalent to Xc¬ϕ, but to lstc ∨ Xc¬ϕ. Similar arguments have to be used for all
modalities. Following these ideas, we define the dual modalities X̃gϕ ≡ lstg ∨ Xgϕ, Ỹgϕ ≡
fstg ∨ Ygϕ, X̃cϕ ≡ lstc ∨ Xcϕ and Ỹcϕ ≡ fstc ∨ Ycϕ. These modalities are considered dual
since X̃gϕ ≡ ¬Xg¬ϕ, . . .

Next we lay out some terminology and abbreviations which we will use in the subsequent
sections. Let λ denote either µ or ν. Every occurrence of a fixpoint variable x in a subformula
λx.ψ of a formula is called bound. All other occurrences of x are called free. A formula is
called a sentence if all the fixpoint variables in ϕ are bound. If ϕ(x1, . . . , xn) is a formula
with free variables x1, . . . , xn, then by ϕ(ψ1, . . . , ψn) we mean the formula obtained by
substituting ψi for each xi in ϕ. As usual the bound variables of ϕ(x1, . . . , xn) may require
a renaming to avoid the capture of the free variables of ψi’s. For a sentence ϕ and a position
i in the word w, we denote by w, i |= ϕ if i ∈ [[ϕ]]w. The notation w |= ϕ abbreviates the
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case when i = 1. The data language of a sentence ϕ, denoted as L(ϕ), is the set of data
words w such that w |= ϕ.

By µ-fragment we mean the subset of µ-calculus which uses only µ-fixpoints. Similarly
ν-fragment stands for the subset which uses only ν-fixpoints.

I Example 1 (temporal modalities). An example of a formula would be ϕUg ψ which holds if
ψ holds in the future, and ϕ holds in between. This can be implemented as µx.ψ∨ (ϕ∧Xgx)
The formula ϕUcψ = µx.ψ∨(ϕ∧Xcx) is similar, but for the fact that it refers only to the class
of the current position. The formula Fgϕ abbreviates > Ug ϕ, and its dual is Ggϕ = ¬Fg¬ϕ.
The constructs Sg, Sc, Pg, Pc, Hg and Hc, are defined analogously, using past modalities, and
correspond respectively to Ug, Uc, Fg, Fc, Gg and Gc. For instance, FcPcϕ expresses that there
is a position in the class that satisfies ϕ and FcPc(ϕ∧ X̃cGc¬ϕ∧ ỸcHc¬ϕ) expresses that there
exists exactly one position which satisfies ϕ in the class.

3 The bounded reversal and bounded mode alternation fragments

In this section we introduce the bounded mode alternation and bounded reversal fragments
(BMA and BR) and compare these two fragments between themselves and with other logics
(Theorem 5).

Before delving into the technical details let us outline the intuition behind each of the
fragments. The four modalities Xg, Yg, Xc and Yc can be divided along two axis. Based on
the directions: there are the left modalities Yg, Yc, and right modalities Xg, Xc. Based on the
modes: there are global modalities Xg, Yg, and class modalities Xc, Yc. The BR and BMA
fragments are defined by limiting the number of alternation between this types of modalities.
This is formally achieved using the operation comp that we define now.

Let Ψ be a set of µ-calculus formulas. Define the sets compi(Ψ) for i ∈ N inductively

comp0(Ψ) = ∅,
compi+1(Ψ) = {ψ(ϕ1, . . . , ϕn) | ψ(x1, . . . , xn) ∈ Ψ, ϕ1, . . . , ϕn ∈ compi(Ψ)} in which
the substitution ψ(ϕ1, . . . , ϕn) is allowed only if none of the free variables of ϕ1, . . . , ϕn

get bound in ψ(ϕ1, . . . , ϕn).

The set of formulas comp(Ψ) is defined as comp(Ψ) =
⋃

i∈N compi(Ψ). For a formula
ψ ∈ comp(Ψ), the comp-height of ψ in comp(Ψ) in the least i such that ψ is in compi(Ψ).

We are now ready to define the BR and BMA fragments of the µ-calculus. For a set of
modalities M , define formulas(M) to be the set of formulas that uses only the modalities
M apart from the zeroary modalities.

I Definition 2. The BMA and the BR fragments of µ-calculus are respectively:

BMA = comp (formulas ({Xg, Yg}) ∪ formulas ({Xc, Yc})) ,
and BR = comp (formulas ({Xg, Xc}) ∪ formulas ({Yg, Yc})) .

Further, BMAk denotes the subset of BMA with comp-height k. Similarly BRk stands for
the subset of BR with comp-height k.

I Example 3. Let

ϕ1 = νx.(Xcx ∨ Xgµy.(q ∧ Ycy)), ϕ2 = νx. (Xclstg ∨ XcYgx) ,
ϕ3 = µx.((νy. q ∨ Xcy) ∨ Xgx ∨ Ygx), and ϕ4 = µx.(XcXgx ∨ p).

The formula ϕ1 is in BR2 and in BMA3. The formula ϕ2 is neither in BR nor in BMA. The
formula ϕ3 is in BMA2 but not in BR. The formula ϕ4 is in BR1 but not in BMA.
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I Example 4. Consider the language Lk that contains the data words such that, by applying
k-times the sequence of the global successor followed by the class successor, one reaches a
position labeled with letter a. The language L is the union of all Lk for k ranging over all
non-negative integers. The language Lk is defined by ϕk and L by ϕ defined as follows:

ϕk =
k-times︷ ︸︸ ︷

XgXc . . . XgXc a, and ϕ = µx.(XgXcx ∨ a) .

The formula ϕk is in BR1 and in BMA2k. The formula ϕ is in BR1, but not in BMA. Later
in Section 4 we will prove that a variant of L is not definable by any formula in BMA.

Let us now state the main theorem of this section, namely the inclusions between the frag-
ments of the µ-calculus in terms of the data languages defined. Below DataLTL denotes the
temporal logic on data words consisting of the modalities {S,P, Xg, Yg, Xc, Yc, Ug, Sg, Uc, Sc},
uDataLTL is the unary sublogic consisting of the modalities {S,P, Xg, Xc, Yg, Yc, Fc, Fg, Pg, Pc}
and ν denotes the fragment of the µ-calculus containing only the greatest fixpoints (ν’s).

I Theorem 5. The following inclusions hold for definable languages,

FO2(Σ, <,+1,∼,+c1) = uDataLTL ( DataLTL ( BMA ⊆ BR ( ν ⊆ DA .

3.1 Characterizing BMA as cascades of automata
Next we give a characterization of BMA in terms of cascades of finite state automata. It
is classical that composition (comp) corresponds to the natural operation of composing
sequential transducers that compute subset of subformulas that are true at each position.
Given a µ-calculus formula ϕ over words, we can see it as a transducer that reads the input,
and labels every position with one extra bit of information denoting the truth value of the
formula ϕ at that position. Under this view, the composition of formulas corresponds to
applying the transducers in sequence: the first transducer reads the input, and adds some
extra labelling on it. Then a second transducer reads the resulting word, and processes it
in a similar way, etc... If we push this view further, we can establish exact correspondences
between the class BMA, and suitable cascades of transducers. Furthermore, the comp-height
of the formula matches the number of transducers involved in the cascade.

First we introduce some notation. Given a data word w = (a1, d1) · · · (an, dn) the string
projection of w, denoted by str(w), is the word a1 · · · an. For a class S = {i1, . . . , im} the
class projection corresponding to S, denoted as str(w|S), is the finite word ai1 · · · aim

. For
a word u = b1 · · · bn, the relabelling of w by u is the data word (b1, d1) . . . (bn, dn). Similarly
the relabelling of the class S in w by b1 · · · bm is the data word (a′1, d1) · · · (a′n, dn) where
a′i = bj if i = ij and ai otherwise.

The marking of a position i in the data word w, in notation m(i), is the subset of zeroary
modalities Z satisfied by i. The marked string projection of w, denoted as mstr(w), is the
word (a1,m(i)) · · · (an,m(n)) over the alphabet Σ× 2Z . Given a class S = {i1, . . . , in} the
marked class projection of S, denoted as mstr(w|S), is the finite word (ai1 ,m(i1)) · · · (ain

,m(in)).
A functional letter-to-letter transducer A : Σ∗ → Γ∗ over words is a nondeterministic

finite state letter-to-letter transducer such that every input word w ∈ Σ∗ has at most one
output word A(w) ∈ Γ∗.

