
Two-Variable Logic on 2-Dimensional Structures
Amaldev Manuel1 and Thomas Zeume2

1 LIAFA, Université Paris Diderot
amal@liafa.univ-paris-diderot.fr

2 TU Dortmund University
thomas.zeume@cs.tu-dortmund.de

Abstract
This paper continues the study of the two-variable fragment of first-order logic (FO2) over two-
dimensional structures, more precisely structures with two orders, their induced successor rela-
tions and arbitrarily many unary relations. Our main focus is on ordered data words which are
finite sequences from the set Σ×D where Σ is a finite alphabet and D is an ordered domain. These
are naturally represented as labelled finite sets with a linear order ≤l and a total preorder ≤p .

We introduce ordered data automata, an automaton model for ordered data words. An
ordered data automaton is a composition of a finite state transducer and a finite state automaton
over the product Boolean algebra of finite and cofinite subsets of N. We show that ordered data
automata are equivalent to the closure of FO2(+1l ,≤p ,+1p) under existential quantification of
unary relations. Using this automaton model we prove that the finite satisfiability problem for
this logic is decidable on structures where the ≤p -equivalence classes are of bounded size. As
a corollary, we obtain that finite satisfiability of FO2 is decidable (and it is equivalent to the
reachability problem of vector addition systems) on structures with two linear order successors
and a linear order corresponding to one of the successors. Further we prove undecidability of
FO2 on several other two-dimensional structures.

1998 ACM Subject Classification F.4.1

Keywords and phrases FO2, Data words, Satisfiability, Decidability, Automata

1 Introduction

The undecidability of the satisfiability and finite satisfiability problem for first-order logic
[7, 33, 32] lead to a quest for decidable yet expressive fragments (see for example [4, 16]).

Here we continue the study of the two-variable fragment of first order logic (two-variable
logic or FO2 for short). This fragment is known to be reasonably expressive and its
satisfiability and finite satisfiability problems are decidable [26], in fact they are complete for
NExpTime [12]. Unfortunately many important properties as for example transitivity cannot
be expressed in two-variable logic. This shortcoming led to an examination of extensions of
two-variable logic by special relation symbols that are interpreted as equivalence relations or
orders [27, 2, 20, 21, 19, 29, 31].

In this paper we are interested in extensions of two-variable logics by two orders and
their induced successors. This can be seen as two-variable logic on 2-dimensional structures.
We restrict our attention to linear orders and preorders1. This setting yields some interesting
applications.

Data words, introduced in [5], extend usual words by assigning data values to every
position. Applications of data words arise for example in verification, where they can be used

1 Informally, a preorder is an equivalence relation whose equivalence classes are ordered by a linear order.

© Amaldev manuel and Thomas zeume;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Two-Variable Logic on 2-Dimensional Structures

for modeling runs of infinite state systems, and in database theory, where XML trees can
be modeled by data trees. Data words with a linearly ordered data domain can be seen as
finite structures with a linear order on the positions and a preorder on the positions induced
by the linear order of the data domain. Those relations, as well as their induced successor
relations, can then be referred to by two-variable logic on data words [2].

Two other logics closely related to two-dimensional two-variable logic are compass logic
and interval temporal logic. In compass logic two-dimensional temporal operators allow for
moving north, south, east and west along a grid [34]. In interval temporal logic operators like
’after’, ’during’ and ’begins’ allow for moving along intervals [15]. The connection of intervals
to the two-dimensional setting becomes clear when one interprets an interval [a, b] as point
(a, b). In [28] decidability results for two-variable logic in the two-dimensional setting have
been transferred to those two logics.

Those applications motivate working towards a thorough understanding of 2-dimensional
two-variable logic in general, and the decidability frontier for the finite satisfiability problem
in this setting in particular. Next we discuss the state-of-the-art in this area and how our
results fit in. All those results are summarized in Figure 3.

The frontier for decidability of the finite satisfiability problem for the extension of
two-variable logic by two linear order relations and their induced successor relations is
well-understood. It is undecidable when all those relations can be accessed by the logic. It is
decidable when only the two successor relations can be accessed [24]. This paper contains a
gap (the reduction to Presburger automata is wrong) which can, however, be fixed using the
same technique. In [11] an optimal decision procedure is given that uses a different approach;
and more recently the result has been generalized to two-variable logic with counting on
structures with two trees using yet another approach [6]. When two linear orders and one of
their successors can be accessed the problem is decidable as well [28]. We prove that the
remaining open case of two successors and one corresponding linear order is decidable.

The addition of two preorders to two-variable logic yields an undecidable finite satisfiability
problem [28]. We prove that also the other cases, that is (1) adding two preorder successor
relations and (2) adding one preorder relation and one (possibly non-corresponding) preorder
successor yield an undecidable finite satisfiability problems.

For the extension of two-variable logic with one linear order, one preorder and their
induced successors the picture is not that clear. However, many of the results from above
translate immediately, because in two-variable logic one can express that a preorder relation is
a linear order. Besides those inherited results the following is known for the finite satisfiability
problem. If the access is restricted to one linear order as well as a preorder and its successor,
then it is decidable in ExpSpace [28]. Access to a linear order with its successor and either
preorder or preorder successor yields undecidability. The former is proved in [3], the latter is
an easy adaption. The only remaining open case is when one linear successor, one preorder
successor and (possibly) the corresponding preorder can be accessed. We attack this case, and
show that when the preorder is restricted to have equivalence classes of bounded size, then
the finite satisfiability problem is decidable. The general case was shown to be undecidable
after the submission of this work, see Section 7.

Contributions. Besides the above mentioned results, we contribute as follows:
We introduce ordered data automata, an automaton model for structures with one successor
relation (of an underlying linear order) and a preorder and its accompanying successor
relation. This model is an adaption of data automata, introduced in [3], to data words
with an ordered data domain.
Ordered data automata are shown to be equivalent to the existential two-variable fragment

Amaldev Manuel and Thomas Zeume 3

of monadic second order logic (EMSO2) over such structures.
We prove that the emptiness problem for this automaton model is decidable, when
the equivalence classes of the preorder contain a bounded number of elements. The
decidability of the finite satisfiability problem of two-variable logic over structures with
two linear successor relations and one of their corresponding orders is a corollary.

Organization. After some basic definitions in Section 2, we introduce ordered data auto-
mata in Section 3 and prove that they are expressively equivalent to EMSO2(+1l ,+1p ,≤p)
in Section 4. Section 5 is devoted to proving decidability of the emptiness problem for ordered
data automata when the equivalence classes of ≤p are bounded. In Section 6 lower bounds
for several variants are proved. We conclude with a discussion of recent developments as well
as open problems in Section 7. Due to the space limit, most proofs will only be available in
the full version of the paper.

Acknowledgements. We thank Thomas Schwentick for introducing us to two-variable
logic and for many helpful discussions. The second author acknowledges the financial support
by the German DFG under grant SCHW 678/6-1.

2 Preliminaries

We denote the set {0, 1, . . .} of natural numbers by N and {1, . . . , n}, for n ∈ N by [n].
A binary relation ≤p over a finite set A is a preorder2 if it is reflexive, transitive and

total, that is, if for all elements u,v and w from A (i) u ≤p u (ii) u ≤p v and v ≤p w implies
u ≤p w and (iii) u ≤p v or v ≤p u holds. A linear order ≤l on A is an antisymmetric total
preorder, that is, if u ≤l v and v ≤l u then u = v. Thus, the essential difference between a
total preorder and a linear order is that the former allows for two distinct elements u and v
that both u ≤p v and v ≤p u hold. We call two such elements equivalent with respect to ≤p
and denote this by u ∼p v. Hence, a total preorder can be seen as an equivalence relation ∼p
whose equivalence classes are linearly ordered by a linear order. Clearly, every linear order
is a total preorder with equivalence classes of size one. We write u <l v if u ≤l v but not
v ≤l u, analogously for a preorder order ≤p . Further, if C and C ′ are the equivalence classes
of u and v, respectively, then we write C ≤p C ′ if u ≤p v.

For a linear order ≤l an induced successor relation +1l can be defined in the usual
way, namely by letting +1l(u, v) if and only if u <l v and there is no w with u <l w <l v.
Similarly a preorder ≤p induces a successor relation +1p based on the linear order on its
equivalence classes, i.e. +1p(u, v) if and only if u <p v and there is no w with u <p w <p v.
Thus an element can have several successor elements in +1p .

Two elements u and v are called ≤p-close (alternatively +1p-close), if either +1p(u, v) or
u ∼p v or +1p(v, u). They are called ≤p-adjacent (alternatively +1p-adjacent) if they are
≤p-close but u ∼p v does not hold. Analogously for +1l-close, ≤l-close, +1l-adjacent and
≤l -adjacent. The elements u and v are far away with respect to ≤p if they are not ≤p -close
etc. By u�p v we denote that u and v are ≤p-far away and u ≤p v.

In this paper, linear orders and their induced successor relations will be denoted by
≤l ,≤l1 ,≤l2 , . . . and +1l ,+1l1 ,+1l2 , Analogously preorders and their induced successor
relations will be denoted by ≤p ,≤p1 ,≤p2 , . . . and +1p ,+1p1 ,+1p2 ,

Ordered Structures, Words and Preorder Words. In this article, an ordered
structure is a finite structure with non-empty universe and some linear orders, some total

2 In this paper all preorders are total.

4 Two-Variable Logic on 2-Dimensional Structures

Figure 1 The ordered structure represent-
ing the ordered data word (b,3)(a,5)(c,1)(b,5)
(c,2)(a,3)(a,2)(b,1)(a,1)(c,2)(c,5). The classes are
{3, 8, 9} ≤p {5, 7, 10} ≤p {1, 6} ≤p {2, 4, 11}, the
string projection is bacbcaabacca, and the preorder
projection is (1, 1, 1)(1, 0, 2)(1, 1, 0)(1, 1, 1) where, e.g.,
(1, 0, 2) indicates that in class {5, 7, 10} there is one
a-labeled element, no b-labeled element and two c-
labeled elements. ≤l

≤p

1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11

b

a

c

b

c

a

a

b a

c

c

preorders, some successor relations and some unary relations. An O-structure is a structure
with some unary relations and some binary relations indicated by O. For example, a
(+1l ,+1p ,≤p)-structure has some unary relations and a linear order, a preorder successor
and its corresponding preorder. An O-structure is a structure from FinOrd(O).

A word w over an alphabet Σ = {σ1, . . . , σk} is a finite sequence τ1 . . . τn of letters from
Σ. One can think of w as a linear order over [n] where each element i is labeled by letter
τi from Σ. Thus there is a natural correspondence between words and ≤l-structures (or,
alternatively, +1l-structures or (+1l ,≤l)-structures). Also every +1l-structure naturally
corresponds to some word.

Note that words over alphabet Σ = {σ1, . . . , σk} correspond to +1l -structures with unary
relations P = (Pσ1 , . . . , Pσk

}. On the other hand, +1l-structures with unary relations P
correspond to words over alphabet 2P . Here, and in the following, we will ignore this and
assume that appropriate alphabets and unary relations are chosen when necessary.

A preorder word w is a sequence ~v1 . . . ~vl of tuples from NΣ. A preorder word w can
be identified with a preorder ≤p with Σ-labeled elements where each ~vi = (nσ1 , . . . , nσk

) is
identified with one equivalence class Ci of ≤p . The class Ci contains

∑
j nσj

many elements
and nσj of those elements are labeled σj . Thus a preorder word can be thought of as a
word where every position can contain several elements (as opposed to one element in usual
words). The identification of tuples with equivalence classes allows for reusing notions for
preorders in the context of preorder words, by thinking of ~vi as an equivalence class. For
example, we will say say that ~vi contains a σi-labeled element u, if nσi

> 0. Note that
there is a natural correspondence between preorder words and ordered +1p-structures (or,
alternatively, ≤p -structures or (+1p ,≤p)-structures).

Ordered Data Words. Fix a finite alphabet Σ = {σ1, . . . , σk} and an infinite set D of
data values (the data domain) which is totally ordered by a linear order ≤D

l . For the purpose
of this paper, it is sufficient to think of D as the set N of natural numbers and of ≤D

l as the
natural order on N.

An ordered data word w is a sequence of pairs from Σ×D. We introduce some important no-
tions for ordered data words. In the following fix an ordered data word w = (σ1, d1) . . . (σn, dn).
A preorder ≤p on [n] is induced by the data values of w by i ≤p j if di ≤D

l dj . A class of
w is an equivalence class of ≤p , i.e. a maximal subset C ⊆ [n] of positions of w such that
di = dj for all i, j ∈ C. Let, in the following, C1 ≤p . . . ≤p Cl be the classes of w. The
string projection of w is the word σ1 . . . σn over Σ and is denoted by sp(w). The preorder
projection pp(w) is the preorder word that corresponds to ≤p , that is pp(w) = ~c1 . . .~cl where
each ~ci = (nσ1 , . . . , nσk

) with nσj
is the number of σj-labeled elements in Ci. Ordered

data words naturally correspond to (+1l ,+1p ,≤p)-structures (again with many alternative
representations). See Figure 1 for an example.

Two-Variable Logic on Ordered Structures. Existential monadic second order
logic EMSO extends predicate logic by existential quantification of unary relations. The

Amaldev Manuel and Thomas Zeume 5

two-variable fragment of EMSO, denoted by EMSO2, contains all EMSO-formulas whose
first-order part uses at most two distinct variables x and y. Two-variable logic FO2 is the
restriction of first order logic to formulas with at most two distinct variable x and y.

Denote by EMSO(O) existential monadic second order logic over a vocabulary that
contains some unary relation symbols and binary relation symbols from O which have to
be interpreted by O-structures. For example, formulas in EMSO(+1l) can use some unary
relation symbols and the binary relation symbol +1l , and +1l has to be interpreted as a
linear successor. Similar notation will be used for FO2.

Words, that is +1l-structures, can be seen as interpretations for EMSO(+1l)-formulas.
Similarly preorder words and ordered data words are interpretations for EMSO(+1p ,≤p)-
and EMSO(+1l ,+1p ,≤p)-formulas, respectively.

The language L(ϕ) of ϕ ∈ EMSO2(+1l) is the set of words, more precisely their corres-
ponding +1l-structures, that satisfy ϕ. Similarly for other sets of relations. The classical
theorem of Büchi, Elgot and Trakhtenbrot states that EMSO(+1l ,≤l) is equivalent to finite
state automata. This holds even for EMSO2(+1l). In the next section we introduce an
automaton model which is equivalent to EMSO2(+1l ,+1p ,≤p).

