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Abstract. By a small parable about extending LTL with a sub-order,
we try to describe the moral of Data language paradigm.

1 Introduction

LTL (propositional discrete linear time temporal logic) [Pnueli, 1977] formulas
work on historiesi of the form

w = w1w2 . . . wn,wi ∈ P

where P is the set of all propositions and is evaluated with respect to a particular
time point i ∈ ∣w∣ii. The commonly used temporal connectives are | for Future,x for Past, ⊕ for Tomorrow, ⊖ for Yesterday, u for Until and s for Since.
The duals of | and x are ⊞ for Henceforth and ⊟ for Hitherto.

It is well-known that LTL(s, u,⊕,⊖) is expressively complete with respect
to FO(<) [Kamp, 1968], whereas LTL(|,x,⊕,⊖) and LTL(|,x) are complete
with respect to FO2(<,≺) and FO2(<) respectively[Etessami et al., 1997]iiiiv.
The fact that the logic is propositional and the lower complexity of its deci-
sion problemsv makes LTL a suitable specification mechanism for describing
sequential behaviours of computing machineries.

A transition system describing a printer
system with only one process. The ac-
tions are request, wait, queue and print

abbreviated here as r, w, q, p respectively.
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Every request is eventually followed by a queue and in turn by a print. A sample
execution trace of the above described system is given below.

w w r w w q w w p w

i In this paper we consider only LTL over finite histories.
ii ∣w∣ denote the length of w.
iii FO2 is the two variable fragment of first order logic.
iv ≺ denotes the successor relation, which is the Hasse covering relation for <.
v LTL satisfiability problem is in Pspace whereas FO(<) satisfiability is

Non-Elementary [Stockmeyer, 1974] and FO2 satisfiability is Nexptime-

complete[Etessami et al., 1997].



A desirable property is fairness which states that every request is eventually
queued and then printed. Stated in the language of LTL it is as follows.

r →|(q ∧|p) ∧ ⊞(r →|(q ∧|p))
If we have two asynchronous processes, we could still use LTL by adding identity
to actions corresponding to each process by means of additional propositional
variables, as shown below.

A transition system describing a printer
system with two asynchronous processes.
The actions request, wait, queue and print

are paired with the identity of the pro-
cess, a boolean value. The invariant that
every request is eventually followed by a
queue and in turn by a print holds in-
dividually in each of the processes. The
behaviour of the whole system will be the
arbitrary interleaving-s of the behaviours
of the individual processes.
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The fairness is stated in terms of actions of each processes, in the following
way.

(rs →|(qs∧|ps)∧rt →|(qt∧|pt))∧⊞(rs →|(qs ∧|ps) ∧ rt →|(qt ∧|pt))
This way of adding propositional variables for identities does not generalize if
the system contains an unbounded number of processesvi. In which case, one way
to represent the execution trace is by annotating the sequential trace ordered <,
by yet another order ≲ as shown below. The following is an execution trace of
printer system, the coloured edges denote the execution of each process.

r r r w w q w w q p w q p w w p

The order ≲ satisfies the following properties,

1. ≲ is compatible with <, that means, if i ≲ j implies that i < j.

2. The order relation ≲ is a union of chains, this is by virtue of the fact that
each chain in ≲ is a sequential trace of a process.

Henceforth < denotes a total order and ≲ stands for a subset of < which sat-
isfies the above properties. One way to specify properties of such structures is to

vi Unbounded here means finite but not bounded by a constant.



define temporal connectives which take into account both the order relationsvii.
We define the following temporal logic,

ϕ ∶∶= p ∣ |∼ϕ ∣ |≁ϕ ∣ x∼ϕ ∣ x≁ϕ ∣ ¬ϕ ∣ ϕ1 ∨ϕ2

The semantics of the logic is given with respect to histories ordered by < and ≲,
in the following way, boolean cases are as usual,

w, i ⊧ p ⇔ wi = p

w, i ⊧|∼ϕ ⇔ ∃j. i ≲ j ∧w, j ⊧ ϕ

w, i ⊧|≁ϕ ⇔ ∃j. i < j ∧ i /≲ j ∧w, j ⊧ ϕ

w, i ⊧x∼ϕ ⇔ ∃j. j ≲ i ∧w, j ⊧ ϕ

w, i ⊧x≁ϕ ⇔ ∃j. j < i ∧ j /≲ i ∧w, j ⊧ ϕ

We say the history w ⊧ ϕ if w,1 ⊧ ϕ. We can define ⊞∼ϕ = ¬ |∼ ¬ϕ, ⊞≁ϕ =¬ |≁ ¬ϕ, ⊞ϕ = ⊞∼ϕ ∧ ⊞≁ϕ, |ϕ = |∼ϕ ∨ |≁ϕ. Symmetrically we can define the
past modalities as well. The fairness condition can be expressed in this logic as