We next disclose two forms of transductions possible by a word transducer on data
words. Let A : (Σ× 2Z)∗ → Γ∗ be a functional letter-to-letter transducer. The automaton
A acts as a global transducer when it runs on the marked string projection mstr(w) of
the input data word w ∈ (Σ × D)∗. If the run succeeds then the unique output data
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word w′ ∈ (Γ × D)∗ = A(w) (by abuse of notation) is the relabelling of w with the word
A(mstr(w)). Automaton A is a class transducer when for each class S in the input data
word w, a copy of the automaton A runs on the marked class projection mstr(w|S). If
all the runs succeed then the unique output data word A(w) (by abuse of notation) is the
relabelling of each class of S of w by mstr(w|S).

I Definition 6. A cascade of class and global transducers over data words (hereafter simply
cascade) C is a sequence 〈Σ = Σ0,A1,Σ1, . . . ,Σn−1,An,Σn〉 such that A1, . . . ,An is a
sequence of class and global transducers over data words and for each i, the transducer Ai

has input alphabet Σi−1 × 2Z and output alphabet Σi. Sets Σ0,Σn are respectively the
input and output alphabets of the cascade C and n is the height of the cascade.

The cascade C has a successful run on a given data word w if there is a sequence of data
words w0 = w,w1, . . . , wn−1, wn such that each transducer Ai has a successful run on wi−1
outputing the data word wi. The data word wn is the output of the cascade C, in notation
C(w) = wn. The language accepted by the cascade C, denoted as L(C), is the set of all data
words w on which C has a successful run.

Two cascades C1 and C2 can be composed to form the cascade C1 ◦ C2 if the output
alphabet of C1 and the input alphabet of C2 are the same. Composition of cascades is the
natural analogue of composition of formulas, this is expressed by the following proposition.

I Proposition 7. Let L be a set of data words. Then the following statements are equivalent.

1. L is definable by a formula in BMA of comp-height k.
2. L is recognisable by a cascade of height k.

4 Seperation of the fragments BMA and BR

In this section we prove the main theorem of the paper, namely the separation of the
fragments of BMA and BR. More precisely it is shown that there is a formula in BR that
has no equivalent formula in BMA. We start by presenting our technical tool, namely
combinatorial expressions [7].

4.1 Combinatorial expressions
Put simply, combinatorial expressions are circuits over a data domain E . For our purposes it
is sufficient to assume that E is a set that contains all the usual data types such as Booleans,
integers, finite words etc. We form expressions by composing variables (denoted by X,Y
etc.) and functions (denoted by f, g etc.) whose domains and ranges are explicitly specified.
A variable X has range E ⊆ E , denoted as X : E, if it takes values from the set E. We say a
function f : E1×· · ·×Ek → F , where E1, . . . , Ek, F ⊆ E , has arity k, domain E1×· · ·×Ek

and range F . The expressions are built using two specific classes of functions (called gates),
namely:

binary functions — when k ≤ 2, and,
finitary functions — when each of E1, . . . , Ek is finite.

For example the addition on integers + : Z × Z → Z is a binary function, whereas the
Boolean disjunction of k inputs ∨ : {0, 1}k → {0, 1} is a finitary function.

I Definition 8. Combinatorial expressions are defined inductively;

a variable X : E is a combinatorial expression with range E, and depth 0.
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if f : E1×· · ·×Ek → F is a binary or a finitary function, and t1, . . . , tk are combinatorial
expressions with ranges E1, . . . , Ek and depths d1, . . . , dk respectively, then f(t1, . . . , tk)
is a combinatorial expression with range F and depth max(d1, . . . , dk) + 1.

Let t(X̄) be a combinatorial expression that contains (possibly vacuously) the variables
X̄ = X1 : E1, . . . , Xn : En. For the valuation ā = a1, . . . , an, where ai ∈ Ei for each i, of the
variables X̄, the value of the expression t, denoted as t(ā), is defined inductively; if t is a
variable Xi then t(ā) = ai, and if t = f(t1, . . . , tk) then t(ā) = f(t1(ā), . . . , tk(ā)). Assume
F ⊆ E is the range of the expression t. Naturally t defines a map JtK : ā→ t(ā) from the set
E1 × · · · ×En to the set F . Given a map m : E1 × · · · ×En → F , where E1, . . . , En, F ⊆ E ,
we say the map is recognised by an expression t if JtK = m. A particular case is when the
range of the map m is restricted to a set of size two (without loss of generality {0, 1}); in
which case we say that t recognises the property {a1, . . . , an : m(a1, . . . , an) = 1}.

I Example 9. Each map f : En → F , for some E,F ⊆ E , n ∈ N, has an expression of depth
dlogne+ 1 recognising it. Let cat : E∗×E∗ → E∗ be the concatenation operation on words
over the alphabet E and let t(X1 : E, . . . ,Xn : E) be an expression of depth dlogne that
consists of only the function cat and that computes the concatenation of the inputs. Let
u : E∗ → F be a binary function on words over E such that u(e1 · · · en) = f(e1, . . . , en).
The map f is recognised by expression u(t(X1 : E, . . . ,Xn : E)).

I Example 10. Consider the set Pn of n-tuples (u1, . . . , un) of words in {0, 1}∗ that all have
equal length. The property Pn is recognised by the expression

t =
∧

(el (X1, X2) , . . . , el (X1, Xn) , el (X2, X3) , . . . , el (X2, Xn) , . . . , el(Xn−1, Xn))

where
∧

is the Boolean conjunction on n · (n− 1)/2 inputs and el : A∗ ×A∗ → {0, 1} is the
function on words defined as el(u, v) = 1 iff the words u and v are of the same length. The
function

∧
is finitary and the function el is binary. The expression t has depth 2.

In the previous example, regardless of the value of n the expression t has a constant
depth. But there exists properties for which it is not the case.

I Definition 11. Let Vn be the set of n-tuples (u1, . . . , un) of words over the alphabet {0, 1}
such that:

1. the words u1, . . . , un are of the same length, and;
2. there exists a position 1 ≤ i ≤ |u1| such that the ith letter of each of u1 to un is 1.

It is shown in [7] that,

I Theorem 12. There is no expression of depth at most k that recognises the property V2k+1.

4.2 Application
We now apply the above theorem to derive our inexpressibility results. The idea is to define
a data language Bn that corresponds to the property Vn and to show that if there is a
BMA-formula of comp-height k recognising Bn then there is a combinatorial expression of
depth O(k) (precise bound disclosed later) recognising the property Vn. This claim along
with the Theorem 12 implies a lower bound on the comp-height of formulas defining the
language Bn.

For the proof we rely on data words with a special structure that encode a sequence of
words. Let v1, . . . , vn ∈ Σ∗ be words of identical and even length, say 2` ∈ N. A data word
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w ∈ (Σ×D)∗ is a coding of the words v1, . . . , vn ∈ Σ∗, denoted as w = coding(v1, . . . , vn), if
w = w1 · · ·wn with v1 = str(w1), . . . , vn = str(wn) and the class relation is the set of tuples
(k · 2`+ 2i, (k + 1) · 2`+ 2i− 1) for 0 ≤ k < n−1, 1 ≤ i ≤ `; the position k ·2`+2i is the ith
even position in the block wk+1 and (k+ 1) · 2`+ 2i− 1 is the ith odd position in the block
wk+2. Coding is only defined for words of identical even length and hereafter whenever we
say coding(v1, . . . , vn) it is understood that v1, . . . , vn are of identical even length.

A data word w is a n-coding (or simply a coding when the value n is clear from the
context) if it is the coding of some words v1, . . . , vn ∈ Σ∗. We write n-Codings for the set of
all n-codings.

a a a a b b b b c c c c d d d d

Figure 3 The coding of the words aaaa, bbbb, cccc, dddd ∈ {a, b, c, d}∗.