I Example 1. Let L1 be the language that contains all data words w over Σ = {a, b} such
that the data value of every a-labeled position in w is smaller than the data values of all
b-labeled positions. Let L2 be the language that contains all data words w such that the
a-labeled elements with the largest data value are immediately to the left of a b-labeled
element. Then the following EMSO2(+1l ,+1p ,≤p)-formulas ϕ1 and ϕ2 define L1 and L2:

ϕ1 = ∀x∀y
(
(a(x) ∧ b(y))→ (x ≤p y ∧ ¬y ≤p x)

)
ϕ2 = ∀x

((
a(x) ∧ ¬∃y(a(y) ∧ (x ≤p y ∧ ¬y ≤p x))

)
→ ∃y

(
b(y) ∧+1l(x, y)

))
3 An Automaton Model for Ordered Data Words

In this section we introduce ordered data automata, an automaton model for structures with
one linear successor relation +1l (of an underlying linear order ≤l) and one preorder relation
≤p accompanied by its successor relation +1p . This automaton model is an adaption of data
automata as introduced in [3]. In the next section ordered data automata are shown to be
equivalent to EMSO2(+1l ,+1p ,≤p).

Very roughly, ordered data automata process a (+1l ,≤p ,+1p)-structure by reading it
once in linear-order-direction and once in preorder-direction. Therefore an essential part of
an ordered data automaton is an automaton capable of reading preorder words. We introduce
an automaton model for preorder words first.

Preorder Automata. Roughly speaking, preorder automata are finite state automata that
read preorder words w = ~w1 . . . ~wn. When reading some ~wi, a transition of such an automaton
can be applied if the transition matches the current state and the components of ~wi satisfy
interval constraints specified by the transition. We formalize this.

An interval I = (l, r) where l ∈ N and r ∈ N ∪ {∞} contains all i ∈ N with l ≤ i < r. A
Σ-constraint ~c assigns an interval to every σ ∈ Σ, i.e. it is a tuple from (N,N ∪ {∞})Σ. A
tuple ~w ∈ NΣ satisfies a Σ-constraint ~c, if every component nσ of ~w is in the interval (l, r)
asigned to σ by ~c.

A preorder automaton A is a tuple (Q,Σ,∆, qI , F), where the states Q, the input alphabet
Σ, the initial state qI ∈ Q and the final states F ⊆ Q are as in usual finite state automata.
The transition relation ∆ is a finite subset of Q× C ×Q where C is a set of Σ-constraints.

6 Two-Variable Logic on 2-Dimensional Structures

The semantics is as follows. When p is a state of A and ~w is a letter from NΣ, then a
transition (p,~c, q) ∈ ∆ can be applied if ~w satisfies ~c. A run of the automaton A over a word
~w1 . . . ~wn is a sequence of transitions δ1 . . . δn with δi = (pi−1,~ci, pi) such that δi is applicable
to ~wi. The run is accepting if p0 = qI and pn ∈ F . The language L(A) accepted by A is the
set of all preorder words with an accepting run of A.

I Example 2. Let L be the language of preorder words w over Σ = {a, b} where every letter
~wi of w contains an a-labeled element and at most two b-labeled elements. The preorder auto-
matonA with two states s and e, transitions {(s, ((1,∞), (0, 3)), s), (s, ((0, 1), (0,∞)), e), (s, ((0,∞), (3,∞)), e)},
initial state s and single finite state s accepts L.

Preorder automata can be seen as a normal form of finite state automata over the product
Boolean algebra of finite and cofinite subsets of N This observation yields immediately:

I Lemma 3. Preorder automata are closed under union, intersection, complementation and
letter-to-letter projection.

The Theorem of Büchi, Elgot and Trakhtenbrot translates to preorder automata. The
proof is along similar lines.

I Theorem 4. For a language L of preorder words, the following statements are equivalent:
There is a preorder automaton that accepts L.
There is an EMSO2(+1p)-formula that defines L.

Ordered Data Automata. The marked string projection of an ordered data word is its
string projection annotated by information about the relationship of data values of adjacent
positions. Formally, let w = (σ1, d1) . . . (σn, dn) be an ordered data word. Then the marking
m(i) = (m,m′) of position i is a tuple from ΣM = {−∞,−1, 0, 1,∞,−}2 and is defined as
follows. If i = 1 (or i = n) then m = − (or m′ = −). Otherwise let C1 ≤p . . . ≤p Cr be the
classes of w. If Ck, Cl and Cs are the classes of di−1, di and di+1, respectively, then

m(i) =


−∞ if l > k + 1
−1 if l = k + 1

0 if l = k

1 if l = k − 1
∞ if l < k − 1

m′(i) =


−∞ if l > s+ 1
−1 if l = s+ 1

0 if l = s

1 if l = s− 1
∞ if l < s− 1

The marked string projection of w is the string (σ1,m(1)) . . . (σn,m(n)) over Σ × ΣM

and is denoted by msp(w).
An ordered data automata (short: ODA) A = (B, C) over Σ consists of a non-deterministic

letter-to-letter finite state transducer (short: string transducer) B with input alphabet Σ×ΣM
and output alphabet Σ′, and a preorder automaton C with input alphabet Σ′.

An ODA A = (B, C) works as follows. First, for a given ordered data word w, the
transducer B reads the marked string projection of w. A run ρB of the transducer defines a
unique (for each run) new labelling of each position. Let w′ be the ordered data word thus
obtained from w. Second, the preorder automaton C runs over the preorder projection of w′
yielding a run ρC . The run ρA = (ρB , ρC) of A is accepting, if both ρB and ρC are accepting.
The automaton A accepts w if there is an accepting run of A on w. The set of ordered data
words accepted by A is denoted by L(A).

I Example 5. The language L1 from Example 1 can be decided by an ODA A = (B, C) with
Σ = Σ′ = {a, b} as follows. Let w be an ordered data word. The string transducer B does

Amaldev Manuel and Thomas Zeume 7

not relabel any position. Thus the input preorder word of the preorder automaton C is the
preorder projection ~w1 . . . ~wm of w. The preorder automaton C verifies that after the first ~wi
containing an b-labeled element, no a-labeled element occurs in any ~wj with j ≥ i.

The language L2 can be decided by an ODA A = (B, C) with Σ = {a, b} and Σ′ =
{a, b} × {0, 1} as follows. Let w = (σ1, d1) . . . (σn, dn) be an ordered data word. The
automaton A processes w as follows. The string transducer B guesses the a-labeled positions
with the largest data value, relabels them with (a, 1) and checks that the following position
is b-labeled. All other letters σ are relabeled by (σ, 0). Let w′ be the ordered data word
thus obtained. The input of C is the preorder projection ~w′1 . . . ~w

′
m of w′, and C verifies that

(a, 1)-labeled elements occur only in ~w′m.

I Lemma 6. Languages accepted by ODA are closed under union, intersection and letter-to-
letter projection.

The following proposition can be proved like Lemma 3 in [24].

I Proposition 1. Languages accepted by ODA are not closed under complementation.

4 Ordered Data Automata and EMSO2(+1l , +1p ,≤p) are equivalent

In this section we prove

I Theorem 7. For a language L of ordered data words, the following statements are equival-
ent:

L is accepted by an ordered data automaton.
L is definable in EMSO2(+1l ,+1p ,≤p).

This equivalence transfers to the case where the preorder is a linear order (i.e. every
equivalence class of the preorder is of size one).

The construction of a formula from an automaton is straightforward. The other direction
proceeds by translating a given EMSO2-formula ϕ into an equivalent formula in Scott Normal
Form, i.e. into a formula of the form ∃X1 . . . Xn(∀x∀y ψ ∧

∧
i ∀x∃y χi) where ψ and χi are

quantifier-free formulas (see e.g. [13] for the translation). Since ODA are closed under union,
intersection and renaming it is sufficient to show that for every formula of the form ∀x∀y ψ
and ∀x∃y χ there is an equivalent ODA.

The proofs of the following lemmas use the abbreviations

∆= = {x = y, x 6= y},
∆l = {+1l(x, y),¬+1l(x, y),+1l(y, x),¬+1l(y, x)},
∆p = {+1p(x, y),+1p(y, x), x ∼p y, x�p y, y �p x}.

I Lemma 8. For every formula of the form ∀x∀y ψ with quantifier-free ψ there is an
equivalent ODA.

Proof. We first write ψ in conjunctive normal form and distribute the universal quantifier
over the conjunction. Therefore, again due to the closure of ODA under intersection, we can
restrict our attention to formulas of the form

ϕ = ∀x∀y(α(x) ∨ β(y) ∨ δ=(x, y) ∨ δl(x, y) ∨ δp(x, y))

where α, β are unary formulas and δ=(x, y), δl(x, y) and δp(x, y) are as follows. Denote by
Disj(Φ) the set of disjunctive formulas over a set of formulas Φ. The formulas δ=(x, y), δl(x, y)
and δp(x, y) are in Disj(∆=), Disj(∆l) and Disj(∆p), respectively. Note that ∆p contains only

8 Two-Variable Logic on 2-Dimensional Structures

positive formulas since negation of any formula in ∆p can be replaced by a disjunction of
formulas from ∆p.

Without loss of generality we assume that neither δ=(x, y), δl(x, y) nor δp(x, y) are the
empty disjunction. (Assume that δ=(x, y) = ⊥, then δ=(x, y) ≡ x = y ∧ x 6= y. Distributing
x = y ∧ x 6= y yields two formulas of the required form.)

In the following we do an exhaustive case analysis. If ϕ is a tautology, then there is an
equivalent ODA. Therefore we assume from now on that ϕ is not a tautology.

When ϕ is not a tautology then δ= is either x 6= y or x = y. If δ= is x 6= y then we can
write ϕ as ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x = y)→ γ(x, y)

)
where α′ and β′ are the negations of the

unary formulas α and β and γ(x, y) = δl(x, y) ∨ δp(x, y). Substituting x = y in γ yields a
formula that is equivalent to True or to False. Thus the property expressed by ϕ can be
checked by the string transducer of an ODA. Hence from now on we assume that δ= is the
formula x = y.

The formula δl can either contain a negative formula from ∆l or it does not contain any
negative formula. If δl contains a negative formula from ∆l we rewrite ϕ as

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′l(x, y))→ δp(x, y)

)
where δ′l is the negation of δl. Since δ′l is a conjunction that contains a positive formula from
∆l it is logically equivalent to a positive formula from ∆l, that is, it is equivalent either
to +1l(y, x) or to +1l(x, y). In this case the formula ϕ expresses a regular property over
the marked string projection of the structure. Hence it can be seen immediately that the
property expressed by ϕ can be checked by the string transducer of an ODA. Hence from
now on we assume that δl contains no negative formula from ∆l.

Then δl is either +1l(x, y)∨+1l(y, x) or +1l(y, x) or +1l(y, x). In this case we rewrite ϕ
as ∀x∀y

(
(α′(x)∧β′(y)∧x 6= y ∧ δ′p(x, y))→ δl(x, y)

)
where δ′p is the negation of δp(x, y). As

noted before, the conjunction δ′p(x, y) can be expressed as a disjunction of formulas from ∆p.
Hence ϕ is equivalent to ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′p (x, y))→ δl(x, y)

)
where δ′′p (x, y)

is a disjunction of formulas in ∆p. Distributing this disjunction yields a formula of the form
∀x∀y

∧(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′′p (x, y))→ δl(x, y)

)
where δ′′′p (x, y) is a formula from ∆p.

By distributing the conjunction over the ∀-quantifiers and by using the closure of ODA
under intersection, it is sufficient to show that there is an equivalent ODA for formulas of
the form χ = ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δp(x, y))→ δl(x, y)

)
where δp(x, y) is a formula

from ∆p and δl is positive.
For the following, we assume that δl is the formula +1l(x, y) ∨ +1l(y, x). The cases

δl = +1l(x, y) and δl = +1l(y, x) are similar. We do a case analysis for δp(x, y).
Let δp = +1p(x, y). Assume that Ci and Ci+1 are two adjacent ≤p-classes. Then the

formula χ states that whenever Ci contains an α′-labeled element u and Ci+1 contains
a β′-labeled element v, then u and v are adjacent with respect to ≤l . This implies that
the number of α′-labeled elements in Ci and β′-labeled elements in Ci+1 is at most three.
Moreover those elements are adjacent in the linear order.

Thus, an ODA verifying this property can be constructed as follows. The string transducer
annotates every α′-labeled element u by the number of β′-labeled elements v with +1p(u, v)
and either +1l(u, v) or +1l(v, u). Analogously the string transducer annotates every β′-
labeled element by the number of adjacent α′-labeled elements in the preceding ≤p-class.

Then the preorder automaton verifies for each ≤p-class Ci and its successor ≤p-class
Ci+1 that either

Ci contains no α′-labeled elements or Ci+1 contains no β′-labeled elements, or
Ci contains an α′-labeled element and Ci+1 contains a β′-labeled element and

Amaldev Manuel and Thomas Zeume 9

Ci and Ci+1 contain more than three of those elements (then the preorder automaton
rejects)
Ci and Ci+1 contain less than three of those elements. Then it checks that those three
are adjacent by using the annotation given by the transducer (and accepts or rejects
accordingly).

The cases δp = x ∼p y and δp = x�py are very similar.
J

I Lemma 9. For every formula of the form ∀x∃y χ with quantifier-free χ there is an
equivalent ODA.

The proof of Lemma 9 will be presented in the full version of the paper. This completes the
proof of Theorem 7.

5 Deciding Emptiness for Ordered Data Automata on k-bounded
Ordered Data Words

An ordered data word w is k-bounded if each class of w contains at most k elements. In this
case the preorder projection of w is a k-bounded preorder word and can be seen as a word
over the finite alphabet {0, . . . , k}|Σ|. Hence an ODA restricted to k-bounded ordered data
words can be seen as a composition of a finite state transducer and a finite state automaton.
We call such automata k-bounded ODA.

Since k-boundedness can be expressed in EMSO2(+1l ,+1p ,≤p) we can conclude that
the result from the previous section carry over to the case of k-bounded ordered data words,
i.e. a language L of k-bounded ordered data words is accepted by a k-bounded ODA if and
only if it can be defined by an EMSO2(+1l ,+1p ,≤p) formula ϕ.