(r →|∼(q ∧|∼p)) ∧ ⊞(r →|∼(q ∧|∼p))
One benchmark for measuring the expressiveness of temporal logic is of course

the classical first order logic. By the standard translation of modal logics we can
show that,

Proposition 1. Every LTL(|∼,|≁,x∼,x≁) formula ϕ can be converted to an

equivalent FO2(<,≲) formula ϕ̂(x), where ∣ϕ̂(x)∣ ∈ O(∣ϕ∣) and qdp(ϕ̂(x)) =
odp(ϕ)viii.

Proof. Use the standard translation to obtain ϕ̂(x) from ϕ, boolean cases are
omitted.

STx(p) ∶= p(x)
STx(|∼ϕ) ∶= ∃y. x ≲ y ∧ STy(ϕ)
STx(|≁ϕ) ∶= ∃y. x < y ∧ x /≲ y ∧ STy(ϕ)
STx(x∼ϕ) ∶= ∃y. y ≲ x ∧ STy(ϕ)
STx(x≁ϕ) ∶= ∃y. y < x ∧ y /≲ x ∧ STy(ϕ)

⊓⊔
The other direction is the interesting one, along the lines of [Etessami et al., 1997]
we can show that,

vii Linear orders with added relations have been studied recently, from different perspec-
tives. CaRet introduced in [Alur et al., 2004,Alur and Madhusudan, 2006] works
over nested words, where the words are ornamented with a relation µ–which is
a union of chains of length two, looks at program executions where the relation
µ corresponds to call-return patterns which are inherently nested. Another logic
one finds in the literature is the LTL ↓, LTL with freeze quantifiers, introduced in
[Demri and Lazic, 2006], which addresses words over an alphabet Σ ×∆ where Σ is
a finite alphabet and ∆ is an infinite data domain.

viii quantifier depth and operator depth respectively.



Theorem 1. Every FO2(<,≲) formula ϕ(x) can be converted to an equivalent

LTL(|∼,|≁,x∼,x≁) formula ϕ′, where ∣ϕ′∣ ∈ 2O(∣ϕ∣(qdp(ϕ)+1)) and odp(ϕ′) =
qdp(ϕ).
Proof. The proof is by induction on the structure of the formulas. When ϕ(x) is
atomic, that is ϕ = p(x), ϕ′ = pi. When ϕ(x) is composite, that is ϕ(x) = ¬ϕ1(x)
(or ϕ(x) = ϕ1(x) ∨ϕ2(x)), we recursively compute ϕ′

1
(x) (or ϕ′

1
(x) and ϕ′

2
(x))

and output ¬ϕ′
1

(or ϕ′
1
∨ϕ′

2
).

The remaining cases are when ϕ(x) is of the form ∃x.ϕ1(x) or ∃y.ϕ1(x, y).
In the first case ϕ is equivalent to ∃y.ϕ1(y) (by renaming) and hence reduces
to the second case (considering x as a dummy variable). In the second case we
rewrite ϕ1(x, y) in the form

ϕ1(x, y) = β (χ0(x, y), . . . , χr−1(x, y), ξ0(x), . . . , ξs−1(x), ζ0(y), . . . , ζt−1(y))
where β is a boolean formula, each χi is an order formula, ξi is an atomic or
existential FO2 formula with qdp(ξi) < qdp(ϕ) and ζi is an atomic or existential
FO2 formula with qdp(ζi) < qdp(ϕ). We next pull out the ξi’s from β by doing
a case distinction on which of the sub-formulas ξi hold or not. Rewriting the
previous expression as,