Next we introduce some gates and expressions that we use in the proofs. If w is the
coding of u1, . . . , un ∈ Σ∗ then mstr(w) = m1(u1) ·m2(u2) · · ·m2(un−1) ·m3(un) for binary
gates m1,m2,m3 : Σ∗ → (Σ× 2Z)∗ such that: (1) for all words u = a1 · · · a2` ∈ Σ∗, 2` > 2

m1(u) = (a1, x1) · · · (a2`, x2`) where xi =


{fstg, fstc, lstc} if i = 1,
{fstc, lstc} if i is odd and i 6= 1,
{fstc} if i is even.

m2(u) = (a1, x1) · · · (a2`, x2`) where xi =
{
{lstc} if i is odd,
{fstc} if i is even.

m3(u) = (a1, x1) · · · (a2`, x2`) where xi =


{lstc} if i is odd,
{fstc, lstc} if i is even and i 6= 2`,
{fstc, lstc, lstg} if i = 2`.

(2) For each word ab ∈ Σ2,m1(ab) = (a, {fstc, fstg, lstc})(b, {fstc,S}),m2(ab) = (a, {lstc,P})(b, {fstc,S}),
m3(ab) = (a, {lstc,P})(b, {fstc, lstc, lstg}). (3) For words of odd length the functionsm1,m2,m3
are fixed arbitrarily.

Let isε : Σ∗ → {0, 1} be the binary gate defined as isε(w) = 1 precisely when w ∈ Σ∗
is not the empty word. Let bI : Σ∗ × {0, 1} → Σ∗ be the binary function bI (x, 1) = x

and bI (x, 0) = ε. For variables X̄ = X1 : Σ∗, . . . , Xn : Σ∗, let NE(X̄) be the expression∧
(isε(X1), . . . , isε(X1)) of depth 2 that recognises the property that none of the input words

is the empty word. Sometimes we use these gates and expressions over other alphabets, and
then it is understood that the domains of the functions are appropriately defined.

Next we prove that class transductions and global transductions on n-codings can be
defined by expressions of fixed height (irrespective of n). To summarise the intuition, let
w = w1 · · ·wn be the coding of the words u1, . . . , un ∈ Σ∗ such that str(wi) = ui. Assume
A : (Σ×2Z)∗ → Γ∗ is a class transducer that has a successful run on w and let A(w) = w′ =
w′1 · · ·w′n ∈ (Γ×D)∗ where w′i is a relabelling of wi. Observe that the only other positions
in the class of a position in wi appear either in wi−1 or wi+1. Therefore to compute str(w′i)
it suffices to know the words ui−1, ui, ui+1 and hence there is an expression that takes as
inputs ui−1, ui, ui+1 and outputs the word str(w′i).

I Lemma 13. For each class transducer A : (Σ × 2Z)∗ → Γ∗ and each n ∈ N there
exist combinatorial expressionse1(X̄), . . . , en(X̄), where X̄ = X1 : Σ∗, . . . , Xn : Σ∗, of
depth 7 such that for all n-tuple ū = (u1, . . . , un) of words in Σ∗ of identical even length
coding(e1(ū), . . . , en(ū)) = A(coding(ū)) .
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Next we prove a similar claim for global transducers. The idea is as follows. Assume
A : (Σ× 2Z)∗ → Γ∗ is a global transducer and let w = w1 · · ·wn be the coding of the words
u1, . . . , un ∈ Σ∗ such that str(wi) = ui. Assume that A has a successful run on w and let
A(w) = w′ = w′1 · · ·w′n ∈ (Γ × D)∗ where w′i is a relabelling of wi. To compute str(w′i)
it suffices to know the word ui and the pair (p, q) of states of the automaton A which are
respectively the state of the automaton A before and after reading the word mstr(ui) on the
unique run on mstr(w). Among these, the pair (p, q) can be computed a finitary function
that aggregates the set of all possible partial runs of A on each of the words u1, . . . , un and
hence an expression of fixed height can compute the word str(w′i).

I Lemma 14. For each global transducer A : (Σ × 2Z)∗ → Γ∗ and each n ∈ N there
exist combinatorial expressions e1(X̄), . . . , en(X̄), where X̄ = X1 : Σ∗, . . . , Xn : Σ∗, of
depth 5 such that for all n-tuple ū = (u1, . . . , un) of words in Σ∗ of identical even length
coding(e1(ū), . . . , en(ū)) = A(coding(ū)) .

The above two lemmas can be generalised to a similar claim on cascades by induction (on
the height of the cascade).

I Lemma 15. For a cascade C = 〈A1, . . . ,Ak〉 with input alphabet Σ, and each n ∈ N there
exist combinatorial expressions e1(X̄), . . . , en(X̄), where X̄ = X1 : Σ∗, . . . , Xn : Σ∗, of depth
atmost 7k such that for all n-tuple ū = (u1, . . . , un) of words in Σ∗ of identical even length
coding(e1(ū), . . . , en(ū)) = C(coding(ū)) .

Next we define a data language Bn that corresponds to the property Vn.
For a word w = a1a2 . . . al ∈ {0, 1}∗ we let pad(w) = 1a11a2 · · · 1al. We will also use pad

as a binary gate. A bridge in a data word w is a sequence of positions along a path that
consists of alternating class successor and global successor edges. Formally the sequence
of positions i1, . . . , in forms a bridge in w if there exists a sequence of successor and class
successor edges e1, . . . en−1 in w such that for each 1 ≤ j < n, ej = (ij , ij+1) and for each
1 ≤ j < n− 1, ej is a successor edge iff ej+1 is a class successor edge. A bridge is a-labelled,
for a ∈ Σ, if all the positions in the bridge are labelled by the letter a.

I Definition 16. Let Bn ⊆ ({0, 1} × D)∗ be the set of all data words w such that w has a
1-labelled bridge i1, . . . , i2n−1 (connected by a path of 2n−2 edges), and

1. all positions to the left of i1 are first positions of classes,
2. all positions to the right of i2n−1 are last positions of classes, and
3. the path corresponding to the bridge starts with a class successor edge.
Define the data language B =

⋃∞
n=1Bn.

The language Bn is defined by the BMA formula (also in unary-DataLTL) of comp-height
2n+ 1,

Fg (Hgfstc ∧ (1Xc1Xg)nGg lstc) where 1Xgϕ stands for the formula (1 ∧ Xgϕ),
and 1Xcϕ for (1 ∧ Xcϕ). (1)

Similarly the language B is defined by the BR formula

fstc Ug (µx.(1Xc1Xgx ∨ 1Xc1XgGg lstc)) . (2)

I Proposition 17. Let (u1, . . . , un) be a tuple of words of identical length over the alphabet
{0, 1}. Then the following are equivalent.

1. (u1, . . . , un) ∈ Vn.
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1 a1 1 a2 1 b1 1 b2 1 c1 1 c2 1 d1 1 d2

Figure 4 The data word w corresponding to the words a1a2, b1b2, c1c2, d1d2, and a bridge of
length 7 in w.

2. The data word w = coding(pad(u1), . . . , pad(un)) is in the language Bn.

For a data language L ⊆ (Σ × D)∗ we write Lc = {w ∈ (Σ × D)∗ | w 6∈ L} for
the complement of L. The data language L ⊆ (Σ×D)∗ separates the data languages
L1, L2 ⊆ (Σ×D)∗ if Li∩L = ∅ and L1−i ⊆ L for some i ∈ {0, 1}. A cascade C (respectively
a formula ϕ) separates the data languages L1, L2 if L(C) (respectively L(ϕ)) separates L1, L2.

I Lemma 18. If there is a cascade C of height k that separates the data languages L1 =
Bn ∩ n-Codings, L2 = (Bn)c ∩ n-Codings then there is a combinatorial expression of depth
7k + 4 recognising the property Vn.

Proof. Assume that C is a cascade of height k separating the languages L1, L2. Since
cascades (of height k) are closed under complementation, without loss of generality assume
that L(C) ⊇ L1 and L(C) ∩ L2 = ∅. Therefore the cascade C produces an output on a
data word n-Codings 3 w ∈ ({0, 1} × D)∗ if and only if w is in the language Bn. Let
e1(X̄), . . . , en(X̄), for X̄ = X1 : {0, 1}∗, . . . , Xn : {0, 1}∗, be the combinatorial expressions
of depth at most 7k, guaranteed by the Lemma 15 such that for all n-tuple ū = (u1, . . . , un)
of words in {0, 1}∗ of identical even length, coding(e1(ū), . . . , en(ū)) = C(coding(ū)).