The rest of this section is devoted to the proof of the following theorem.

I Theorem 10. The finite satisfiability problem for EMSO2(+1l ,+1p ,≤p) on k-bounded
data words is decidable.

I Corollary 11. The finite satisfiability problem for EMSO2(+1l1 ,+1l2 ,≤l2) is decidable.

This generalizes Theorem 3 from [24], where the finite satisfiability problem of FO2(+1l1 ,+1l2)
was shown to be decidable.

We sketch the proof of Theorem 10; a detailed proof will appear in the full paper. By
the above remarks it is sufficient to show that the emptiness problem of k-bounded ODA is
decidable. We reduce the emptiness problem for k-bounded ODA to the emptiness problem
for multicounter automata. The latter is known to be decidable [25, 22]. The idea is as
follows. From a k-bounded ODA A = (B, C) we will construct a multicounter automaton
M such that L(A) is non-empty if and only if L(M) is non-empty. Intuitively,M will be
constructed such that if A accepts a k-bounded ordered data word w then M accepts a
word w′ which is the preorder projection of w annotated by lots of extra information3. On
the other hand ifM accepts an annotated word w′ then an ordered data word w and an
accepting run of A on w can be reconstructed from the information encoded in w′. Therefore
M reads a k-bounded preorder word w′ = ~w′1 . . . ~w

′
m and simultaneously verifies

that the extra information in w′ encodes an accepting run of C on w′.

3 Recall that the preorder projection of a k-bounded ordered data word is a k-bounded preorder word, i.e.
a word over {0, . . . , k}|Σ|.

10 Two-Variable Logic on 2-Dimensional Structures

Figure 2 Blocks in
the ordered-structure-
representation of a 3-
bounded ordered data word
w. Each represents one
element of w, the ≤l -axis
represents positions whereas
the ≤p -axis represents data
values. Labels are omitted
for clarity. ≤l

≤p

B 1

L

R−

L+

B 2
R−

B
3L+

R

that the elements occuring in w′ can be dynamically (that is while reading ~w′1, ~w
′
2, . . .)

arranged to a word x such that x encodes
a marked string y whose marking is consistent with w′ (and therefore allows for the
construction of an ordered data word w from w′ and y), and
an accepting run of B on y.

We will need the following notions for ordered data words. A block B of an ordered data
word w is a maximal subword of w such that all successive positions in B are ≤p -close in w.
See Figure 2 for an example of blocks.

Since w is k-bounded, every class of w intersects with at most k many blocks. It is easy
to see, that one can color each block B of w with a number N(B) from {1, . . . , 2k} such that
N(B) 6= N(B′) if B and B′ are ≤l -adjacent blocks or ≤p -adjacent blocks. Even more, such
a coloring can be uniquely obtained from w (for example by coloring lexicographically).

In the following we describe how to annotate every element of an ordered data word w with
extra information. A block label (N,X) with block number N and block position X is a letter
from ΣB = {1, . . . , 2k}× ({L,L+, L−, C}×{R,R+, R−, C}). Let A = (B, C) be a k-bounded
ODA with input alphabet Σ, intermediate alphabet Σ′ and let QB and QC be the states of
B and C respectively. A run label (σ′, rB, rC , rB) is a letter from ΣR = Σ′ ×Q2

B ×Q2
C ×Q2

B
where rB, rC and bB are called B-label, C-label and B-block label, respectively.

An annotated ordered data word is an ordered data word over Σ× ΣM × ΣB × ΣR where
ΣM is the alphabet {−∞,−1, 0, 1,∞,−}2 of markings. Likewise an annotated preorder word
is a preorder word over Σ× ΣM × ΣB × ΣR. The preorder projection of an annotated data
word is a preorder word over Σ× ΣM × ΣB × ΣR.

The annotation ann(w, ρ) of an ordered data word w = w1 . . . wn with respect to a run
ρ = (ρB, ρC) of an ODA A = (B, C) on w is an annotated ordered data word that labels every
element wi with its marking m; a block label τ according to the position of wi in its block;
and a run label π describing the output of B on run ρ when reading wi, the states of B and
C according to run ρ, and the states where B enters and leaves the block of wi in run ρ. The
preorder projection of the annotation of an ordered data word w is denoted by annpp(w, ρ).

Intuitively maximal contiguous subwords of annpp(w, ρ) with the same block number N
correspond to a block in w. Therefore such contiguous subwords of annotated preorder words
are called symbolic N -blocks.

We now state the proof idea of Theorem 10 more precisely. From an ordered data
automaton A = (B, C) we construct a multicounter automaton M that reads annotated
k-bounded preorder words such that

If A accepts a k-bounded ordered data word w via run ρ thenM accepts annpp(w, ρ).
IfM accepts an annotated k-bounded preorder word w′ then a k-bounded ordered data
word w can be constructed from w′ which is accepted by A.

Amaldev Manuel and Thomas Zeume 11

Given an annotated k-bounded preorder word w′ = ~w′1 . . . ~w
′
n, the multicounter automaton

M tries to reconstruct a k-ordered data word w from w′ such that w is accepted by A.
Every symbolic block B′ in w′ will represent a block B in w. We will prove that such a
reconstruction is possible whenever the following conditions (C0) – (C3) are satisfied:

(C0) a) The block position label and the label from ΣM are consistent for every element of w′.
b) Every symbolic block B′ of w′ contains exactly one {L,L−, L+}-labeled element and

one {R,R−, R+}-labeled element.
c) All elements of a letter ~w′i have the same C-label..
d) The B- and C-labels are consistent with the Σ- and Σ′-labels for every element u of w′.

(C1) The C-labels in w′ encode an accepting run of C.
(C2) For every symbolic block B′ = ~w′l . . . ~w

′
m of w′ there is an annotated ordered data word

B with data values from the set {l, . . . ,m} ⊂ N such that
a) B is a single block and pp(B) = B′. Further, the data value of an element u of B is d

when u corresponds to an element contained in ~w′d in B′.
b) The first position of B carries block position label L, L+ or L−. The last position of

B carries block position label R, R+ or R−. All other positions carry block position
label C.

c) All elements of B′ carry the same B-block label (p, q).
d) There is a run of B on B that starts in p, ends in q and is consistent with the B-labels

of B.
(C3) Let B′1, . . . , B′m be the symbolic blocks of w′. Further let ~w′si

be the position of B′i, that
contains4 the {L,L−, L+}-labeled element li of B′i. Analogously let ~w′ti be the position
of B′i, that contains the {R,R−, R+}-labeled element ri of B′i. There is a permutation π
of {1, . . . ,m} such that
a) If (p, q) is the B-block label of lπ(1), then p is the start state of B. Further the block

position label of lπ(1) is L.
b) If (p, q) is the B-block label of rπ(m) then q is a final state of B. Further the block

position label of rπ(m) is R.
c) If (p, q) and (p′, q′) are the B-block labels of B′π(i) and B′π(i+1), respectively, then

q = p′.
d) If ri is labeled with R+, then li+1 is labeled with L−. Further ti�psi+1.
e) Likewise if ri is labeled with R−, then li+1 is labeled with L+. Further si+1�pti.

Intuitively, the Conditions (C2) help to reconstruct runs from C. Runs of B are recon-
structed with the help of Conditions (C2) and (C3), where (C2) helps reconstructing runs of
B on blocks whereas (C3) helps reconstructing the order of blocks.

Recall that k-bounded preorder words over Σ can be seen as a word over the finite
alphabet {0, . . . , k}|Σ|.

I Lemma 12. For every k-bounded ODA A there is a finite state automatonM that accepts
exactly the annotated k-bounded preorder words that satisfy conditions (C0) and (C1) from
above.

I Lemma 13. For every k-bounded ODA A = (B, C) there is a finite state automaton M
that accepts exactly the annotated k-bounded preorder words that satisfy condition (C2).

I Lemma 14. For every k-bounded ODA A there is a multicounter automaton M that
accepts exactly the annotated k-bounded preorder words that satisfy conditions (C3).

4 Recall that ~w′
si

can be identified with the equivalence class of the preorder corresponding to B′
i.

12 Two-Variable Logic on 2-Dimensional Structures

Using the previous lemmata we can now complete the proof of Theorem 10.
Proof (of Theorem 10). For a given k-bounded ODA A = (B, C) letM1,M2 andM3
be the multicounter automata from Lemmata 12, 13 and 14, respectively. Let M be the
intersection multicounter automaton for those three automata.

We prove that L(A) is empty if and only if L(M) is empty. The statement of Theorem 10
follows from this. First, let w be a k-bounded ordered data word accepted by A. Then there
is an accepting run ρ = (ρB, ρC) of A on w. The word w′ = annpp(w, ρ) satisfies conditions
(C0) – (C3) and is therefore accepted byM due to Lemmata 12, 13 and 14.

Second, let w′ = ~w′1 . . . ~w
′
m be a k-bounded preorder word accepted byM. We construct

a k-bounded data word w ∈ L(A) and an accepting run ρ = (ρB, ρC) of A on w with
annpp(w, ρ) = w′. Therefor let B′1, . . . , B′l be the symbolic blocks of w′. Condition (C2)
guarantees the existence of annotated data words B1, . . . , Bl with pp(Bi) = B′i and data
values from {li, . . . , ri} when B′i = w′li . . . w

′
ri
. By Condition (C2d) there is a run ρi for each

Bi starting in pi and ending in qi where (pi, qi) is the B-label of B′i.
Now let π the permutation from Condition (C3). We define the ordered data word

w = Dπ(1) . . . Dπ(l) where Dπ(i) is obtained from Bπ(i) by removing the annotations. Note
that the Dπ(i) are blocks by Conditions (C2a), (C2b), (C3d) and (C3e). The concatenation
ρB of the runs ρπ(1), . . . , ρπ(l) is an accepting run of B on w by Conditions (C3a), (C3b) and
(C3c). An accepting run of C on the output of ρB exists by Condition (C1).

6 Hardness Results for Two-Dimensional Ordered Structures

This section aims at filling the remaining gaps for finite satisfiability of two-variable logic on
two-dimensional ordered structures. We refer the reader to Figure 3 for a summary of the
results obtained in the literature and here.

We start with a matching lower bound for the finite satisfiability problem of
EMSO2(+1l ,+1p ,≤p) over k-bounded structures. This bound already holds for
FO2(+1l1 ,+1l2 ,≤l2).

I Theorem 15. Finite satisfiability of FO2(+1l1 ,+1l2 ,≤l2) is at least as hard as the empti-
ness problem for multicounter automata.

I Corollary 16. Finite satisfiability of FO2(+1l ,+1p ,≤p) over k-bounded ordered data words
is at least as hard as the emptiness problem for multicounter automata.

It is not surprising that the finite satisfiability problem of FO2 with two additional
preorder successor relations is undecidable, as those allow for encoding a grid. A minor
technical difficulty arises when the corresponding equivalence relations are not available.
Undecidability even holds for 2-bounded preorder successor relations.

I Theorem 17. Finite satisfiability of two-variable logic with two additional 2-bounded
preorder successor relations is undecidable.

We denote the relation +1l2 by +2l . The following slightly improves Theorem 4 in [24].

I Corollary 18. Finite satisfiability of FO2(+1l1 ,+2l1 ,+1l2 ,+2l2) is undecidable.

The following theorems complement results from [3] and [29]. The proofs use similar
methods as used in those works.

I Theorem 19. Finite satisfiability of FO2(+1l ,≤l ,+1p) is undecidable.

I Theorem 20. Finite satisfiability of FO2(+1p1 ,≤p2), i.e. two-variable logic with one
additional preorder successor relation and one additional preorder relation, is undecidable.

Amaldev Manuel and Thomas Zeume 13

7 Discussion

The current status of research on two-variable logic with additional successor and order
relations is summarized in Figure 3.

Logic Complexity (lower/upper) Comments
One linear order

FO2(+1l) NExpTime-complete [10]
FO2(≤l) NExpTime-complete [27, 10]
FO2(+1l ,≤l) NExpTime-complete [10]

One total preorder
FO2(+1p) ExpSpace-complete ExpCorridorTiling
FO2(≤p) NExpTime/ExpSpace
FO2(+1p ,≤p) ExpSpace-complete [29]

Two linear orders
FO2(+1l1 ,+1l2) NExpTime-complete [24, 11, 6]
FO2(+1l1 ,≤l2) NExpTime/ExpSpace [29]
FO2(+1l1 ,+1l2 ,≤l2) Multicounter-Emptiness5 F, Corollary 11 and Theorem 15
FO2(+1l1 ,≤l1 ,≤l2) NExpTime/ExpSpace [29]
FO2(+1l1 ,≤l1 ,+1l2 ,≤l2) Undecidable [24]

Two total preorders
FO2(+1p1 ,+1p2) Undecidable F, Theorem 17
FO2(+1p1 ,≤p2) Undecidable F, Theorem C.2
FO2(≤p1 ,≤p2) Undecidable [28]

One linear order and one total preorder
FO2(+1l ,+1p) ? (see discussion) F Special case: Theorem 10
FO2(+1l ,≤p) ? (see discussion) F Special case: Theorem 10
FO2(+1l ,≤l ,+1p) Undecidable F, Theorem 19
FO2(+1l ,≤l ,≤p) Undecidable [3]
FO2(+1l ,+1p ,≤p) ? (see discussion) F, Special case: Theorem 10
FO2(≤l ,+1p ,≤p) ExpSpace-complete [29]

Many orders
FO2(≤l1 ,≤l2 ,≤l3) Undecidable [18]
FO2(+1l1 ,+1l2 ,+1l3) ?
FO2(+1l1 ,+1l2 ,+1l3 , . . .) ?

Figure 3 Summary of results on finite satisfiability of FO2 with successor and order relations.
Cases that are symmetric and where undecidability is implied are omitted. Results in this paper are
marked by F.

We saw that EMSO2 with a linear order successor, a k-bounded preorder relation and its
induced successor relation is decidable.

After submission of this work, the finite satisfiability problem of FO2(+1l ,+1p) has been
shown to be undecidable by Thomas Schwentick and the authors of this work [23], but has
not been peer reviewed yet. We strongly conjecture that finite satisfiability for the other
remaining open case, namely FO2(+1l ,≤p), is decidable. We are actually working on the
details of the proof and plan to include both results into the full version of this paper.