¨
γ̄∈{⊺,�}s

(¦
i<s

(ξi ↔ γi) ∧ ∃y.β (χ0, . . . , χr−1, γ0, . . . , γs−1, ζ0, . . . , ζt−1))
Next we do a case distinction on which order relation, called order type, holds
between x and y. All possible relations which can exist between x and y which
satisfy the conditions for ≲ will be an order type, namely, x = y, x ≲ y, x < y∧x /≲ y,
y ≲ x, x > y ∧ y /≲ xix. When we assume that one of these order types is true,
each atomic formula evaluates to either � or ⊺ and in particular, each of the ξ’s
evaluates to either � or ⊺; which we denote by ξτ . Finally, we can rewrite ϕ as
follows, where Υ stands for the set of all order types:

¨
γ̄∈{⊺,�}s

(¦
i<s

(ξi ↔ γi) ∧
τ̈∈Υ

∃y (τ ∧ β (χτ
0
, . . . , χτ

r−1, γ0, . . . , γs−1, ζ0, . . . , ζt−1)))
If τ is an order type and ψ(y) an FO2 formula then for ∃y.τ ∧ψ(y), an equivalent
LTL formula τ⟨ψ⟩ can be obtained in the following way,

τ x = y x ≲ y x < y ∧ x /≲ y y ≲ x x > y ∧ y /≲ x

τ <ψ> ψ |∼ψ |≁ψ x∼ψ x≁ψ
Now, we recursively compute ξ′i, i < s and ζ ′i, i < t and outputs,

¨
γ̄∈{⊺,�}s

(¦
i<s

(ξ′i ↔ γi) ∧
τ̈∈Υ

τ ⟨β (χτ
0
, . . . , χτ

r−1, γ0, . . . , γs−1, ζ
′
0
, . . . , ζ ′t−1)⟩)

The respective bounds are easily proved by an induction on the cases. ⊓⊔
ix The order types are mutually exclusive.



Corollary 1. LTL(|∼,|≁,x∼,x≁) is expressively complete w.r.t FO2(<,≲).
The next interesting question about the logic is decidability, it turns out that

the logic is decidable.

Proposition 2. FO2(<,≲) is decidable in Nexptime.

Proof. [Bojanczyk et al., 2006] shows that the satisfiability of FO2(<,∼) is de-
cidable in Nexptime, where ∼ is an equivalence relation, We interpret FO2(<,≲)
in FO2(<,∼) by the following translation,

⌜a(x)⌝ ∶= a(x) ⌜x = y⌝ ∶= x = y⌜x < y⌝ ∶= x < y ⌜x ≲ y⌝ ∶= x < y ∧ x ∼ y⌜¬ϕ⌝ ∶= ¬⌜ϕ⌝ ⌜ϕ1 ∨ϕ2⌝ ∶= ⌜ϕ1⌝ ∨ ⌜ϕ2⌝⌜∃x.ϕ⌝ ∶= ∃x.⌜ϕ⌝
This completes the proof. ⊓⊔
Corollary 2. Satisfiability of LTL(|∼,|≁,x∼,x≁) is in Nexptime.

2 Discussion

Diamonds are not sufficient to specify properties over discrete linear time. We can
enhance the expressiveness of our temporal logic by adding modalities for Yes-

terday and Tomorrow. We can redo the proofs and show that they translate
to FO2(<,≺,≲,≾) x.But the satisfiability problem for FO2(<,≺,≲,≾) is as hard as
reachability in vector addition systems [Bojanczyk et al., 2006]. The situation is
worse when we go for binary modalities like Until, because of the following.

Proposition 3 ([Bojanczyk et al., 2006]). Satisfiability of FO3(<,≲) is unde-

cidable.

We can redo the above proof and show that,

Proposition 4. Satisfiability of FO3(<,≾) is undecidable.

Another aspect is to refine the order ≲, if we see each local process as a
collection of threads. The order < stands for the global ordering of the events in
each process, ≲ is the collection of orderings of each local process and another
order ≲′ is the collection of threads in each local process and hence ≲′ has to
be compatible with ≲ and again a union of chains. But, defining a decidable
temporal logic is hard, since

x The trivial way to get expressive completeness with respect to FO2(<,≺,≲,≾) is to
add a modality for each order type definable, which in turn corresponds to taking the
product of modalities definable in each oder (for instance, the order types definable
by the vocabulary (<,≺) in two variables correspond to the modalities Yesterday,

Tomorrow, Past, Future, Distant Past, Distant Future) interpreted in the
obvious way.