Let pad(X̄) stand for the vector of expressions pad(X1), . . . , pad(Xn). We claim that the
expression

e =
∧

(NE(e1(pad(X̄)), . . . , en(pad(X̄)), t(X1, . . . , Xn)) ,

where t is the expression from Example 10 for the alphabet {0, 1} that checks if all the input
words are of the same length, computes the property Vn. The expression e has depth at most
7k + 4. To show the claim it is enough to verify that for a tuple ū = (u1, . . . , un) of words
from {0, 1}∗ of equal length, none of the words v1 = e1(pad(ū)), . . . , vn = en(pad(ū)) is the
empty word if and only if ū ∈ Vn. By Lemma 15, the words v1 to vn are nonempty iff C
accepts the data word w = coding(pad(ū)). By assumption, the data word w is accepted by
the cascade C iff w ∈ Bn. By Lemma 17, the data word w is in the language Bn iff ū is in
the property Vn. Hence the claim is proved. J

We are now ready for the main theorem;

I Theorem 19 (Separation). Let N = 7k+4.

1. The data languages L1 = B2N +1∩(2N +1)-Codings and L2 = (B2N +1)c∩(2N +1)-Codings
are not separable by a formula in BMA of comp-height k.

2. The data language B2N +1 is not definable by a formula in BMA of comp-height k.
3. Class of BMA definable languages form a hierarchy under composition height; more

precisely for every k there exists a BMA-formula ϕ with comp-height k that has no
equivalent formula of comp-height k−1.

4. The class of BMA definable languages is strictly subsumed by the class of BR definable
languages.

Proof. (1.) Proof by contradiction. Assume that the data languages L1, L2 are separable by
a BMA formula ϕ of comp-height k. This implies that there is cascade of height k separating
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L1, L2. By Lemma 18 there is an expression of depth N recognising the property V2N +1.
This is in contradiction with Theorem 12.
(2.) Follows from (1).
(3.) From (2.) and the Equation (1), B2N +1 is definable by a BMA formula of comp-height
2 · (2N + 1) + 1 but not by any formula of comp-height k. Therefore (†) the set of languages
defined by BMAk is strictly contained in the set of languages defined by BMA2·(2N +1)+1.

It only remains to separate the languages definable by BMAk and the languages definable
by BMAk+1, for all k. We prove this claim by contradiction. Assume that (?) there is
some m ∈ N such that for every formula in BMAm+1 there is an equivalent formula in
BMAm. We claim that f or every formula in BMAm+2 there is an equivalent formula in
BMAm as well. To prove the claim, let χ = ψ(ϕ1, . . . , ϕn) be an arbitrary formula in
BMAm+2 such that ψ ∈ BMA1 and ϕ1, . . . , ϕn ∈ BMAm+1. By assumption (?) there exist
formulas ϕ′1, . . . , ϕ′n ∈ BMAm equivalent to the formulas ϕ1, . . . , ϕn respectively. Therefore
the formula χ′ = ψ(ϕ′1, . . . , ϕ′n) is equivalent to the formula χ and is in BMAm+1. Appying
the assumption (?) again there is a formula χ′′ ∈ BMAm equivalent to χ′ and hence also to
χ, and hence the claim is proved. Extending this argument, by induction on k, it can be
shown that for every formula in BMAm+k there is an equivalent formula in BMAm. This is
in contradiction with the statement (†). Hence the statement is proved.
(4.) We claim that the data language B is not definable by any BMA formula. For the
sake of contradiction, assume that there is a BMA formula ϕ of comp-height k recognising
the language B and let C be the cascade of height k corresponding to ϕ. We claim that
the cascade C separates the languages L1 and L2. Clearly by definition of the language
B, L1 ⊆ B. We need to show that L2 ∩ B = ∅ and it suffices to prove that for every
w ∈ (2N +1)-Codings if w ∈ B then w 6∈ (B2N +1)c. Since any coding w in (2N +1)-Codings
either belongs to B2N +1 or does not belong to B, it follows that if w ∈ B then w 6∈ (B2N +1)c.
Therefore the cascade C separates the languages L1 and L2 which contradicts (1.) and hence
the claim follows. On the other hand, since B is definable by a formula in BR (Equation 2),
the statement is proved.

J

5 Conclusion

In this paper we studied the some fragments of µ-calculus over data words. We disclosed
two fragments that are: the Bounded Reversal fragment (BR) and the Bounded Mode
Alternation fragment (BMA) and proved they are separate. BR and BMA happen to form
Boolean algebras making them very natural, and relatively expressive logics over data words.
We also establish the relationship with earlier logics like FO2 or DataLTL.
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A Proof of Theorem 5

In this section we prove the following inclusions,

FO2(Σ, <,+1,∼,+c1) = uDataLTL ( DataLTL ( BMA ⊆ BR ( ν ⊆ Data Automata.

The inclusion of unary-DataLTL in DataLTL is straight-forward since the modalities
Fc, Fg, Pg, Pc are expressible in terms of Ug, Sg, Uc, Sc in the standard way; for instance Fcϕ ≡
> Uc ϕ.

The inclusion of DataLTL in BMA follows from the Example 1 since every modality of
DataLTL is expressible in BMA and BMA is closed under composition.

The strictness of the two inclusions mentioned above, can be inferred from the strictness
of inclusion of the corresponding logics on words over a finite alphabet in the following
way. Words over the alphabet Σ can be seen as data words over the alphabet Σ × D such
that all data values appearing in the data word are the same, i.e. that satisfy the formula
χ = Gg(S ∨ lstg). Consider the set of all data words of even length that satisfy the formula
χ. We claim that this set (call it L) is not definable in DataLTL. Clearly L is definable in
BMA by the formula µx.(Xg lstg ∨ XgXgx)∧χ. We claim that L is not definable in DataLTL.
For the sake of contradiction, assume that there is a formula ϕ defining L, then the LTL
formula ϕ′ obtained by replacing all class modalities by the corresponding global ones, the
modality S by ¬lstg, and the modality P by ¬fstg defines the set of all words over Σ of
even length. But this is a contradiction since words of even length are not LTL definable.
Thus we conclude that L is definable in BMA but not in DataLTL. The proof of separation
of DataLTL and uDataLTL is similar; one takes a language that separates LTL and unary
LTL, for instance the language (c∗ac∗b)∗, and repeats the same argument.

Finally, the inclusion ν ⊆ Data Automata is shown in [6]. Next we prove the remaining
inclusions.

A.1 FO2(Σ, <,+1,∼,+c1) = uDataLTL
We aim at proving the equality FO2(Σ, <,+1,∼,+c1) = uDataLTL. The nontrivial direc-
tion is the one from FO2 formulas to modal formulas. Here the only difficulty is that FO2

formulas can quantify over ‘positions not in class’ (for instance ∃y(x < y ∧ x 6∼ y ∧ b(y)))
whereas in the temporal logic there is no such mechanism available. Our first lemma deals
with this situation and shows that such cases can be handled using our modalities.

First we define the modalities fF6∼ (far-future not in class) and dP6∼ (deep-past not in
class) as,

w, i |= fF6∼ϕ ⇔ ∃j > i+ 1 such that i 6∼ j and w, j |= ϕ

w, i |= dP 6∼ϕ ⇔ ∃j < i− 1 such that i 6∼ j and w, j |= ϕ

I Lemma 20. The modalities fF 6∼ and dP6∼ are expressible using the modalities {Xg, Xc, Yg, Yc, Fc, Fg, Pg, Pc}
over data words.