It remains open whether there is some m such that FO2(+1l1 , . . . ,+1lm) is undecid-
able. A method for proving undecidability of FO2(+1l1 , . . . ,+1lm) should not extend to
FO2(F1, . . . , Fm) where F1, . . . , Fm are binary predicates that are interpreted as permuta-
tions. A successor relation +1l can be seen as a permutation with only one cycle and one
label that marks the first element. Finite satisfiability of FO2(F1, . . . , Fm) is decidable since
one can express that some arbitrary interpreted binary predicate R is a permutation by using

5 Under elementary reductions.

14 Two-Variable Logic on 2-Dimensional Structures

two-variable logic with counting quantifiers which in turn is decidable by [14]. This is an
observation by Juha Kontinen.

I Open Question 1. Is there an m such that FO2(+1l1 , . . . ,+1lm) is undecidable?

Temporal logics on data words have seen much research recently [8, 9, 17]. However, to the
best of our knowledge, most of those logics have been restricted in the sense that comparison
of data values was only allowed with respect to equality. In [30] a temporal logic that allows
for comparing ordered data values was introduced. The authors intend to use the techniques
and results obtained for two-variable logic with additional successors and orders to investigate
temporal logics on data values that allow more structure on the data value side.

I Open Question 2. Are there expressive but still decidable temporal logics on data words
with successor and order relations on the data values?

We conclude with highlighting a small difference in treating successor relations for data words.
In this paper, the preorder successor is complete in the sense that every element (except for
elements contained in the last preorder equivalence class) has a preorder successor. In many
data domains, especially in those that are subject to change, it is sufficient to interpret the
preorder successor relation with respect to those data values present in the structure. Such
domains are for example the words in the English language, ISBN numbers etc.

However, for data words over the natural numbers it can be useful that some data values
are not present in a data word, i.e. that the successor relation can be incomplete. As a
complete successor relation can be axiomatized given an incomplete successor relation, this
is a more general setting. This setting is used in [29].

References
1 Mikoaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable

logic on data trees and XML reasoning. J. ACM, 56(3):1–48, 2009.
2 Mikolaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.

Two-variable logic on data words. ACM Trans. Comput. Logic, 12(4):27:1–27:26, July 2011.
3 Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.

Two-variable logic on words with data. In LICS, pages 7–16. IEEE Computer Society, 2006.
4 Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Springer

Verlag, 2001.
5 Patricia Bouyer. A logical characterization of data languages. Inf. Process. Lett., 84(2):75–

85, 2002.
6 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. In

LICS, 2013 (To appear).
7 Alonzo Church. A note on the Entscheidungsproblem. J. Symb. Log., 1(1):40–41, 1936.
8 Stéphane Demri, Deepak D’Souza, and Régis Gascon. A decidable temporal logic of repeat-

ing values. In LFCS, volume 4514 of Lecture Notes in Computer Science, pages 180–194.
Springer, 2007.

9 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log., 10(3), 2009.

10 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179(2):279 – 295, 2002.

11 Diego Figueira. Satisfiability for two-variable logic with two successor relations on finite
linear orders. CoRR, abs/1204.2495, 2012.

12 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

Amaldev Manuel and Thomas Zeume 15

13 Erich Grädel and Martin Otto. On logics with two variables. Theor. Comput. Sci., 224(1-
2):73–113, 1999.

14 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In LICS, pages 306–317, 1997.

15 Joseph Y Halpern and Yoav Shoham. A propositional modal logic of time intervals. Journal
of the ACM (JACM), 38(4):935–962, 1991.

16 Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. A survey of decidable first-order
fragments and description logics. Journal of Relational Methods in Computer Science,
1(251-276):3, 2004.

17 Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on words with
multiple data values. In FSTTCS, volume 8 of LIPIcs, pages 481–492. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2010.

18 Emanuel Kieronski. Decidability issues for two-variable logics with several linear orders. In
Marc Bezem, editor, CSL, volume 12 of LIPIcs, pages 337–351. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2011.

19 Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. In LICS, pages 431–440, 2012.

20 Emanuel Kieronski and Martin Otto. Small substructures and decidability issues for first-
order logic with two variables. In LICS, pages 448–457, 2005.

21 Emanuel Kieronski and Lidia Tendera. On finite satisfiability of two-variable first-order
logic with equivalence relations. In LICS, pages 123–132, 2009.

22 S Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). In Proceedings of the fourteenth annual ACM symposium on Theory of computing,
pages 267–281. ACM, 1982.

23 A. Manuel, T. Schwentick, and T. Zeume. A Short Note on Two-Variable Logic with a
Linear Order Successor and a Preorder Successor. ArXiv e-prints, June 2013.

24 Amaldev Manuel. Two orders and two variables. In MFCS, volume 6281 of Lecture Notes
in Computer Science, pages 513–524, 2010.

25 Ernst W Mayr. An algorithm for the general petri net reachability problem. SIAM Journal
on computing, 13(3):441–460, 1984.

26 M. Mortimer. On languages with two variables. Zeitschr. f. math. Logik u. Grundlagen d.
Math., 21:135–140, 1975.

27 Martin Otto. Two variable first-order logic over ordered domains. J. Symb. Log., 66(2):685–
702, 2001.

28 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. In
CSL, volume 6247 of Lecture Notes in Computer Science, pages 499–513, 2010.

29 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations. Lo-
gical Methods in Computer Science, 8(1), 2012.

30 Luc Segoufin and Szymon Torunczyk. Automata based verification over linearly ordered
data domains. In STACS, volume 9 of LIPIcs, pages 81–92. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2011.

31 Wieslaw Szwast and Lidia Tendera. FO2 with one transitive relation is decidable. pages
317–328, 2013.

32 Boris Trakhtenbrot. The impossibilty of an algorithm for the decision problem for finite
models. Doklady Akademii NaukSSR, 70(2):569–572, 1950.

33 Alan M Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London mathematical society, 42(2):230–265, 1936.

34 Yde Venema. Expressiveness and completeness of an interval tense logic. Notre Dame
Journal of Formal Logic, 31(4):529–547, 1990.

16 Two-Variable Logic on 2-Dimensional Structures

APPENDIX
A Extension of Section 4: Ordered Data Automata and

EMSO2(+1l , +1p ,≤p) are equivalent

For the convenience of the reader we repeat also some context. In proofs that are only partial
in the main paper, the start and end of text not occuring in the main paper is marked at the
border by HHHand NNN.

The proof of Theorem 7 follows from the following Propositions 2 and 3. The construction
of a formula from an automaton is straight forward:

I Proposition 2. For every ordered data automaton A there is a formula ϕA ∈ EMSO2(+1l ,+1p)
such that L(A) = L(ϕA).

Proof sketch.
Let A = (B, C) be an ODA. Let Σ′ = {σ1, . . . , σk} be the output alphabet of B and input

alphabet of C.
As usual the formula ϕA encodes successful runs. By (a slight variation) of Büchi, Elgot

and Trakhtenbrot, there is a formula ϕB in EMSO2(+1l) that encodes successful runs ρB of
the transducer such that the output is encoded in additional unary second order variables
P = {Pσ1 , . . . , Pσk

}. Furthermore there is a formula ϕC in EMSO2(+1p) which encodes
successful runs of C (where the input for C is encoded by the P -predicates), by Theorem 4.

The desired formula ϕA then guesses the predicates P and checks consistency with ϕB
and ϕC :

ϕA = ∃P1 . . . Pk(ϕB ∧ ϕC).

J

I Proposition 3. For every formula ϕ ∈ EMSO2(+1l ,≤p ,+1p) there is an ordered data
automaton Aϕ such that L(ϕ) = L(Aϕ).

The proof of Proposition 3 proceeds by translating a given EMSO2-formula ϕ into an
equivalent formula in Scott Normal Form

∃X1 . . . Xn

(
∀x∀y ψ ∧

∧
i

∀x∃y χi

)

where ψ and χi are quantifier-free formulas (see e.g. [13] for the translation). Since ODA are
closed under union, intersection and renaming it is sufficient to show that for every formula
of the form ∀x∀y ψ and ∀x∃y χ there is an equivalent ODA.

The following lemmas use the abbreviations

∆= = {x = y, x 6= y},
∆l = {+1l(x, y),¬+1l(x, y),+1l(y, x),¬+1l(y, x)},
∆p = {+1p(x, y),+1p(y, x), x ∼p y, x�p y, y �p x}.

Lemma 8. For every formula of the form ∀x∀y ψ with quantifier-free ψ there is an
equivalent ODA.

Amaldev Manuel and Thomas Zeume 17

Proof. We first write ψ in conjunctive normal form and distribute the universal quantifier
over the conjunction. Therefore, again due to the closure of ODA under intersection, we can
restrict our attention to formulas of the form

ϕ = ∀x∀y(α(x) ∨ β(y) ∨ δ=(x, y) ∨ δl(x, y) ∨ δp(x, y))

where α, β are unary types and δ=(x, y), δl(x, y) and δp(x, y) are as follows. Denote by Disj(Φ)
the set of disjunctive formulas over a set of formulas Φ. The formulas δ=(x, y), δl(x, y) and
δp(x, y) are in Disj(∆=), Disj(∆l) and Disj(∆p), respectively. Note that ∆p contains only
positive formulas since negation of any formula in ∆p can be replaced by a disjunction of
formulas from ∆p.

Without loss of generality we assume that neither δ=(x, y), δl(x, y) nor δp(x, y) are the
empty disjunction. (Assume that δ=(x, y) = ⊥, then δ=(x, y) ≡ x = y ∧ x 6= y. Distributing
x = y ∧ x 6= y yields two formulas of the required form.)

In the following we do an exhaustive case analysis. If ϕ is a tautology, then there is an
equivalent ODA. Therefore we assume from now on that ϕ is not a tautology.

When ϕ is not a tautology then δ= is either x 6= y or x = y. If δ= is x 6= y then we can
write ϕ as

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x = y)→ γ(x, y)

)
.

where α′ and β′ are the complements of the unary types α and β and γ(x, y) = δl(x, y) ∨
δp(x, y). Substituting x = y in γ yields a formula that is equivalent to True or to False. Thus
the property expressed by ϕ can be checked by the string transducer of an ODA. Hence from
now on we assume that δ= is the formula x = y.

The formula δl can either contain a negative formula from ∆l or it does not contain any
negative formula. If δl contains a negative formula from ∆l we rewrite ϕ as

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′l(x, y))→ δp(x, y)

)
where δ′l is the negation of δl. Since δ′l is a conjunction that contains a positive formula
from ∆l it is logically equivalent to a positive formula from ∆l, that is it is equivalent either
to +1l(y, x) or to +1l(x, y). In this case the formula ϕ expresses a regular property over
the marked string projection of the structure. Hence it can be seen immediately that the
property expressed by ϕ can be checked by the string transducer of an ODA. Hence from
now on we assume that δl contains no negative formula from ∆l.

Then δl is either +1l(x, y) ∨+1l(y, x) or +1l(y, x) or +1l(y, x). In this case we rewrite
ϕ as

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′p(x, y))→ δl(x, y)

)
where δ′p is the negation of δp(x, y). As noted before, the conjunction δ′p(x, y) can be expressed
as a disjunction of formulas from ∆p. Hence ϕ is equivalent to

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′p (x, y))→ δl(x, y)

)
where δ′′p (x, y) is a disjunction of formulas in ∆p. Distributing this disjunction yields a
formula of the form

∀x∀y
∧(

(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′′p (x, y))→ δl(x, y)
)

where δ′′′p (x, y) is a formula from ∆p.

18 Two-Variable Logic on 2-Dimensional Structures

By distributing the conjunction over the ∀-quantifiers and by using the closure of ODA
under intersection, it is sufficient to show that there is an equivalent ODA for formulas of
the form

χ = ∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δp(x, y))→ δl(x, y)

)
where δp(x, y) is a formula from ∆p and δl is positive.

For the following, we assume that δl is the formula +1l(x, y) ∨ +1l(y). The cases
δl = +1l(x, y) and δl = +1l(y, x) are similar. We do a case analysis for δp(x, y).HHH

If δp = x ∼p y then the formula χ states that whenever an α′-labeled element u and a
β′-labeled element v are in the same ≤p-class, then u and v are adjacent with respect
to ≤l . Since any element can have at most two adjacent elements with respect to ≤l ,
this implies that every ≤p-class containing both an α′-labeled element and a β′-labeled
element contains at most three elements labeled either α′ or β′. Moreover those elements
are adjacent in the linear order.
An ordered data automaton can verify this property in the following way. The string
transducer annotates every α′-labeled element u by the number of β′-labeled elements v
that are adjacent to u in the linear order and in the same ≤p -class as u, i.e. by the number
of v with β′(v), u ∼p v and either +1l(u, v) or +1l(v, u). Remember that the string
transducer reads the marked string projection of an ordered data word and therefore
knows whether elements adjacent via ≤l are in the same ≤p-class. For the annotation
an appropriate intermediate alphabet Σ′ is used. Analogously the string transducer
annotates every β′-labeled element by the number of adjacent α′-labeled elements in the
same ≤p-class.
Then the preorder automaton verifies for each ≤p -class C that either
C contains no α′-labeled elements or no β′-labeled elements, or
C contains both α′-labeled and β′-labeled elements and
∗ C contains more than three of those elements (then the preorder automaton rejects)
∗ C contains less than three of those elements. Then it checks that those three are

adjacent by using the annotation given by the transducer (and accepts or rejects
accordingly).NNN

The case δp = +1p(x, y) is very similar. Assume that Ci and Ci+1 are two adjacent
≤p-classes. Then the formula χ states that whenever Ci contains an α′-labeled element
u and Ci+1 contains a β′-labeled element v, then u and v are adjacent with respect to
≤l . This implies that the number of α′-labeled elements in Ci and β′-labeled elements in
Ci+1 is at most three. Moreover those elements are adjacent in the linear order.
Thus, the construction of an ODA verifying this property is analogous to the previous
case. The string transducer annotates every α′-labeled element u by the number of
β′-labeled elements v with +1p(u, v) and either +1l(u, v) or +1l(v, u). Analogously the
string transducer annotates every β′-labeled element by the number of adjacent α′-labeled
elements in the preceding ≤p-class.
Then the preorder automaton verifies for each ≤p-class Ci and its successor ≤p-class
Ci+1 that either
Ci contains no α′-labeled elements or Ci+1 contains no β′-labeled elements, or
Ci contains an α′-labeled element and Ci+1 contains a β′-labeled element and
∗ Ci and Ci+1 contain more than three of those elements (then the preorder automaton

rejects)
∗ Ci and Ci+1 contain less than three of those elements. Then it checks that those

three are adjacent by using the annotation given by the transducer (and accepts or
rejects accordingly).