Proposition 5 ([Björklund and Bojanczyk, 2007]). Satisfiability of FO2(<,≲,≲′), where ≲′ is compatible with ≲ and is a union of chains, is undecidable.xi

It may be noted that in principle the temporal logic which is introduced
here can be used for model-checking. The histories are of the form (w,≲) where
w ∈ Σ∗ is a word and ≲ is as previously described. A collection of such histories
can be recognized by the following automaton, we denote by ≾ the Hasse covering
relation of ≲. We say i ∈ [∣w∣] is ≲-minimal if ¬∃j ∈ [∣w∣]. j ≲ i, similarly i is ≲-
maximal if ¬∃j ∈ [∣w∣]. i ≲ jxii.

Definition 1 ([Björklund and Schwentick, 2007]). A Class memory automaton

A is a six tuple A = (Q,Σ,∆, q0, Fl, Fg) where Q is a finite set of states, q0 is

the initial state, Fl ⊆ Q is a set of local accepting states, Fg ⊆ Fl is a set of global

accepting states and ∆ ⊆ Q × (Q ∪ {�}) ×Σ ×Q is the transition relation.

A run ρ of the automaton A on a given word w = (w,≲), where w = a1a2 . . . an

is a sequence q0q1 . . . qn such that q0 is the initial state and for all i ∈ [n] there is
a transition δi = (p, p′, a, q) such that (i) p = qi−1 and q = qi (ii) a = ai (iii) if i is≲-minimal then p′ should be �. Else there is a j ∈ [n] such that j ≾ i, and p′ = qj .
The run ρ is said to be accepting if {qi ∣ i is ≲-maximal} ⊆ Fl and qn ∈ Fg.

Example 1. The printer system can be modelled by the automaton in the follow-
ing way. A = (Q,Σ,∆, q0, Fl, Fg) where Σ = {w,p, q, r}. The states of the automa-
ton are Q = {s0, sr, sq, sp}. The accepting states Fl = Fg = {sp} and the initial
state is s0. The transition relation contains the following tuples ∆ = {(s, s′,w, s′) ∣
s, s′ ∈ Q} ∪ {(s, s0, r, sr) ∣ s ∈ Q} ∪ {(s, sr, q, sq) ∣ s ∈ Q} ∪ {(s, sq, p, sp) ∣ s ∈ Q}.

Class memory automaton is expressively equivalent to EMSO2(<,≺,≲,≾) and
its emptiness checking is decidable. Any LTL formula can be translated to a CMA
in 2-Dexptime and can be model-checked. But the complexity of emptiness
checking of CMA is as hard as Petri net reachability making it intractable.

3 Data Languages

Our logic and automaton work over structures of the form (w,≲), where ≲ is an
extra-linguistic object, in the sense that it lies outside the level of abstraction of
the alphabet. Even though in logic it is viable and convenient to consider such
objects, in reality it is common that such informations are represented at the
level of abstraction of the alphabetxiii. Examples are time-stamps in distributed
systems, nonce-s in security protocols, process id-s in schedulers, ID attributes
in XML documents etc.

xi Satisfiability of FO2(<,≲,≲′) is undecidable when ≲′ is not compatible with ≲ but
still compatible with <. Since given ϕ we can construct the sentence ϕ′ ≡ ϕ∧∀xy. x ≲′

y → x ≲ y.
xii [n] for n ∈ N stands for the set {1, . . . n}.
xiii It may very well be the case that such informations are unavailable outside the realm

of language.



It is clear that since ≲ has to represent unbounded-ly many processes, any
alphabet which is going to code it up, has to be unbounded. It can be done by
introducing a countably infinite alphabet with suitable relations and operations
on the alphabetxiv. Hence the words, called data-words, are going to be over
Σ ×∆, where Σ is finite and ∆ is countably infinite. A collection of data-words
is called a data language. For instance the semantics of our logic can be given in
terms of words over Σ ×∆ where ∆ has countably many arbitrarily long chains
(for example ∆ = N ×N with the relation (x, y) ≲ (x′, y′)⇔ x = x′ ∧ y < y′).

We conclude by pointing to a comprehensive survey on Data languages
[Segoufin, 2006].
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