Proof. We only do the case of fF 6∼. The case of dP 6∼ is symmetric. Assume we are given a
formula fF 6∼ϕ. Let k be the last position where ϕ is true. Obviously it is the unique position
where ϕlast = ϕ∧¬Fgϕ is true. A position i satisfies fF 6∼ϕ if and only if one of the following
scenarios hold;

1. k > i+ 1 and k 6∼ i,
2. k ∼ i and there is a j > i+ 1 such that j satisfies ϕ and j 6∼ k.
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The first scenario holds if the formula XgXgFgϕlast∧¬Fcϕlast is true at position i. (Note that
Fg evaluates a formula on all positions in the future including the current position, hence
XgXgFgϕlast). The second scenario holds if the formula Fcϕlast ∧ XgXgFg(ϕ ∧ ¬Fcϕlast) holds
at position i. Hence fF 6∼ϕ is equivalent to the formula

Ψ ≡ (XgXgFgϕlast ∧ ¬Fcϕlast) ∨ (Fcϕlast ∧ XgXgFg(ϕ ∧ ¬Fcϕlast)).

J

I Corollary 21. The modalities F6∼ (future not in class) and P 6∼ (past not in class) defined
as

w, i |= F 6∼ϕ ⇔ ∃j > i such that i 6∼ j and w, j |= ϕ

w, i |= P 6∼ϕ ⇔ ∃j < i such that i 6∼ j and w, j |= ϕ

G 6∼ϕ ⇔ ¬F6∼¬ϕ
H 6∼ϕ ⇔ ¬P6∼¬ϕ

is definable in DLTL over data words.

Proof. Define F6∼ϕ ≡ (¬S ∧ Xgϕ) ∨ fF6∼ϕ and P6∼ϕ ≡ (¬P ∧ Ygϕ) ∨ dP 6∼ϕ. J

Next we show that for every FO2 formula with one free variable there is a correspond-
ing uDataLTL formula and vice versa, thus proving the equality FO2(Σ, <,+1,∼,+c1) =
uDataLTL.

I Lemma 22. 1. For every uDataLTL formula ϕ there is a FO2 (Σ, <,+1,∼,+c1) formula
ϕ′(x) such that w, i |= ϕ if and only if w, i |= ϕ′(x).

2. Similarly, for every FO2 (Σ, <,+1,∼,+c1) formula ϕ(x) there is a uDataLTL formula
ϕ′ such that w, i |= ϕ′ if and only if w, i |= ϕ(x).

Proof. (1.) Follows simply from the fact that the modalities used in uDataLTL are express-
ible in FO2 (Σ, <,+1,∼,+c1) and we use the obvious analogue of the standard translation
from modal logic to two-variable first order logic. For variables {x0, x1} define the transla-
tion operators 〈 〉xi , i ∈ {0, 1} from uDataLTL formulas to FO2 formulas with a free variable
xi as follows: (we omit the past modalities whose translations are symmetric)

〈a〉xi = a(xi)
〈S〉xi = ∃x1−i (x1−i = xi + 1 ∧ x1−i = xi +c 1)
〈P〉xi = ∃x1−i (xi = x1−i + 1 ∧ xi = x1−i +c 1)
〈¬ϕ〉xi = ¬〈ϕ〉xi

〈ϕ1 ∨ ϕ2〉xi = 〈ϕ1〉xi ∨ 〈ϕ2〉xi

〈Xgϕ〉xi = ∃x1−i(x1−i = xi + 1 ∧ 〈ϕ〉x1−i)
〈Xcϕ〉xi = ∃x1−i(x1−i = xi +c 1 ∧ 〈ϕ〉x1−i)
〈Fgϕ〉xi = ∃x1−i(x1−i ≥ xi ∧ 〈ϕ〉x1−i)
〈Fcϕ〉xi = ∃x1−i(x1−i ≥ xi +c 1 ∧ 〈ϕ〉x1−i)

(2.) For convenience, we define the abbreviations x� y and x�c y for x < y∧x+1 6= y

and x ∼ y ∧ x < y ∧ x+c1 6= y respectively.
We intend to prove that for every FO2 (Σ, <,+1,∼,+c1) formula ϕ(x) there is a uDataLTL

formula ϕ′ such that w, i |= ϕ′ if and only if w, i |= ϕ(x). The proof idea is standard (see
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[10]). The proof is by simultaneous induction on the structure of the formulas as well as
on their quantifier depth. When ϕ(x) is a(x) then ϕ′ is simply a. When ϕ(x) is of the
form ϕ1(x) ∨ ϕ2(x) (or ¬ϕ1(x)), using induction hypothesis, we define ϕ′ as ϕ′1 ∨ ϕ′2 (or
¬ϕ′1). The remaining cases are when ϕ(x) is of the form ∃x.ϕ1(x) or ∃y.ϕ1(x, y). Both
cases are identical upto a renaming of variables. So it is enough to consider only ∃y.ϕ(x, y).
We write ϕ(x, y) in disjunctive normal form and distribute the existential quantifier over
the disjunctions to obtain a formula of the form

∨
i ∃y.ϕi(x, y) where each ϕi(x, y) is of the

form αi(x) ∧ βi(y) ∧ δi(x, y) ∧ γi(x, y) in which αi(x), βi(y) are formulas with only one free
variable, δi(x, y) ∈ ∆(x, y), and γi(x, y) ∈ Γ(x, y), where the sets ∆(x, y) and Γ(x, y) are,

∆(x, y) = {y � x, y + 1 = x, x = y, x+ 1 = y, x� y},

Γ(x, y) = {y �c x, y+c1 = x, x 6∼ y, x+c1 = y, x�c y}.

Note that writing each conjuct ϕi in this form might require replacing subformulas in ϕi

which are negations of formulas in ∆(x, y) by an equivalent formula consisting of disjunctions
of formulas from ∆(x, y) (and further distributing these disjunctions in the conjunct). Let
us observe that it is enough to define a translation for each of the disjunct of the form
ϕ(x) ≡ ∃y. α(x) ∧ β(y) ∧ δ(x, y) ∧ γ(x, y). Since the quantifier depth of α(x) and β(y)
are strictly less than the quantifier depth of the formula ϕ(x), by induction hypothesis we
have the DataLTL formulas α′ and β′ that are equivalent to α(x) and β(y). We define the
translation below.

Consider the case when γ(x, y) is x 6∼ y. Then the translations are listed below.

δ(x, y) ϕ′

x = y false
x� y α′ ∧ fF 6∼β′

x+ 1 = y α′ ∧ ¬S ∧ Xgβ′

y + 1 = x α′ ∧ ¬P ∧ Ygβ′

y � x α′ ∧ dP 6∼β′

The rest of the cases are symmetric and hence we treat only the cases when x ≤ y.
Assume δ(x, y) = x � y. Then ϕ(x, y) is satisfiable only when γ(x, y) is x+c1 = y or

x�c y and we define the respective translations as α ∧ Xcβ′ ∧ ¬S and α ∧ XcXcFcβ′.
When δ(x, y) is x + 1 = y, ϕ(x, y) is satisfiable only when γ(x, y) is x+c1 = y and we

define the translation as α ∧ Xcβ′ ∧ S. This completes the construction. J

A.2 BMA ⊆ BR
In this subsection we show that,

I Lemma 23. For every formula ϕ in BMA of comp-height k there is an equivalent formula
ϕ′ in BR of comp-height k + 1.

In the proof we will use the separation property of µ-calculus on words. By µ-calculus
on finite words, we mean the set of formulas ϕ described the following syntax:

ϕ := x | A | ¬A | Xϕ | Yϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | µx.ϕ | νx.ϕ
where A := p ∈ Prop | first | last

The modalities X and Y evaluates the argument formula on the next and previous positions
respectively, while the zeroary modalities first and last hold at the first position and last
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position respectively. Rest of the constructs have the intended semantics. A formula ϕ is
right if it does not use the modality Y. Similarly a formula is left if it does not use the
modality X. The below fact follows from the correspondence between µ-calculus formulas
on words and finite state automata.

I Fact 24. Any µ-calculus formula over words is equivalent to a Boolean combination of
left and right formulas.

Now we continue the proof of the Lemma 23.

Proof. We prove the following claim by induction, for every formula of ϕ in BMA of comp-
height k there is an equivalent formula ϕ′ which is a Boolean combination of formulas in
BR of comp-height k. Since a Boolean combination of BR formulas of comp-height k has
comp-height k + 1 the lemma follows.