Amaldev Manuel and Thomas Zeume 19

Finally let δp = x�py. For some ordered data word w consider the minimal ≤p-class
Ck containing an α′-labeled element (i.e. there is no class Ck′ containing an α-labeled
element with k′ < k) and the maximal ≤p -class Cl containing a β′-labeled element. There
are two cases.

(1) If l ≤ k + 1 then χ is satisfied.
(2) Otherwise, there are an α′-labeled element u ∈ Ck and a β′-labeled element v ∈ Cl

with u�pv. The formula χ implies that there can be at most two β′-labeled elements
≤p-larger then u and two α′-labeled elements ≤p-smaller then v. Thus there are
at most two β′-labeled elements v, v′ in the classes Ck+2, . . . , Cl and at most two
α′-labeled elements u, u′ in the classes Ck, . . . , Cl−2.

An ordered data automaton (B, C) can verify the property χ as follows. The string
transducer B guesses whether Case (1) or Case (2) is satisfied. If Case (1) is guessed, the
preorder automaton verifies that this is correct. If Case (2) is guessed, then the string
transducer guesses the elements u, u′, v, v′ (if they exist) and annotates them using colors
σu σu′ , σv and σv′ . Further it checks that they occur successively with respect to ≤l and
annotes all of them with the order in which they occur (for example with colors σ(u,v′,u′,v)
if u ≤l v′ ≤l u′′ ≤l v). The preorder automaton then verifies that the elements u, u′, v, v′
have been guessed correctly, i.e. that
u is the ≤p -smallest α′-labeled element, v is the ≤p -largest β′-labeled element (using
the colors σu, σu′ , σv and σv′).
u, u′, v and v′ satisfy the χ (using the colors σu, σu′ , σv and σv′ and the color
σ(u,v′,u′,v))

J

Lemma 9. For every formula of the form ∀x∃y χ with quantifier-free χ there is an
equivalent ODA.

Proof. We first simplify a given formula ∀x∃y χ similar to [2, Lemma 13]. Denote by Conj(Φ)
the set of conjunctive formulas over a set of formulas Φ. As a first step we rewrite χ as an
exponential-sized conjunction of disjunctions of the form

∀x∃y ∧i ∨j(αi(x)→ θij)

where {αi}i is the set of maximal unary types (a maximal unary type is a conjunction of
unary literals that contains, for every unary predicate P , either P (x) or ¬P (x)) and each θij
is of the form

β(y) ∧ δ=(x, y) ∧ δl(x, y) ∧ δp(x, y)

for some unary type β and formulas δ=(x, y), δl(x, y) and δp(x, y) in Conj(∆=), Conj(∆l) and
Conj(∆p), respectively. This rewriting can be achieved using the truth table for χ (That is:
Consider χ as a propositional formula where the propositional variables are the atoms of χ. It
can be easily seen that this propositional formula is equivalent to a formula ∧i(αi(x)→ ∨jθij)
which describes for each αi(x) which boolean combinations of other atoms are possible. The
disjunction can be pulled out of the formula.)

Since {αi}i are all maximal unary types χ can be further rewritten as ∧i∀x∃y∨j (αi(x)→
θij). The disjunction can be eliminated by introducing existentially quantified unary predic-
ates Sij for each θij expressing the fact that for an x satisfying the premise αi and Sij , a
witness y satisfying θij is chosen. Every conjunct ∀x∃y ∨j (αi(x)→ θij) is rewritten as

20 Two-Variable Logic on 2-Dimensional Structures

∃Si1 . . . ∃Sij
(
∀x
∨
j

Sij(x)
)
∧
∧
j

∀x∃y
(
(αi(x) ∧ Sij(x))→ θij(x, y)

)
An ODA equivalent to ∀x

∨
j Sij(x) is easy to construct since it is a regular property over

the string projection. Since ODA are closed under relabelling and intersection it is sufficient
to construct an ODA for each formula of the form

ϕ = ∀x∃y(α(x)→ θij(x, y))

In the following we do an exhaustive case analysis. If θij ≡ ⊥ or δ=(x, y) ≡ x = y then
the property expressed by ϕ can be easily checked by the string transducer of an ODA.
Therefore from now on we assume that θij is not equivalent to ⊥ and that δ=(x, y) is x 6= y.

If δl(x, y) contains a positive literal, the property expressed by ϕ can be verified by the
string transducer of an ODA, since the string transducer reads the marked string projection.
Hence from now on we assume that δl(x, y) does not contains a positive literal. Thus let us
assume that δl = ¬+1l(x, y) ∧ ¬+1l(y, x) (other cases are similar).

We do a case analysis for δp(x, y).

When δp = x ∼p y then the formula is true, if every ≤p -class C containing an α-labeled
element u contains a β-labeled element which is not a neighbour (in the linear order) of
u. If C contains at least three β-labeled elements then every α-labeled element in C has
a witnissing β-element.
Therefore an ordered data automaton A = (B, C) can verify the property expressed by ϕ
as follows. The string transducer B annotates, using an appropiate intermediate alphabet
Σ′, every α-labeled element u with the number of β-labeled elements v with u ∼p v
and +1l(u, v) or +1l(v.u). For doing this B uses the marking. The preorder automaton
verifies for each ≤p -class C that either C contains at least three β-labeled elements or for
every α-labeled element in C there is a β which is not ≤l -adjacent to it. The second case
is achieved by looking at the annotation given by the string transducer.

The case when when δl is the formula +1p(x, y) is very similar to the previous case.

Finally let δp be the formula x�p y. We first argue that if ϕ is satisfied for an ordered
data word, then there is a set V of β-labeled elements of size at most three, such that
every α-labeled element u is witnessed by some v ∈ V , that is u�p v and the elements
u and v are not ≤l -adjacent. Let C be the maximal ≤p -class of an ordered data word w
that contains an α-labeled element u (i.e. there is no class C ′ with C <p C

′ that contains
an α labeled element). If w satisfies ϕ then there is a β-labeled element v1 that witnesses
u. Now, there are at most two α-labeled elements not witnessed by v1 (namely α-labeled
elements ≤l -adjacent to v1). Let v2 and v3 be witnesses for those elements (if they exists)
and V = {v1, v2, v3}.
Now, an ordered data automaton A = (B, C) can verify the property expressed by ϕ
as follows. The string transducer B guesses the elements v1, v2, v3 in V (if they exist)
and annotates them with σv1 , σv2 and σv3 . Further it annotates every α-labeled element
u witnessed by vi by σvi

, and ensures that u and vi are not ≤l-adjacent. Afterwards
the preorder automaton verifies for every α-labeled element u annotated with σvi that
u�p vi.

J

Amaldev Manuel and Thomas Zeume 21

B Extension of Section 5: Deciding Emptiness for Ordered Data
Automata on k-bounded Ordered Data Words

For the convenience of the reader we repeat the whole section. Many definitions from the
main paper are made more precise here. Further all proofs can be found here.

An ordered data word w is k-bounded if each class of w contains at most k elements.
In this case the preorder projection of w is a k-bounded preorder word and can be seen
as a word over the finite alphabet {0, . . . , k}|Σ|. Hence an ODA restricted to k-bounded
ordered data words can be seen as a composition of a finite state transducer and a finite
state automaton. We call such automata k-bounded ODA.

Since k-boundedness can be expressed in EMSO2(+1l ,+1p ,≤p) we can conclude that
the result from the previous section carry over to the case of k-bounded ordered data words;

I Proposition 4. For a language L of k-bounded ordered data words the following are
equivalent:

There is a k-bounded ODA A with L = L(A).
There is a sentence ϕ ∈ EMSO2(+1l ,+1p ,≤p) such that L = Lk(ϕ), where Lk(ϕ) is the
set of all k-bounded ordered data words satisfying ϕ.

In this section we will use this proposition to prove the following theorem by showing
that emptiness for k-bounded ODA is decidable.

Theorem 10. The finite satisfiability problem for EMSO2(+1l ,+1p ,≤p) on k-bounded
data words is decidable.

Since 1-boundedness can be axiomatized in EMSO2 the following is an immediate corollary.

Corollary 11. The finite satisfiability problem for EMSO2(+1l1 ,+1l2 ,≤l2) is decidable.
This generalizes Theorem 3 from [24], where the finite satisfiability problem of FO2(+1l1 ,+1l2)

was shown to be decidable.
The rest of this section is devoted to prove that the emptiness problem of k-bounded

ODA is decidable. Therefore we reduce the emptiness problem for k-bounded ODA to the
emptiness problem for multicounter automata. The latter is known to be decidable [25, 22].

We outline our reduction. From a k-bounded ODA A = (B, C) we will construct a
multicounter automatonM such that L(A) is non-empty if and only if L(M) is non-empty.
Intuitively,M will be constructed such that if A accepts a k-bounded ordered data word w
thenM accepts a word w′ which is the preorder projection of w annotated by lots of extra
information6. On the other hand ifM accepts an annotated word w′ then an ordered data
word w and an accepting run of A on w can be reconstructed from the information encoded
in w′. ThereforeM reads a k-bounded preorder word w′ = ~w′1 . . . ~w

′
m and simultaneously

verifies
that the extra information in w′ encodes an accepting run of C on w′.
that the elements occuring in w′ can be dynamically (that is while reading ~w′1, ~w

′
2, . . .)

arranged to a word x such that x encodes
a marked string y whose marking is consistent with w′ (and therefore allows for the
construction of an ordered data word w from w′ and y), and
an accepting run of B on y.

6 Recall that the preorder projection of a k-bounded ordered data word is a k-bounded preorder word, i.e.
a word over {0, . . . , k}|Σ|.

22 Two-Variable Logic on 2-Dimensional Structures

Before going into the details we recall multicounter automata and introduce some further
notions needed for the proof. Afterwards we proceed with the proof of Theorem 10.

First we introduce multicounter automata, closely following the exposition in [1]. Essen-
tially, a multicounter automaton is a finite state automaton equipped with a finite set of coun-
ters which can be incremented and decremented. More formally, a multicounter automatonM
is a tuple (Q,Σ, C, δ, qI , F), where the states Q, the input alphabet Σ, the initial state qI ∈ Q
and the final states F ⊆ Q are as in usual finite state automata, and C is a finite set (the
counters). The transition relation δ is a subset of Q× (Σ ∪ {ε})× {inc(c), dec(c)|c ∈ C} ×Q.

A configuration of a multicounter automatonM is a pair (p, ~n) where p is a state and
~n ∈ NC gives a value for each counter in C. Transitions with inc(c) can be applied always,
whereas transitions with dec(c) can only be applied when c > 0. Applying a transition
(p, σ, inc(c), q) to a configuration (p, ~n) yields a configuration (q, ~n′) where n′ is obtained
from ~n by incrementing counter c and keeping all other counters unchanged. Similarly for
transitions (p, ε, inc(c), q). Analogously, applying a (applicable) transition (p, σ, dec(c), q) to a
configuration (p, ~n) yields a configuration (q, ~n′) where ~n′ is obtained from ~n by decrementing
counter c. A run over a word w is a sequence of configurations consistent with δ. A run
is accepting, if it starts at configuration (qI ,~0) and ends in some configuration (qF ,~0) with
qF ∈ F . A multicounter automaton accepts a word w if it has an accepting run on w.

We will need the following notions for ordered data words. Fix a k-bounded ordered data
word w = w1 . . . wn with wi = (σi, di) . . . (σn, dn) and induced preorder ≤p . A subword B =
wlwl+1 . . . wm of w is called a partial block if wi is ≤p -close to wi+1 for all i ∈ {l, . . . ,m− 1}
(i.e. if there is no data value between di and di + 1). A partial block B is a block if no larger
block contains B that is if (i) l = 1 or wl and wl−1 are far away with respect to ≤p , and
(ii) m = n or wm and wm+1 are far away with respect to ≤p . The positions wl and wm
are called leftmost and rightmost positions of B. Let B = wl . . . wm and B = wl′ . . . wm′ be
two distinct blocks with classes C1 ≤p . . . ≤p Cr and C ′1 ≤p . . . ≤p C ′r′ . The blocks B and
B′ are ≤l-adjacent if +1l(m, l′) or +1l(m′, l), and they are ≤p-adjacent if their classes are
disjunct and +1p(Cr, C ′1) or +1p(C ′r′ , C1). See Figure 2 for an example of blocks.

Since w is k-bounded, every class of w intersects with at most k many blocks. It is easy
to see, that one can color each block B of w with a number N(B) from {1, . . . , 2k} such that
N(B) 6= N(B′) if B and B′ are ≤l -adjacent blocks or ≤p -adjacent blocks. Even more, such
a coloring can be uniquely obtained from w (for example by coloring lexicographically).

In the following we describe how to annotate every element of an ordered data word w with
extra information. A block label (N,X) with block number N and block position X is a letter
from ΣB = {1, . . . , 2k}× ({L,L+, L−, C}×{R,R+, R−, C}). Let A = (B, C) be a k-bounded
ODA with input alphabet Σ, intermediate alphabet Σ′ and let QB and QC be the states of
B and C respectively. A run label (σ′, rB, rC , rB) is a letter from ΣR = Σ′ ×Q2

B ×Q2
C ×Q2

B
where rB, rC and bB are called B-label, C-label and B-block label, respectively.

An annotated ordered data word is an ordered data word over Σ× ΣM × ΣB × ΣR where
ΣM is the alphabet {−∞,−1, 0, 1,∞,−}2 of markings. Likewise an annotated preorder word
is a preorder word over Σ× ΣM × ΣB × ΣR. The preorder projection of an annotated data
word is a preorder word over Σ× ΣM × ΣB × ΣR.

The annotation ann(w, ρ) of an ordered data word w = w1 . . . wn with respect to a run
ρ = (ρB, ρC) of an ODA A = (B, C) on w is an annotated ordered data word that labels every
element wi with a marking m, an additional block label τ and run label π as follows

m is the marking m(i) of wi.
τ = (N(B), X) where B is the block of wi and X = (XL, XR) is
XL = C if wi is neither the leftmost nor the rightmost element of B

Amaldev Manuel and Thomas Zeume 23

XL = L if i = 1
XL = L+ if wi is the leftmost element of B and Ci�pCi−1, where Ci and C−1 are the
classes of wi and wi−1
XL = L− if wi is the leftmost element of B and Ci−1�pCi, where Ci and C−1 are the
classes of wi and wi−1
Analogously for R, R+ and R−

π = (σ′, (qB,i−1, qB,i), (qC,i−1, qC,i), (q1, q2)) where
σ′ is the output symbol of the string transducer B for wi.
(qB,i−1, qB,i) are the states of B before and after reading wi in the run ρB
(qC,i−1, qC,i) are the states of C before and after reading the class of wi in the run ρC
(q1, q2) are the states of B before and after reading the block of wi

The preorder projection of the annotation of an ordered data word w is denoted by annpp(w, ρ).
Intuitively maximal contiguous subwords of annpp(w, ρ) with the same block number

correspond to a block in w. Therefore we define the following. A symbolic N-block of an
annotated preorder word v = ~v1 . . . ~vn is an annotated preorder word ~v′l . . . ~v′m such that

For all i ∈ {l, . . . ,m} the letter ~vi contains an element labeled with block number N . The
letters ~vl−1 and ~vm+1 (if they exist) contain no element labeled with block number N .
For all i, the letter ~v′i = (n′σ1

, . . . n′σr
) is the projection of ~vi = (nσ1 , . . . nσr

) to elements
with block number N , that is
n′σj

= nσj for all σj with block number N , and
n′σj

= 0 for all σj with a block number different from N .

We now state the proof idea of Theorem 10 more precisely. From an ordered data
automaton A = (B, C) we construct a multicounter automaton M that reads annotated
k-bounded preorder words such that

If A accepts a k-bounded ordered data word w via run ρ thenM accepts annpp(w, ρ).
IfM accepts an annotated k-bounded preorder word w′ then a k-bounded ordered data
word w can be constructed from w′ which is accepted by A.

Given an annotated k-bounded preorder word w′ = ~w′1 . . . ~w
′
n, the multicounter automaton

M tries to reconstruct a k-ordered data word w from w′ such that w is accepted by A.
Every symbolic block B′ in w′ will represent a block B in w. We will prove that such a
reconstruction is possible whenever the following conditions (C0) – (C3) are satisfied:

(C0) a) The block position label and the label from ΣM are consistent for every element of w′.
b) Every symbolic block B′ of w′ contains exactly one {L,L−, L+}-labeled element and

one {R,R−, R+}-labeled element.
c) All elements of a letter ~w′i have the same C-label..
d) The B- and C-labels are consistent with the Σ- and Σ′-labels for every element u of w′.

(C1) The C-labels in w′ encode an accepting run of C.
(C2) For every symbolic block B′ = ~w′l . . . ~w

′
m of w′ there is an annotated ordered data word

B with data values from the set {l, . . . ,m} ⊂ N such that
a) B is a single block and pp(B) = B′. Further, the data value of an element u of B is d

when u corresponds to an element contained in ~w′d in B′.
b) The first position of B carries block position label L, L+ or L−. The last position of

B carries block position label R, R+ or R−. All other positions carry block position
label C.

c) All elements of B′ carry the same B-block label (p, q).
d) There is a run of B on B that starts in p, ends in q and is consistent with the B-labels

of B.

24 Two-Variable Logic on 2-Dimensional Structures

(C3) Let B′1, . . . , B′m be the symbolic blocks of w′. Further let ~w′si
be the position of B′i, that

contains7 the {L,L−, L+}-labeled element li of B′i. Analogously let ~w′ti be the position
of B′i, that contains the {R,R−, R+}-labeled element ri of B′i. There is a permutation π
of {1, . . . ,m} such that
a) If (p, q) is the B-block label of lπ(1), then p is the start state of B. Further the block

position label of lπ(1) is L.
b) If (p, q) is the B-block label of rπ(m) then q is a final state of B. Further the block

position label of rπ(m) is R.
c) If (p, q) and (p′, q′) are the B-block labels of B′π(i) and B′π(i+1), respectively, then

q = p′.
d) If ri is labeled with R+, then li+1 is labeled with L−. Further ti�psi+1.
e) Likewise if ri is labeled with R−, then li+1 is labeled with L+. Further si+1�pti.

Intuitively, the Conditions (C2) help to reconstruct runs from C. Runs of B are recon-
structed with the help of Conditions (C2) and (C3), where (C2) helps reconstructing runs of
B on blocks whereas (C3) helps reconstructing the order of blocks.

Recall that k-bounded preorder words over Σ can be seen as a word over the finite
alphabet {0, . . . , k}|Σ|. We say that a finite state automaton (resp. multicounter automaton)
reads k-bounded preorder words, if its finite alphabet is {0, . . . , k}|Σ|.

The following lemmata show how a multicounter automata can verify conditions (C0) –
(C3). The conditions (C0) – (C2) can even be verified by a finite state automaton.

Lemma 12. For every k-bounded ODA A there is a finite state automaton M that
accepts exactly the annotated k-bounded preorder words that satisfy conditions (C0) and (C1)
from above. The proof is straightforward.

A partial run r of a finite state transducer B with states B is a tuple from QB ×QB. Two
partial runs r = (p, q) and r′ = (p′, q′) connect to the partial run (p, q′) if q = p′.

Lemma 13. For every k-bounded ODA A = (B, C) there is a finite state automatonM
that accepts exactly the annotated k-bounded preorder words that satisfy condition (C2).

Proof sketch. We describe how to construct a k-bounded preorder automaton N that verifies
condition (C2) for a single symbolic block B′ of an annotated k-bounded preorder word.
The automatonM can be easily constructed from N by using the block number in order to
identify symbolic blocks. Condition (C2c) can be checked easily, therefore we restrict our
attention to conditions (C2a), (C2b) and (C2d).

The following observation is crucial for the construction of N . Let B′ = ~w′1 . . . ~w
′
m be an

annotated k-bounded preorder word which is a single symbolic block, i.e. all elements have
the same block number. If B′ satisfies (C2), then there is an annotated k-bounded block B
with classes classes C1 <p . . . <p Cm as stated in (C2). In particular Ci corresponds to ~w′i.
The restriction of B to elements from C1 <p . . . <p Cl yields at most k + 1 partial blocks
B1, . . . , Bk+1, for every l ∈ {1, . . . ,m}. (Assume that there are more than k+ 1 blocks, then
one Cj with j > l has to contain more than k elements.)

The idea for the construction of N is as follows. After reading the first l − 1 letters of
B′ the automaton has constructed, for every Bj from above, an annotated run ρj = (pj , qj)
such that B reaches Bj in state pj and leaves Bj in qj . Those runs (pj , qj) are stored in the
state of N together with some information of the leftmost and rightmost letters of each Bj .
When reading the lth letter ~w′l of B′, the automaton extends the runs ρj according to the

7 Recall that ~w′
si

can be identified with the equivalence class of the preorder corresponding to B′
i.

Amaldev Manuel and Thomas Zeume 25

annotated letters occurring in ~w′l (those runs can be merged while reading B′, and new runs
can occur, but never more than k + 1 are present). If N has constructed, after reading B′,
a single run ρ which is the B-block label of B′, then N accepts. A block B can then be
reconstructed from ρ by looking at the construction of ρ.

We turn to a more precise description of N . The automaton N stores a multiset of at
most k + 1 annotated runs. An annotated run is a tuple (r,m) where r is a partial run
of B and m is a marking from ΣM . Two annotated runs (r,m) and (r′,m′) connect to an
annotated run (r′′,m′′) = (r,m) ◦ (r′,m′) if

r and r′ connect to r′′, and
m = (X,Y), m′ = (X ′, Y ′), m′′ = (X,Y ′) and Y and X ′ are compatible (i.e. Y = 0 and
X = 0, or Y = +1 and X = −1, or Y = −1 and X = +1)

To every annotated letter σ ∈ Σ×ΣM ×ΣB ×ΣR an annotated run of (r,m) can be assigned
where r and m are the B-label and the marking of σ, respectively.

Now we describe how N processes the symbolic block B′ = ~w′1 . . . ~w
′
m. Before processing

the letter i of B′, the automaton N stores a multiset Si−1 of at most k + 1 annotated runs
in its state. The multiset S0 is empty.

Each multiset Si contains annotated runs (r, (X,Y)) with X,Y ∈ {+1,−,+∞,−∞} only.
Intuitively, this means that the annotated run r can be extended when reading the next
letter of B′ (in the case X = +1) or the run starts at the left border of the block and thus
cannot be resumed (in the case X ∈ {−,+∞,−∞}. Analogously for Y .

Let Ri be the multiset of at most k annotated runs corresponding to the annotated letters
in ~w′i. When reading ~w′i the automaton N performs the following steps.

Extend all annotated runs ρ from Si−1 by distinctive runs from Ri. That is for ρ =
(r, (X,Y)):

If X = +1 then guess an annotated run τl ∈ Ri (that has not been chosen so far) such
that τl and ρ connect to ρ′ = τl ◦ ρ. If no such τl exists, then reject.
If Y = +1 then guess an annotated run τr ∈ Ri (that has not been chosen so far) such
that ρ′ and τr connect to ρ′′ = ρ′ ◦ τr. If no such ρ′′ exists, then reject.

Denote by Ti the set of all runs ρ′′ thus obtained. If some annotated run from Ri has not
been chosen, then reject.
If Ti contains connectable runs, then connect them. That is, as long as Ti contains a run
ρ = (r, (X,Y)) with either X = 0 or Y = 0:

If Y = 0 guess a run ρ′ = (r′, (X ′, Y ′)) with X = 0 such that ρ′ and ρ connect to
τ = ρ ◦ ρ′ (if no such run ρ′ exists, then reject). Replace ρ and ρ′ by τ in Ti.
If X = 0 guess a run ρ′ = (r′, (X ′, Y ′)) with Y = 0 such that ρ and ρ′ connect to
τ = ρ′ ◦ ρ (if no such run ρ′ exists, then reject). Replace ρ and ρ′ by τ in Ti.

Let Si be the set of annotated runs Ti thus obtained. Save Si in the state (if Si contains
more then k + 1 annotated runs, then reject).

The automaton N accepts if Sm contains a single run ρ = (r, (X,Y)) where r is the
B-label of B′.

We outline the correctness. If Condition (C2) is satisfied for a block B′, then there is a
block B as stated there. The automatonM, while reading B′ does its guessing according to
B. On the other hand, if there is an accepting run ofM then Sm contains a single run ρ. A
block B witnessing Condition (C2) can be reconstructed by looking at howM constructed
the run ρ.

J

26 Two-Variable Logic on 2-Dimensional Structures

Figure 4 How a multicounter automaton M reads
annpp(w, ρ) of an annotated data word w. When M
reaches line T , it has stored one partial run (q, s). This
run will then be connected to the partial run (s, t) of
block B3. ≤l

≤p

T
B 1

q
s′

B
2

s′

s

B 3

s
t

The construction of a multicounter automaton for (C3) is a little more involved. We
introduce some of the ideas for the k-bounded case by warming up with the 1-bounded case.
In 1-bounded ordered data words the induced preorder is a linear order, hence equivalence
classes can be identified with elements. Further, in 1-bounded annotated data words, the
{L,L+, L−}-labeled and {R,R+, R−}-labeled elements are the highest (or lowest) and lowest
(or highest) elements of their block. In other words, blocks are merely lines (i.e. without
zig-zags, see Figure 4).

I Lemma B.1. For every 1-bounded ODA A there is a multicounter automaton M that
accepts exactly the annotated 1-bounded preorder words that satisfy conditions (C3).

Proof sketch. Let A = (B, C) be an 1-bounded ODA.
The idea for the construction ofM is as follows. Let w′ = B′1 . . . B

′
m be an annotated

1-bounded preorder word (i.e. each equivalence class is identified with its single element)
with symbolic blocks B′1, . . . , B′m. Further let ρi be the B-block label of B′i. If there
is a permutation as stated in Condition (C3) then while reading the blocks B′1, . . . , B′m,
the automaton M constructs, for one (guessed) such permutation π, the partial B-run
ρ = ρπ(1) ◦ . . . ◦ ρπ(m) and verifies that Conditions (C3a)–(C3e) are satisfied.

The automatonM reads w′ block-wise. WhenM has read the symbolic blocks B′1 . . . B′i
then it has stored (in its state and its counters) the set Γ of maximal subruns γ of ρ
constructable from the partial runs ρ1, . . . , ρi, that is, any subrun γ = ρπ(j) ◦ . . . ◦ ρπ(j′)
of ρ with {π(j), . . . , π(j′)} ⊆ {1, . . . , i} and π(j − 1), π(j′ + 1) /∈ {1, . . . , i} is in Γ. Thus
every subrun γ = ρπ(j) ◦ . . . ◦ ρπ(j′) stored in Γ corresponds to a reordering B′π(j) . . . B

′
π(j′) of

B′j . . . B
′
j′ . We say that those symbolic blocks contribute to γ.

The permutation π will be guessed by M implicitly. More precisely, when reading a
block B′i containing label L− (or R− or both),M guesses a stored subrun γ ∈ Γ that will be
attached to ρi from the left (since L− intuitively says, that B′i has to be attached to another
block B′j with j < i). This guessing implicitly determines how the permutation π orders the
symbolic block B′i and the symbolic blocks that contributed to γ.

A partial run ρi may be attached to a subrun γ ∈ Γ only when their states are consistent.
Furthermore, if the last element of B′i−1 is R+ and the first element of B′i is L− then the
subrun γ of B′i−1 may not be attached to the run ρi (since then Conditions (C3d) and (C3e)
would be injured). Similarly if the last element of B′i−1 is R+ and the first element of B′i is
L−. Thus, special care has to be taken for the maximal subrun that ρi−1 has contributed to.

If M has constructed, after reading B′, a single run ρ = (s, qf) where s is the start
state and qf is some final state of B, then M accepts. The permutation π can then be
reconstructed from ρ by looking at the construction of ρ.

Amaldev Manuel and Thomas Zeume 27

We will now turn towards a more detailed description of M. A block run is a partial
run ρ = (p, q) whose endpoints p and q are marked by some label from L ∪ R, where
L = {L,L−, L+} and R = {R,R−, R+}, such that not both are labeled from either R or L.
Two block runs ρ = (p, q) and ρ′ = (p′, q′) can be connected to a block run (p, q′) if q = p′

and q and p′ are marked by either R+ and L− or R− and L+. A cached run is a block run
ρ = (p, q) where one of the endpoints p and q is marked with the additional label locked.
Every symbolic block B′ has a corresponding block run (p, q) where B′ has block label (p, q)
and p is labeled with L+ (resp. L, L−) if B has an L+-labeled element (resp. L, L−-labeled
element), analogous for q.