For the base case let ϕ be in formulas ({Xg, Yg})∪ formulas ({Xc, Yc}) (of comp-height 1).
Consider the case when ϕ is in formulas ({Xg, Yg}). Let w be a data word. One can think of
ϕ as a formula evaluated over a word mstr(w) over the alphabet P = 2Prop(ϕ) × 2Z where
Prop(ϕ) denotes the propositional variables used in ϕ. Seen this way the modalities Xg and
Yg is synonymous with X and Y over the word mstr(w) (and fstg and lstg are equivalent to
first and last). Therefore we can apply Fact 24 to obtain a formula ϕ′ that is a Boolean
combination of formulas using only Xg and formulas using only Yg. Next consider the case
when ϕ is a formula in formulas ({Xc, Yc}). Let ϕ′ be the formula obtained from ϕ by
replacing Xc by X, Yc by Y, fstc by first, and lstc by last. It is straightforward to see that
(?) for a data word w and a position i in w, it is the case that w, i |= ϕ if and only if
mstr(w|S), i′ |= ϕ′ where S is the class of the position i, and i′ is the position in mstr(w|S)
corresponding to the position i in w. Let ψ′ be a Boolean combination of left and right
formulas given by Fact 24, that is equivalent to the formula ϕ′ and let ψ be the formula
obtained from ψ′ by replacing X by Xc, and Y by Yc, first by fstc, and last by lstc. By claim
(?) ψ is equivalent to ϕ and is in the desired form. This completes the base case.

For the inductive step, let ϕ = ψ(ϕ1, . . . , ϕk) be a BMA formula of comp-height k + 1
where ψ(x1, . . . , xk) ∈ formulas ({Xg, Yg})∪ formulas ({Xc, Yc}) and ϕ1, . . . , ϕk are BMA for-
mulas of comp-height k. Using induction hypothesis we obtain ϕ′1, . . . , ϕ′k which are Boolean
combinations of BR formulas of comp-height k and are equivalent to ϕ1, . . . , ϕk respectively.
Repeating the previous argument we also obtain ψ′(x1, . . . , xk) ∈ Bool(formulas ({Xc, Xg})∪
formulas ({Yc, Yg})) equivalent to ψ(x1, . . . , xk). To conclude observe that ψ′(ϕ′1, . . . , ϕ′k) is
a Boolean combination of BR formulas of comp-height at most k + 2. J

A.3 BR ⊆ ν-Fragment
Next we show that every ‘guarded’ formula in BR has a unique fixpoint and hence such
formulas can be written only using greatest fixpoints. This, in conjunction with that fact
that any formula of the µ-calculus can be written in guarded form, implies that BR is
subsumed by the ν-fragment. Intuitively, guarded µ-calculus formulas represent (alternating
parity) automata whose transition strictly moves left or right on each transition. Since data
words are finite and BR formulas make only a bounded number of reversals, all runs of
the corresponding automata have to terminate, this implies that the parities (which in turn
determines the kind of fixpoint) of the states are irrelevant.

First we recall the definition of guarded formulas. We say a variable x in λx.ϕ(x) is
guarded if each occurrence of x in ϕ(x) is in the scope of some modality. We say a formula
ϕ is guarded if each bound variable in ϕ is guarded. Next we show that every formula can
be written in guarded form. The proof below is a repetition from [20].
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I Lemma 25. Every formula is equivalent to a formula which is furthermore guarded.

Proof. Proof is by induction on the structure of the formula. The atomic, Boolean and
modal cases are straightforward. The non-trivial case is when the formula is of the form
λx.ϕ(x). Assume λx.ϕ(x) is unguarded and ϕ(x) is guarded. We can furthermore assume
that all unguarded occurrences of x are outside of any subformula θy.ψ(x, y) of ϕ(x), other-
wise in ϕ(x) we substitute for θy.ψ(x, y) the equivalent formula ψ(x, θy.ψ(x, y)) which yields
the desired form. Next we write ϕ(x) is conjunctive normal form to obtain a formula of the
form

λx.(x ∨ α(x)) ∧ β(x),

where α(x) and β(x) are guarded. The claim follows from the observations below,

µx.(x ∨ α(x)) ∧ β(x) ≡ µx.α(x) ∧ β(x) ,

and
νx.(x ∨ α(x)) ∧ β(x) ≡ νx.β(x) .

J

I Lemma 26. Let ϕ(x, ȳ) be a formula such that the only unary modalities it uses are Yg, Yc

(respectively Xg, Xc) and furthermore any free occurrence of x appears in the scope of at least
k nested modalities. Then for any data word w and valuation S1, . . . , Sl of ȳ = y1, . . . , yl,
and S of x, and for all i < k (respectively i > n− k)

w[`(ȳ) := S̄, `(x) = S], i |= ϕ ⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ϕ .

Proof. Since both claims are symmetric it is enough to prove one of them. We treat the
case when the only unary modalities ϕ(x, ȳ) uses are Yc and Yg. Without loss of generality
assume that x is not a bound variable in ϕ(x, ȳ) (otherwise rename the bound occurrences
of x). We proceed by an induction on the pair (k, i) ordered lexicographically (for all i ≥ k
the claim holds trivially); For the base case when k = 1, the claim is vacuously true. For the
inductive step assume the claim is true for pairs (k′, i′) where k′ < k or, k′ = k and i′ < i.
Let ϕ(x, ȳ) be a formula in which x appears with in the scope of k + 1 nested modalities.
We do an induction on the structure of the formula. Let ϕ(x, ȳ) is of the form Mψ(x, ȳ)
where M ∈ {Yg, Yc}. We do a case analysis on M. Assume M is Yg (the case when M is Yc being
analogous) then

w[`(ȳ) := S̄, `(x) = S], i |= Mψ(x, ȳ)
⇔ w[`(ȳ) := S̄, `(x) = S], i− 1 |= ψ(x, ȳ) (By defn. of Yg)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i− 1 |= ψ(x, ȳ) (i < k ⇒ i− 1 < k − 1, hence by IH)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= Mψ(x, ȳ)

The Boolean cases are straightforward. Next assume ϕ(x, ȳ) is of the form θyj .ψ(x, ȳ)
(θ ∈ {µ, ν}). We have to show that

w[`(ȳ) := S̄, `(x) = S], i |= θyj .ψ(x, ȳ) ⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= θyj .ψ(x, ȳ) .
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By induction hypothesis (on the structure of the formula)

w[`(ȳ) := S̄, `(x) = S], i |= ψ(x, ȳ) ⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ψ(x, ȳ) .

Hence Sj is a pre-fixpoint (resp. post-fixpoint) of ψ(x, ȳ) on w[`(ȳ) := S̄, `(x) = S] if and
only if it is a pre-fixpoint (resp. post-fixpoint) of ψ(x, ȳ) on w[`(ȳ) := S̄, `(x) = ∅]. Hence
the claim is proved by Knaster-Tarski theorem. This concludes the induction. J

Next we state our final lemma,

I Lemma 27. Every BR-formula is equivalent to a formula of the ν-fragment over data
words.

Proof. This is done in two steps. The first step is to transform the formula in BR to an
equivalent one that is furthermore guarded. This is achieved by Lemma 25. In the second
step we turn every subformula of the form µx.ϕ(x, ȳ) into νx.ϕ(x, ȳ). We claim that the
resulting formula is equivalent to the original one. Thanks to Lemma 25, we only have to
prove the correctness of the second step, which amounts to proving that (Claim ?) given
a guarded BR-formula, it is equivalent over all data words to the formula in which each
µ-fixpoint is turned into a ν-fixpoint.

Observe first that it is sufficient to prove (?) for formulas in formulas ({Xc, Xg}). Indeed,
from this result, by symmetry, it also holds for formulas in formulas ({Yc, Yg}). Note that,
given formulas φ(x), φ′(x), ψ such that φ(x) and φ′(x) are equivalent over all data words,
then the same holds for the substitutions φ(ψ) and φ′(ψ). Since formulas in BR are obtained
from formulas in formulas ({Xc, Xg}) and formulas ({Yc, Yg}) via inductive substitution, this
implies (?) for all formulas in BR.

Hence, what remains to be shown is that (?) holds for a formula in ψ ∈ formulas ({Xc, Xg}).
Observe that by induction on the structure of the formula it is enough to verify that for
each guarded formula ψ = µx.ϕ(x, ȳ) ∈ formulas ({Xc, Xg}) and for every data word w (of
length n) and valuation S1, . . . , Sk (all of them subsets of [n]) of ȳ = y1, . . . , yk,

[[νx.ϕ(x, ȳ)]]w′ ⊆ [[µx.ϕ(x, ȳ)]]w′

where w′ = w[`(y1) := S1, . . . , `(yk) := Sk], since the other inclusion follows from the fact
that the least fixpoint is always included in the greatest fixpoint. This reduces to showing
that

w′, i |= νx.ϕ(x, ȳ)⇒ w′, i |= µx.ϕ(x, ȳ)

This is exhibited by the following calculation,

w′, i |= νx.ϕ(x, ȳ)⇔ w′, i |= ϕ(νx.ϕ(x, ȳ), ȳ) (By fixpoint iteration)
⇔ w′, i |= ϕn+1(νx.ϕ(x, ȳ), ȳ)
⇒ w′, i |= ϕn+1(⊥, ȳ) (By Lemma 26)
⇒ w′, i |= µx.ϕ(x, ȳ) (By Knaster-Tarski theorem)

J

Let us note that since the class of languages definable by the ν-fragment is not closed
under complement while the class of languages definable by BR is closed under complement,
it follows that BR is strictly less expressive than the ν-fragment over data words. This
concludes the proof the Theorem 5.
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B Proof of Proposition 7

In this section we prove the equivalence between BMA and the cascades of class and global
transducers. The idea is to lift the correspondence between µ-calculus on words and finite
state automata to the case of BMA and cascades (See Subsection A.2) for the definition of
µ-calculus on words that we use here).

I Lemma 28. Let Γ1 and Γ2 be two disjoint alphabets and let A1 :
(
Σ× 2Z

)∗ → Γ∗1 and
A2 :

(
Σ× 2Z

)∗ → Γ∗2 be two global transducers (resp. class transducers). Then there exists
a global transducer (resp. class transducer) A :

(
Σ× 2Z

)∗ → (2Γ1∪Γ2)∗ such that for every
data word w ∈ (Σ × D)∗, if A1(w) = (a1, d1) · · · (an, dn) and A2(w) = (a′1, d1) · · · (a′n, dn)
then A(w) = ({a1, a

′
1}, d1) · · · ({an, a

′
n}, dn).

Proof. Consider A1 and A2 as word transducers and by product construction obtain the
word transducer A :

(
Σ× 2Z

)∗ → (2Γ1∪Γ2)∗ such that for all words w ∈
(
Σ× 2Z

)∗ if
A1(w) = a1 · · · an and A2(w) = a′1 · · · a′n then A(w) = {a1, a

′
1} · · · {an, a

′
n}. The transducer

A satisfy the claim. J

I Fact 29. Given a µ-calculus formula ϕ over words there is a non-deterministic finite state
functional transducer Aϕ such that given any word w the automaton Aϕ outputs {ϕ} (resp.
∅) exactly on those positions where ϕ is true (resp. false).

I Fact 30. Let L be a regular language over the alphabet Σ. Then there exist µ-calculus
formulas over words ϕX and ϕY such that

1. ϕX does not use the modality Y and ϕY does not use the modality X, and
2. for all words w ∈ Σ∗, w, 1 |= ϕX iff w ∈ L, and w, |w| |= ϕY iff w ∈ L.

I Lemma 31. Given a letter-to-letter transducer A : Σ∗ → Σ′∗ and a letter a′ ∈ Σ′ there
is a formula ϕa′ such that for any word w ∈ Σ∗ and a position i in w, it is the case that
w, i |= ϕa′ if and only if there is an output word (unique in the case of functional transducers)
a′1a
′
2 . . . a

′
n of the transducer A on w such that a′i = a′.

Proof. Assume the automaton A has states Q, initial state q0 and set of final states F ⊆ Q
and transition relation ∆ ⊆ Q×Σ×Q×Σ′. On a position i of an input word w = a1 . . . an,
the automaton outputs the symbol a′ if there is a transition (p, ai, q, a

′) ∈ ∆ such that

1. there is a run of the automaton A on the word a1 . . . ai−1 starting from initial state q0
and ending in state p, and

2. there is a run of the automaton A on the word ai+1 . . . an starting from the state q and
ending in a final state.

For a state p ∈ Q, let ψp be a µ-calculus formula on words using only the modality Y
expressing the regular property that the automaton A has a run starting from the initial
state and ending in the state p on the prefix defined by the current position (excluding the
current position) as guaranteed by the Fact 30. Similarly, for p ∈ Q, let χp a formula on
words using only the modality X expressing the regular property that the automaton A has
a run starting from the state p and ending in a final state on the suffix defined by the current
position (excluding the current position) (again, ensured by the Fact 30). Then the desired
formula ϕa′ is ∨

(p,a,q,a′)∈∆

(ψp ∧ a ∧ χq).

J
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Next we prove the Proposition.
Let L be a data set of data words. Then the following statements are equivalent.

1. L is definable by a formula in BMA of comp-height k.
2. L is recognisable by a cascade of height k.

Proof. (1 ⇒ 2 ) Observe that it is sufficient to prove that (?) for every formula ϕ in
formulas ({Xg, Yg}) on data words there is a global transducer A outputting {ϕ} (resp. ∅)
exactly at those positions where ϕ does (resp. not) hold. By Lemma 28 the claim (?) holds
for a finite set of formulas. By symmetry a similar claim holds for ϕ in formulas ({Xc, Yc}).
Finally since cascades are closed under composition, by induction on the comp-height, the
proposition follows. Note that (?) is guaranteed by Fact 29.

(2⇒ 1) Let A be a global transducer with input alphabet Σ×2Z and output alphabet Σ′.
From Lemma 31, we obtain that for every letter a′ ∈ Σ′, there is a µ-calculus formula over
words ϕ′a such that on input w ∈ (Σ× 2Z)∗ and position i, w, i |= ϕa′ iff a′1a′2 . . . a′` = A(w),
a′i = a′. Let ψa′ ∈ formulas({Xg, Yg}) be the formula obtained from ϕ′a by replacing X by
Xg, Y by Yg, first by fstg, and last by lstg. It is clear that on a data word w ∈ (Σ × D)∗
and a position i, it holds that A(w) = (a′1, d1) · · · (a′n, dn) ∈ (Σ′ ×D)∗ a′i = a iff w, i |= ψa′ .
Similarly by replacing X by Xc, Y by Yc, first by fstc, and last by lstc, one can obtain a
formula χa′ ∈ formulas({Xc, Yc}) such that for a class transducer A and for any data word
w ∈ (Σ×D)∗ and a position i in w, it is the case that A(w) = (a′1, d1) · · · (a′n, dn) ∈ (Σ′×D)∗
a′i = a iff w, i |= ψa′ . Since BMA is closed under composition by induction on the height of
the cascade the claim generalizes to cascades of arbitrary height. Finally the statement holds
by observing that these formulas are sufficient to verify that the cascade has a successful
run on a given data word. J

C Proof of Lemma 13

Proof. Let ū = (u1, . . . , un) be an n-tuple of words in Σ∗ of equal length 2` ∈ N and let
w = w1 · · ·wn = coding(ū) such that for each i, str(wi) = ui. Assume that A has a successful
run on w and let A(w) = w′ = w′1 . . . w

′
n ∈ (Γ×D)∗ where w′i is a relabelling of wi. Observe

that the only other positions in w in the class of a position in wi appear either in wi−1 or
wi+1 if they exist. Therefore to compute str(w′i) it suffices to know the words ui−1, ui, ui+1.

Let Σ′ = Σ × 2Z . For a word u, we write u(i) for the ith letter of u. Let f1 : (Σ′∗)2 →
Γ∗, f2 : (Σ′∗)3 → Γ∗, f3 : (Σ′∗)2 → Γ∗ be maps such that for all words x = x1 · · ·x2m,y =
y1 · · · y2m, z = z1 · · · z2m, 2m ∈ N,

f1(x, y) =
{
x′1 . . . x

′
2m if x′i 6= ε for all i

ε otherwise.
x′i =

{
A(xi) if i is odd,
A(xiyi−1)(1) otherwise.

f2(x, y, z) =
{
y′1 . . . y

′
2m if y′i 6= ε for all i

ε otherwise.
y′i =

{
A(xi+1yi)(2) if i is odd,
A(yizi−1)(1) otherwise.

f3(y, z) =
{
z′1 . . . z

′
2m if z′i 6= ε for all i

ε otherwise.
z′i =

{
A(zi) if i is even,
A(yi+1zi)(2) otherwise.