The automaton M stores block runs by using one counter for every block run from
Q × Q × {L ∪ R}2, those runs will be referred to as counted runs. Furthermore M can
store at most one cached run in its state (the maximal subrun to whom the last read block
contributed to). We say that a block run ρ is removed from the storage ofM, if ρ is removed
from the cache when ρ is a cached run, or the counter cρ is decreased when ρ is a counted
run. All runs stored byM are called stored runs.

We describe how M processes a 1-bounded annotated preorder word w′ = B′1 . . . B
′
m

with symbolic blocks B′1, . . . , B′m. At the beginning, all counters are zero and no cached run
is stored in the state. Now, assume thatM has read B′1 . . . B′i−1. Let ρ = (p, q) be the block
run corresponding to B′i. Assume, without loss of generality, that the first element8 and last
element of B′i are labeled with Xfirst ∈ {L,L+, L−} and Xlast ∈ {R,R+, R−}, respectively
(the construction for Xfirst ∈ {R,R+, R−} and Xlast ∈ {L,L+, L−} is analogous).

Now,M performs the following steps:
a) If Xfirst = L−, thenM guesses a stored run γ (from cache or counted) that connects

with ρ to ρ′ = γ ◦ ρ (if no such run γ exists, thenM rejects). Then γ is removed from
the storage ofM. If Xfirst 6= L− then ρ′ = ρ.

b) If Xlast = R−, thenM guesses a stored run γ ofM that connects with ρ′ to ρ′′ = ρ′ ◦ γ
(if no such run γ exists, thenM rejects). Then γ is removed from the storage ofM. If
Xlast 6= R− then ρ′′ = ρ′.

c) If the cache ofM contains a cached run ρ, remove ρ from the cache and increment the
counter cρ.

d) If Xlast = R+ then save ρ′′ = (p, q) into the cache with locked q (i.e. the partial run of
the next block may not be connected to q).

e) If Xlast 6= R+ then increment counter cρ′′ .
The automatonM accepts, if after reading w′ there is a block run ρ = (s, qf) such that cρ
has value one, and all other counters have value zero, s is the start state of B and qF is some
final state of B.

We sketch the correctness of this construction. If w′ = B′1 . . . B
′
m with symbolic blocks

B′1, . . . , B
′
m satisfies Condition (C3), then there is a permutation π as stated. A run ofM

can be constructed from w′ as follows. The choices in Steps a) and b) are made such that
they are consistent with π. I.e. whenM reads B′π(i) and the block B′π(i−1) has already been
read, contributing to the block run γ stored byM, then the partial run of B′π(i) is attached
(from the right) to the stored run γ.

If, one the other hand, w′ is accepted byM then a permutation π according to (C3) can
be constructed from ρ by looking at the choices taken in Steps a) and b).

J

8 Recall that in the 1-bounded case equivalence classes are identified with one element.

28 Two-Variable Logic on 2-Dimensional Structures

Lemma 14. For every k-bounded ODA A there is a multicounter automatonM that
accepts exactly the annotated k-bounded preorder words that satisfy conditions (C3).
Proof sketch. We extend the construction of Lemma B.1 and reuse its notation. The
situation for k-bounded words w′ is more complicated:

While reading w′ several symbolic blocks might have to be processed at once (as opposed
to exactly one symbolic block at each moment in the 1-bounded case)
For a given symbolic block B′ = ~w′k . . . ~w

′
l of w′, the markers from L and R can appear in

any ~w′i and ~w′j with i, j ∈ {k, . . . , l} (as opposed to only in ~w′k and ~w′l in the 1-bounded
case).

Those complications are addressed by extending the construction from Lemma B.1 by a cache
that stores multiple cached runs. Furthermore, cached runs will store some more information.

Let A = (B, C) be a k-bounded ODA. The idea for the construction of M is similar
to the idea in Lemma B.1. Let w′ = w′1 . . . w

′
n be an annotated k-bounded preorder word

with symbolic blocks B′1, . . . , B′m (possibly overlapping, that is, B′1 = ~w′1 ~w
′
2 and B′2 = ~w′2 ~w

′
3

is possible, see Figure 2) with B-block labels ρi. If there is a permutation as stated in
Condition (C3) then while reading the blocks w′, the automaton M constructs, for one
(guessed) such permutation π, the partial B-run ρ = ρπ(1) ◦ . . . ◦ ρπ(m) and verifies that
Conditions (C3a)–(C3e) are satisfied.

As in the previous lemmaM will construct a set Γ of maximal subruns γ of ρ constructable
from the runs ρ1, . . . , ρi of symbolic blocks B′1, . . . B′i seen so far. Yet, since the blocks might
overlap,M cannot read w′ strictly block-wise.

For a symbolic block B′ = ~w′l . . . ~w
′
l′ , call the smallest s ∈ {l, . . . , l′} such that ~w′s contains

an L ∪R-labeled element u, the start position of B′. The element u is called start element.
Analogously the largest t ∈ {l, . . . , l′} such that ~w′t contains an L ∪R-labeled element u is
called end position of B′, and u is called end element. WhenM has read a prefix ~w′1 . . . ~w

′
l

of w′, then a symbolic block with start position s and end position t is called completed, if it
has been completely read, i.e. if t < l. It is called active if it has been partially (but not
completely) read, i.e. if s ≤ l < t.

Now, whenM has read ~w′1 . . . ~w
′
j then it has constructed the maximal subruns in Γ from

the partial runs of active and completed blocks. However, maximal subruns constructed
from partial runs of active blocks may not be extended arbitrarily. When γ = γ′ ◦ ρ is a
maximal subrun build from some other run γ′ and a partial run ρ of an active block B′, then
no partial run of another block may be attached to γ from the right as long as B′ is active.
Therefore, maximal subruns of still active blocks will be stored in the state ofM (as cached
runs).

We will now turn towards a more detailed description of M. Therefore we reuse the
notion of block run and extend the notion of cached run from Lemma B.1. From now on
a cached run is a block run ρ = (p, q) which is marked by a block number N ∈ {1, . . . , 2k}
and whose endpoints p and q are marked by some status s, where s is either closed, locked,
new-locked, waiting or open. A cached run (p, q) and a block run (p′, q′) can be connected to
a block run (p, q) ◦ (p′, q′) if (p, q) and (p′, q′) connect as block runs and q has status open
(analogously, (p, q) and (p′, q′) can be connected to a block run (p′, q′) ◦ (p, q) if p has status
open).

The automatonM stores block runs, as in the previous construction, by using one counter
for every block run from Q×Q× {L ∪ R}2 (counted runs). FurthermoreM can store at
most 4k cached runs in its state. Intuitively, a maximal subrun γ ∈ Γ is stored as cached
run, if in its construction at least one partial run either of a still active block or of a recently
completed block was used.

Amaldev Manuel and Thomas Zeume 29

We describe howM processes a k-bounded annotated preorder word w′ = ~w′1 . . . ~w
′
n with

symbolic blocks B′1, . . . , B′m. At the beginning, all counters are zero and no cached run is
stored in the state. Now, assume thatM has read w′ = ~w′1 . . . ~w

′
i.

There can be at most k many L ∪ R-labeled elements in ~w′i. Each such element u
corresponds to the start or end position of a symbolic block B′. We will describe how such
an element u is processed byM. Assume, without loss of generality, that u is labeled with
X ∈ L (the construction for R-labeled u is analogous). Further assume, that ~w′i does not
contain another L ∪R-labeled element v such that u and v have the same block number, i.e.
the symbolic block of u does not have the same start and end position (the case where both
start and end positions of a block occur in ~wi is similar).

When the block number of the symbolic block B′ of u occurs as block number of some
cached run γ ∈ Γ then the start position of B′ has been read already, thus i is the end
position of B′ and u is the end element. Otherwise i is the start position and u the start
element. We do a case distinction for those two cases.

When u is the start element of B′ then denote the block run of B′ by ρ = (p, q). The
automatonM performs the following steps for u:
1) If the L-label X of u is

a) L−, thenM guesses a stored run γ = (p′, q′) (if no such run γ exists, thenM rejects)
that connects with ρ to a cached run ρ′ = γ ◦ ρ = (p′, q) where ρ′ is marked as follows
∗ If γ is a cached run, then p′ is marked as in γ and q is marked waiting.
∗ If γ is a counted run, then p′ is marked open and q is marked waiting.
Then γ is removed from the storage ofM.

b) L+, then ρ′ = (p, q) where p is marked as new-locked and q is marked as waiting.
c) L, then ρ′ = (p, q) where p is marked as closed and q is marked as waiting.

2) Store ρ′ in the cache ofM.

When u is the end element of B′ then let ρ = (p, q) be the cached run with the same
block number as B′. The automatonM performs the following steps for u:
1) If the L-label X of u is

a) L−, thenM guesses a stored run γ = (p′, q′) (if no such run γ exists, thenM rejects)
that connects with ρ to ρ′ = γ ◦ ρ = (p′, q). Then
∗ If γ is a cached run, then p′ is marked as in γ and q is marked open. Further waiting
∗ If γ is a counted run, then p′ is marked open and q is marked waiting
Then γ is removed from the storage ofM.

b) L+, then ρ′ = ρ where p is marked as new-locked and q is marked as waiting.
c) L, then ρ′ = ρ where p is marked as closed and q is marked as waiting.

2) Store ρ′ in the cache ofM.

All L ∪ R-labeled elements u of ~w′i are processed by M in this way. After this, the
automatonM cleans the cache as follows:

All cached runs ρ = (p, q) where p and q are neither locked nor waiting are removed from
the cache and the counter cρ is incremented
All cached runs ρ = (p, q) where p is marked new-locked are replaced by ρ′ = (p, q) where
p is marked locked. Analogously when q is marked new-locked.

This ensures that after reading ~w′i the cache contains at most 2k cached runs.
The automatonM accepts, if after reading w′ there is a block run ρ = (s, qf) such that

cρ has value one, and all other counters have value zero, s is the start state of B and qF is
some final state of B.

J

30 Two-Variable Logic on 2-Dimensional Structures

Using the previous lemmata we can now complete the proof of Theorem 10.
Proof (of Theorem 10). For a given k-bounded ODA A = (B, C) letM1,M2 andM3
be the multicounter automata from Lemmata 12, 13 and 14, respectively. Let M be the
intersection multicounter automaton for those three automata. We prove that L(A) is empty
if and only if L(M) is empty. The statement of Theorem 10 follows from this.

First, let w be a k-bounded ordered data word accepted by A. Then there is an accepting
run ρ = (ρB, ρC) of A on w. The word w′ = annpp(w, ρ) satisfies conditions (C0) – (C3) and
is therefore accepted byM due to Lemmata 12, 13 and 14.

Second, let w′ = ~w′1 . . . ~w
′
m be a k-bounded preorder word accepted byM. We construct

a k-bounded data word w ∈ L(A) and an accepting run ρ = (ρB, ρC) of A on w with
annpp(w, ρ) = w′. Therefor let B′1, . . . , B′l be the symbolic blocks of w′. Condition (C2)
guarantees the existence of annotated data words B1, . . . , Bl with pp(Bi) = B′i and data
values from {li, . . . , ri} when B′i = w′li . . . w

′
ri
. By Condition (C2d) there is a run ρi for each

Bi starting in pi and ending in qi where (pi, qi) is the B-label of B′i.
Now let π the permutation from Condition (C3). We define the ordered data word

w = Dπ(1) . . . Dπ(l) where Dπ(i) is obtained from Bπ(i) by removing the annotations. Note
that the Dπ(i) are blocks by Conditions (C2a), (C2b), (C3d) and (C3e). The concatenation
ρB of the runs ρπ(1), . . . , ρπ(l) is an accepting run of B on w by Conditions (C3a), (C3b) and
(C3c). An accepting run of C on the output of ρB exists by Condition (C1).

C Extension of Section 6: Hardness Results for Two-Dimensional
Ordered Structures

This section aims at filling the remaining gaps for finite satisfiability of two-variable logic on
two-dimensional ordered structures. We refer the reader to Figure 3 for a summary of the
results obtained in the literature and here.

We start with a matching lower bound for the finite satisfiability problem of EMSO2(+1l ,+1p ,≤p)
over k-bounded structures. This bound already holds for FO2(+1l1 ,+1l2 ,≤l2).

Theorem 15. Finite satisfiability of FO2(+1l1 ,+1l2 ,≤l2) is at least as hard as the
emptiness problem for multicounter automata.

Proof. Satisfiability for FO2(≤l ,+1l ,∼) is at least as hard as reachability in vector addition
systems, see [1]. The proof from [1] holds even if ∼ is 2-bounded. Since 2-bounded equivalence
relations can be simulated by +1l1 , the result follows.

For sake of completeness, we sketch the argument from [1]. We reduce the non-emptiness
of multicounter automata to satisfiability of FO2(+1l1 ,+1l2 ,≤l2).

LetM be a multicounter automaton with counters C = {1, . . .m} and state set Q. The
idea is to encode runs ofM as (+1l1 ,+1l2 ,≤l2)-structures. Therefore, encode transitions of
M as letters from

Q× (Σ ∪ {ε})× ({Dj | j ∈ C} ∪ {Ij | j ∈ C})×Q

where Dj and Ij intuitively stand for decrementing and incrementing the counter j, respect-
ively.

We write a sentence ϕ in FO2(+1l1 ,+1l2 ,≤l2) which ensures the following:
The string projection of the order ≤l2 is of the form δ1 . . . δn with δi = (pi, σi, opi, qi)
such that
p1 is the initial state ofM,
qn is a final state ofM, and

Amaldev Manuel and Thomas Zeume 31

qi = pi for i ∈ {1, . . . , n− 1}
The string projection of of the order ≤l1 induced by +1l1 is of the form δ′1 . . . δ

′
n with

δ′i = (p′i, σ′i, op′i, q′i) such that op′1 . . . op′n is in the language (I1D1 + . . .+ IkDk)∗.
It is the case that

∧
j∈C ∀x∀y

(
(Ij(x) ∧Dj(y) ∧+1l1(x, y))→ x ≤l2 y

)
.

Intuitively, the second condition states that, in an accepting run, every decrement operation
of a counter has exactly one corresponding increment operation and vice versa. The last
condition ensures for every decrement operation, the corresponding increment operation
occured earlier in the run (and thus a counter cannot obtain a value below zero). J

Since the logic FO2(+1l ,+1p ,≤p) allows for axiomatizing 1-boundedness, by ∀x∀y(x 6=
y → ¬x ∼p y), we have the following corollary.