Let t1(X,Y ), t2(X,Y, Z), t3(Y,Z), where X : Σ′∗, Y : Σ′∗, Z : Σ′∗ be expressions of
depth 3 that recognise the maps f1, f2, f3 respectively as guaranteed by Example 9. For the
variables Ȳ = Y1 : Σ′∗, . . . , Yn : Σ′∗, let s(Ȳ ) be the expression

s(Ȳ ) = NE(t1(Y1, Y2), t2(Y1, Y2, Y3) . . . , t2(Yn−2, Yn−1, Yn), tn(Yn−1, Yn)) .
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Fix the variables X̄ = X1 : Σ∗, . . . , Xn : Σ∗. Let v̄(X̄) stand for the vector of expressions
v1(X1) = m1(X1), v2(X2) = m2(X2), . . . , vn−1(Xn−1) = m2(Xn−1), vn(Xn) = m3(Xn).
The expressions e1(X̄), . . . , en(X̄) are defined as,

e1(X̄) = bI (t1(v1(X1), v2(X2)), s(v̄(X̄)))
for each 1 < i < n, ei(X̄) = bI (t2(vi−1(Xi−1), vi(Xi), vi+1(Xi+1)), s(v̄(X̄)))

en(X̄) = bI (t3(vn−1(Xn−1), vn(Xn)), s(v̄(X̄)))

The expression s(X̄) has depth 6 and hence expressions e1(X̄), . . . , en(X̄) has depth 7.
From the definition of the maps f1, f2, f3 and the definition of the coding w it follows that

(1) t1(v1(u1), v2(u2)) = str(w′1) (2) for each 1 < i < n, t2(vi−1(ui−1), vi(ui), vi+1(ui+1)) =
str(w′i), and (3) tn(vn−1(un−1), vn(un)) = str(w′n). Hence s(v̄(ū)) = 1 and e1(ū) =
str(w′1), . . ., en(ū) = str(w′n). Thus ifA has a successful run on w then coding(e1(ū), . . . , en(ū)) =
A(coding(ū)).

On the other hand, if e1(ū) = v1, . . . , en(ū) = vn for identical length words u1, . . . , un ∈
Σ∗ then by definition of the maps f1, f2, f3 it follows that the automaton has a success-
ful run on each class of the data word w = coding(u1, . . . , un) and hence A(w) = w′ =
coding(v1, . . . , vn). J

D Proof of Lemma 14

Proof. Assume A has the set of states Q, set of initial states I ⊆ Q and set of final states
F ⊆ Q. For p, q ∈ Q, let Ap,q stand for the modified automaton with initial state p and
final state q. Let ū = (u1, . . . , un) be an n-tuple of words in Σ∗ of equal length 2` ∈ N and
let w = w1 · · ·wn = coding(ū) such that for each i, str(wi) = ui. Assume that A has a
successful run on w and let A(w) = w′ = w′1 . . . w

′
n ∈ (Γ × D)∗ where w′i is a relabelling of

wi. To compute str(w′i) it is enough to know the word ui and the pair (p, q) ∈ Q2 which
is respectively the state of the automaton A before reading ui and after reading ui in the
unique run on str(w). Among these, the pair (p, q) can be computed a finitary gate that
aggregates the set of all possible partial runs for each of the words u1, . . . , un.

We write Σ′ for the set Σ×2Z . Let f : Σ′∗ → P(Q×Q) be the binary function that maps
each word w ∈ Σ′∗ to the set of pairs (p, q) such that A has a run from state p to state q on
the word w. Define the finitary functions li : P(Q×Q)i → P(Q) and ri : P(Q×Q)i → P(Q)
as,

l((R1, S1), . . . , (Ri, Si)) = {q | (p, q) ∈ (R1, S1) ◦ · · · ◦ (Ri, Si), p ∈ I}
r((R1, S1), . . . , (Ri, Si)) = {p | (p, q) ∈ (R1, S1) ◦ · · · ◦ (Ri, Si), p ∈ F}

Further, let g1, g3 : Σ′∗ × P (Q) → Γ∗, g2 : Σ′∗ × (P (Q))2 → Γ∗ be the binary functions
such that for all u ∈ Σ′∗ and Q1, Q1 ∈ P(Q),

g1(u,Q2) =

Ap,q(u) if there is a unique (p, q) ∈ I × Q2 such that Ap,q has a
successful run on u,

ε otherwise.

g2(u,Q1Q2) =

Ap,q(u) if there is a unique (p, q) ∈ Q1 × Q2 such that Ap,q has a
successful run on u,

ε otherwise.

g3(u,Q1) =

Ap,q(u) if there is a unique (p, q) ∈ Q1 × F such that Ap,q has a
successful run on u,

ε otherwise.
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Fix the variables X̄ = X1 : Σ∗, . . . , Xn : Σ∗. Let v̄(X̄) stand for the vector of expressions
v1(X1) = m1(X1), v2(X2) = m2(X2), . . . , vn−1(Xn−1) = m2(Xn−1), vn(Xn) = m3(Xn).
Define the expressions e1(X̄), . . . , en(X̄) as

e1(X̄) = g1(v1(X1), r(f(v2(X2)), . . . , f(vn(Xn))))
for each1 < i < n,

ei(X̄) = g2(vi(Xi), cat(l(f(v1(X1)), . . . , f(vi−1(Xi−1))), r(f(vi+1(Xi+1)), . . . , f(vn(Xn)))))
en(X̄) = g3(vn(Xn), l(f(v1(X1)), . . . , f(vn−1(Xn−1))))

The expressions e1(X̄), . . . , en(X̄) are of height at most 5.
J

E Proof of Lemma 15

Proof. Proof by induction on the height of the cascade C. The base case of the induc-
tion is when C has height 1, then C is either a class transducer or a global transducer
and the claim follows by Lemma 13 and Lemma 14. For the inductive step, assume
the claim holds for every cascade of height at most n − 1. Let C = C′ ◦ 〈Σ1,A,Σ2〉
where C′ is a cascade of height n − 1 and A a class or global transducer. If e1(X̄ =
X1, . . . , Xn), . . . , en(X̄) and f1(Ȳ = Y1, . . . , Yn), . . . , fn(Ȳ ) are expressions given by the in-
duction hypothesis that satisfy the claim for the cascades A and C′ then the expressions
e1(f1(Ȳ ), . . . , fn(Ȳ )), . . . , en(f1(Ȳ ), . . . , fn(Ȳ )) satisfy the claim for the cascade C.

J

F Proof of Proposition 17

Proof. (1 to 2) Let |u1| = `. Assume 1 ≤ i ≤ ` is an index such that the ith letter of each
of u1 to un is 1. By the definition of w, the set of positions {k · 2` + 2i | 0 ≤ k ≤ n − 1}
in w is labelled by the letter 1. Again by the construction of w, the sequence of positions
2i, 2` + 2i − 1, 2` + 2i, . . . , (n − 2) · 2` + 2i, (n − 1) · 2` + 2i − 1, (n − 1) · 2` + 2i forms a
bridge of length 2n − 1 that is 1-labelled. Moreover all the positions left of 2i or right of
(n− 1) · 2`+ 2i belong to singleton classes. Hence the data word w belongs to the language
Bn.

(2 to 1) Because of items (1) and (3) of Definition 16, if w ∈ Bn then there is a bridge
that begins on a position 1 ≤ 2i ≤ 2`. The unique bridge of length of length 2n− 1 starting
from position 2i is the sequence of positions 2i, 2`+ 2i− 1, 2`+ 2i, . . . , (n− 2) · 2`+ 2i, (n−
1) · 2`+ 2i− 1, (n− 1) · 2`+ 2i, which, as we saw already, consists of the ith letters of u1 to
un. Hence if the bridge from 2i is 1-labelled then the ith letter of u1 to un is 1. J
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