Corollary 16. Finite satisfiability of FO2(+1l ,+1p ,≤p) over k-bounded ordered data
words is at least as hard as the emptiness problem for multicounter automata.

It is not surprising that FO2 with two additional preorder successor relations is undecidable,
as those allow for encoding a grid. A minor technical difficulty arises when the corresponding
equivalence relations are not available.

I Theorem C.1. Finite satisfiability of two-variable logic with two additional preorder
successor relations, that is FO2(+1p1 ,+1p2), is undecidable.

Proof. We reduce from the tiling problem. A tile is a square with colored edges. A valid
tiling of an m × n grid with tiles from a tile-set T is a mapping T : [m] × [n] → T such
that adjacent edges have the same color, i.e., for example, the northern edge of T (i, j) and
the southern edge of T (i, j + 1) are colored identically. The following tiling problem is
undecidable:

Problem: Tiling
Input: Tiles T1, . . . , Tk over a set of colors {c1, . . . , cl}.

Question: Is there a valid tiling of an m× n grid for some m,n ∈ N such that the
topside of the top row is colored with c1 and the bottom side of the
bottom row is colored with c1?

Let I be an instance of Tiling with tiles T . A valid tiling T = (Tij)i,j∈[m]×[n] with tiles
from T will be encoded by a (+1p1 ,+1p2)-structureM(T) with additional unary relation
symbols from T and G = {W,SW,S, SE,E,NE,N,NW,C} as shown in Figure 5.

We now describe a FO2(+1p1 ,+1p2)-sentence ϕ = ϕgrid ∧ ϕtiling whose models encode
valid tilings. We say that x is northwest of y if +1p1(x, y) and +1p2(y, x). Analogously for
southwest, southeast and northeast.

For ensuring a grid as seen in Figure 5 it is only necessary that a unique border and all
points within this border exist. Thus, the sentence ϕgrid is the conjunction of a sentence
ϕborder that ensures the correctness of the border and a sentence ϕcenter that ensures the
existence of all elements within the border.

Now, ϕborder is the conjunction of several conditions. Firstly, every label from {W,S,E,N}
occurs exactly once. Let the elements labeled with W , S, E, N be w, s, e and n. Then for
the northwest border, the following conditions need to be satisfied:

There is a NW -labeled element northeast of w and a NW -labeled element southwest of
n.
For every element labeled with NW there is an element in northeast direction which is
labeled with NW or N . Similarly there is an element in southwest direction which is
labeled with NW or W .

32 Two-Variable Logic on 2-Dimensional Structures

≤p1

≤p2

S

SW SE

SW C SE

W C C SE

NW C C E

NW C NE

NW NE

N

≤p1

≤p2

T11

T21 T12

T31 T22 T13

T41 T32 T23 T14

T42 T33 T24 T15

T43 T34 T25

T44 T35

T45

Figure 5 How a tiling T11T12 . . . T15| . . . |T41T42 . . . T45 is encoded as a (+1p1 ; +1p2)-structure.
The labels encoding the grid and the tiling are shown on the left and right side, respectively.

Analogously for the southwest, southeast and northeast border.
The formula ϕcenter ensures the following conditions:
All elements in southeast direction of an NW -labeled element are labeled with C.
All elements in northwest, southwest, southeast and northeast direction of a C-labeled
element are labeled with C, NW , SW , SE or NE, respectively.

Assuming that the equivalence classes of +1p1 and +1p2 constitute a grid, the formula
ϕtiling ensures that the grid is tiled validly:

Every element x carries exactly one label from T .
Elements labeled with NW carry a tile with c1-colored top side. Elements labeled with
SE carry a tile with c1-colored bottom side.
If x is southwest of y, x carries tile s and y carries tile t, then the right side of s and the
left side of t are colored equally.

Obviously, if T is a valid tiling, thenM(T) fulfills ϕ (see Figure 5). We finish the proof
by constructing a valid tiling T from a modelM of ϕ. LetM be a model of ϕ. ThenM is
also a model of ϕborder, and therefore has unique elements w, s, e, n labeled with W,S,E,N .
Further ϕborder ensures that between w and s, w and n, s and e as well as n and e there
are blocks labeled with SW , NW , SE and NE, respectively. This borderline is unique due
to the uniqueness of w, s, e, n. Further, the SW - and NE-blocks as well as the SE- and
NW -blocks are equally long due to +1p1 - and +1p2 -closeness of the elements in the border.
The formula ϕcenter ensures that all elements within this border are present and ϕtiling
ensures that the resulting grid is properly tiled. J

The straight forward proof of the previous result relies on arbitrarily large equivalence
classes of +1p1 and +1p2 . However, undecidability already holds already for 2-bounded struc-
tures. This gives a tight bound on the extensibility of the decidability of FO2(+1l ,+1p ,≤p)
on k-bounded structures to structures with two preorders.

Theorem 17. Finite satisfiability of two-variable logic with two additional 2-bounded
preorder successor relations is undecidable.

Amaldev Manuel and Thomas Zeume 33

≤p1

≤p2

T +
41

T +
42

T +
43

T −41

T −42

T −43

T +
31

T +
32

T +
33

T −31

T −32

T −33

T +
21

T +
22

T +
23

T −21

T −22

T −23

T +
11

T +
12

T +
13

T −11

T −12

T −13

Figure 6 How the tiling T = T11T12T13|T21T22T23|T31T32T33|T41T42T43 is encoded as a
(+1p1 ,+1p2)-structure with 2-bounded equivalence classes.

Proof sketch. The problem Tiling is reduced to finite satisfiability of FO2(+1p1 ,+1p2) with
2-bounded equivalence classes. Here, for technical reasons we assume that a valid tiling has
at least 3 columns and 4 rows, i.e. m ≥ 3 and n ≥ 3.

We say that x is northwest of y if +1p1(x, y) and +1p2(y, x). Analogously for southwest,
southeast and northeast.

Given a tiling T of a m×n grid, we can obtain a (+1p1 ,+1p2)-structureM(T) with only
two elements per equivalence class as shown in Figure 6.

For the moment, we allow the predicates ∼p1 and ∼p2 and will later describe how to
get rid of those. We construct a FO2(+1p1 ,+1p2)-formula ϕ = ϕlabel ∧ ϕrow ∧ ϕnext ∧ ϕstart
whose models encode valid tilings. The formula ϕ uses unary predicates from T and from
C = {C−, C+}.

The formula ϕlabel ensures that every element carries exactly one label from T and one
label from C.

Intuitively, the formula ϕrow ensures that every row r = t1 . . . tn of a valid tiling is
represented by elements x1, . . . , xn, y1, . . . , yn such that

xi and yi carry label ti for every i ∈ {1, . . . , n}.
xi+1 is northeast of xi for every i ∈ {1, . . . , n− 1}. Similarly for y1, . . . , yn.
xi ∼p2 yi for all i ∈ {1, . . . , n}.
xi ∈ C− and yi ∈ C+ for all i ∈ {1, . . . , n}.

Therefore ϕrow expresses the following conditions:

(R1) For any x with label s ∈ T which is southwest of some x′ with label s ∈ T , the right side
of s fits to the left side of t. Furthermore, x and x′ carry the same label from C.

(R2) For every x there is a y with x ∼p2 y and
x and y carry different labels from C.
x and y carry the same label from T .

(R3) If there is an x′ northeast of x then, for y with x ∼p2 y, there is a y′ northeast of y.
Similarly for x′ southwest of x.

34 Two-Variable Logic on 2-Dimensional Structures

The formula ϕnextline ensures that the encodings of two successive rows are consistent.
Therefore ϕnextline expresses that for every element x

(N1) there is a y with x ∼p1 y and
x and y carry different labels from C.
if x carries C+ and s ∈ T and y carries C− and t ∈ T , then the topside of s fits to
the bottom side of t.

(N2) if there is an x′ northeast of x then, for y with x ∼p1 y there is a y′ northeast of y.
Similarly for x′ southwest of x.

Finally, ϕstart ensures that the of the smallest element with respect to +1p2 is completely
labeled with tiles with color c1 at the bottom side.

It is clear that, for every valid tiling T , the formula ϕ is satisfied byM(T). On the other
hand, letM be a model of ϕ. We show how to obtain a valid tiling T fromM. Let r−1 be
the element ofM that has no predecessor with respect to +1p2 and carries the label C−.
Note, that this element is uniquely determined. Let r−2 , . . . , r−n be elements fromM such
that r−i+1 is northeast of r−i for all i ∈ {1, . . . , n− 1} and n is maximal. Then the first line
of T contains the tiles t1, . . . , tn where ti ∈ T is the T -label of r−i . By (R1), the horizontal
tiling constraints are fulfilled, i.e. the right side of ti and the left side of ti+1 are colored
equally. Further, due to (R3), there are elements r+

1 , . . . , r
+
n such that r−i and r+

i are in the
same equivalence class of +1p2 , and r+

1 and r+
n have no elements in southwest and northeast

direction, respectively. Moreover r+
i and r−i carry the same label from T and different labels

from C (by (R2)). Condition (N1) guarantees the existence of elements r′−1 , . . . , r′
−
n inM

such that r+
i and r′−i are in the same equivalence class of +1p1 and both carry labels from

T that are vertically consistent. Further r′−1 and r′−n do not have elements in in southwest
and northeast direction. By (R1) the horizontal tiling constraints for the T -labels of r′−i and
r′
−
i+1 are satisfied. Thus the T -labels of r′−1 , . . . , r′

−
n can be chosen as the second line of T .

Inductively we obtain a valid tiling T .
We shortly describe how to get rid of ∼p1 and ∼p2 . It can be ensured that every element

u carries profile information about every element v which is southwest or northeast of u.
The profile information contains the label of v as well as whether there is an element in
southwest or northeast direction of v. The conditions (R2), (R3), (N1) and (N2) can be
easily rephrased using this profile information. J

We denote the relation +1l2 by +2l . The following corollary slightly improves Theorem 4
in [24].

Corollary . Finite satisfiability of FO2(+1l1 ,+2l1 ,+1l2 ,+2l2) is undecidable.

Proof. We show how to projectively characterize a 2-bounded preorder successor relation
+1p using relations +1l and +2l . Therefore we construct a sentence ϕ+1p

(x, y) using binary
predicates +1l , +2l and one unary predicate O such that for every binary relation R the
following conditions are equivalent:

i) R is a 2-bounded preorder.
ii) There are binary relations +1l and +2l and a unary predicate O such that R = {(u, v) |

(u, v) |= ϕ+1p
(x, y).

Then the result follows by replacing +1p1 and +1p2 by ϕ+1p1
(x, y) and ϕ+1p2

(x, y),
respectively, in the formula ϕ from the previous proof.

Besides +1l and +2l , the formula ϕ+1p
(x, y) uses a unary predicate O. The formula is

true for (x, y) if the following conditions are satisfied:

Amaldev Manuel and Thomas Zeume 35

Every other position (with respect to ≤l) is labeled with O, i.e. the first element is not
labeled with O, and O-labeled elements alternate with elements not labeled with O.
If x is labeled with O then +1l(x, y). If x is not labeled with O then +2l(x, y).

Now, for a given 2-bounded preorder successor relation defined by

{a1, a
′
1} ≺ {a2, a

′
2} ≺ . . . ≺ {an, a′n}

the relations +1l and +2l given by

a1 < a′1 < a2 < a′2 < . . . an < a′n

and O = {a′1, . . . , a′n} prove ’i ⇒ ii’. The other direction is similar. J

The following theorems complement results from [3] and [29]. The proofs use similar
methods as used in those works.

Theorem 19. Finite satisfiability of FO2(+1l ,≤l ,+1p) is undecidable.

Proof. The proof follows the lines of the proof of Proposition 29 in [3].
We reduce from the undecidable problem

Problem: PCP
Input: A sequence (u1, v1), . . . , (uk, vk), where every ui, vi ∈ Σ∗.

Question: Is there a non-empty, finite sequence ~i = i1, . . . , im such that
ui1 . . . uim = vi1 . . . vim?

Let I = (u1, v1), . . . , (uk, vk) be an instance of PCP. We construct a FO2(≤l ,+1l ,+1p)-
sentence ϕ that has a finite model if and only if I has a solution. The sentence ϕ uses unary
predicates from Σ as well as the two unary predicates U, V , and expresses the following
conditions:

(C1) The string projection of ≤l1 is ui1vi1 . . . uimvim for some m ∈ N. Elements corresponding
to some ui and vi are marked with U and V , respectively.

(C2) Every equivalence class of +1p2 contains exactly two elements such that
One is marked with U and one is marked with V .
Both carry the same label from Σ.

(C3) Positions x1, . . . , x|u| corresponding to the positions of u := ui1 . . . uim fulfill +1p(i, i+ 1)
for all i ∈ {1, . . . , |u| − 1}. Analogously for v.

The first two conditions can be easily expressed in FO2(≤l ,+1l ,+1p). The third condition
can be ensured by the formula

∀x∀y(U(x) ∧ U(y) ∧ x < y → ¬+1p(x, y))

Now, from a solution ~i = i1 . . . im a model of ϕ can be constructed easily. On the
other hand, letM be a a model of ϕ. By (C1), the string projection ofM is of the form
ui1vi1 . . . uimvim . The U - and V -labeled elements are ordered with respect to ≤p due to
(C3). Thus, (C2) implies that ui1 . . . uim = vi1 . . . vim . J

I Theorem C.2. Finite satisfiability of FO2(+1p1 ,≤p2), i.e. two-variable logic with one
additional preorder successor relation and one additional preorder relation, is undecidable.

Proof. The proof follows the lines of the proof of Theorem 4.2 in [29].
J

	Introduction
	Preliminaries
	An Automaton Model for Ordered Data Words
	Ordered Data Automata and EMSO2 (, ,) are equivalent
	Deciding Emptiness for Ordered Data Automata on k-bounded Ordered Data Words
	Hardness Results for Two-Dimensional Ordered Structures
	Discussion
	Extension of Section 4: Ordered Data Automata and EMSO2 (, ,) are equivalent
	Extension of Section 5: Deciding Emptiness for Ordered Data Automata on k-bounded Ordered Data Words
	Extension of Section 6: Hardness Results for Two-Dimensional Ordered Structures

