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Abstract
A rational relation is conjugate if every pair of words in the relation are conjugates, i.e., cyclic shifts
of each other. We show that checking whether a rational relation is conjugate is decidable.

We assume that the rational relation is given as a rational expression over pairs of words.
Every rational expression is effectively equivalent to a sum of sumfree expressions, possibly with
an exponential size blow-up. Hence, the general problem reduces to determining the conjugacy
of sumfree rational expressions. To solve this specific case, we generalise the classical Lyndon-
Schützenberger’s theorem from word combinatorics that equates conjugacy of a pair of words pu, vq

and the existence of a word z (called a witness) such that uz “ zv. We give two generalisations of
this result. We say that a set of conjugate pairs has a common witness if there is a word that is a
witness for every pair in the set. The generalisations are as follows:

1. If G is an arbitrary set of conjugate pairs, then G˚ is conjugate if and only if there is a common
witness for G. Moreover, a word is a common witness for G˚ if and only if it is a common
witness for G (Theorem 44).

2. If G˚
1 , . . . , G˚

k , k ą 0 are arbitrary sets of conjugate pairs and pα0, β0q, . . . , pαk, βkq are arbitrary
pairs of words, then the set of words

G “ pα0, β0qG˚
1 pα1, β1q ¨ ¨ ¨ G˚

k pαk, βkq

is conjugate if and only if it has a common witness. Moreover, the common witnesses of G are
computable in polynomial time from the common witnesses of G˚

1 , . . . , G˚
k (Theorem 50).

A consequence of the above theorems is that a set of pairs generated by a sumfree rational
expression is conjugate if and only if it has a common witness. Further, the set of common witnesses
is computable by repeated applications of the above two results. This yields a polynomial time
algorithm for checking the conjugacy of a sumfree expression and an exponential time procedure for
the general problem.
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1 Introduction

Rational relations over words are precisely those defined by finite state transducers. A pair
of words is conjugate if they are cyclic shifts of each other. Conjugacy has been pivotal in
the study of rational relations, particularly used by Choffrut [6] in 1977 for characterising
the twinning property of transducers that in turn is used for deciding the sequentiality of
rational relations.

In this paper, we address the decidability of the following fundamental question:

1. Given a rational relation R, are all the pairs of words in R conjugates?

We provide a definitive answer to this by introducing the concept of a common witness of a
relation. A witness of a conjugate pair pu, vq is a word z such that either uz “ zv (inner
witness) or zu “ vz (outer witness). Succinctly, a word z is a common inner (resp. outer)
witness of a relation, if for every pair pu, vq in the relation, z is an inner witness (resp. outer
witness) of pu, vq. We show that a rational relation is conjugate if and only if each of its
sumfree rational components has a common witness, i.e., either a common inner witness
or a common outer witness. This characterisation of conjugacy is a main contribution of
our paper. It is in fact a generalisation of Lyndon-Schützenberger theorem characterising
conjugacy of two words.

Subsequently, when dealing with a rational relation R, there are two interesting questions
regarding the common witness:

2. Is there a common witness for the relation R?
3. Given a word z, is it a common witness of R?

Question 3 proves comparatively tractable, as it can be reduced to verifying whether the
rational relation R1 “ tpuz, zvq | pu, vq P Ru (or, R1 “ tpzu, vzq | pu, vq P Ru) consists of only
identical pairs. To achieve this, we initially determine if R1 is length preserving, i.e., all
related words are of equal length. If it does, we can construct a letter-to-letter transducer for
R1 based on Eilenberg and Schützenberger’s theorem ([10], Theorem 6.1) stating that a length
preserving rational relation over A˚ ˆ B˚ is a rational subset of pA ˆ Bq˚, or equivalently, it
can be realised by a letter-to-letter transducer whose transitions are labelled with elements of
A ˆ B. The final step involves validating whether this transducer indeed realises an identity
relation by checking the labels of each transition. In fact, the decidability of the twinning
property of a transducer is connected to Question 3. It is further elaborated in Section 1.5.

Question 2, on the other hand, is more difficult as a priori we do not have a bound on
the size of a possible common witness. The difference between Question 2 and Question
3 is analogous to that between the boundedness and k-boundedness questions of weighted
automata [9]. We provide a decision procedure for Question 2. This is another main
contribution of the paper. Our characterisation of conjugacy via common witness, together
with this procedure, yields an algorithm for deciding Question 1.

In the rest of this section, we give an overview of the paper and compare it with
related work. We begin by recalling the definitions of rational relations and expressions
and introduce the conjugacy problem of rational relations. The general problem is then
reduced to determining the conjugacy of sumfree expressions. Subsequently, it is argued that
decidability follows from two specific questions (Question 13 and Question 16). Finally, we
discuss related works.
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1.1 Rational Sets and Relations
A monoid M is a set M with an associative binary operation that has an identity. For
convenience, we speak of the monoid operation as a multiplication p¨q and denote the identity
by 1. For example, the set of all finite words over an alphabet A, denoted as A˚, forms
a monoid with concatenation as the operation and the empty word ϵ as the identity. The
product operation can be extended to subsets of M as

X ¨ Y “ tx ¨ y | x P X, y P Y u . (1)

Since the operation is associative, we can define Xi without any ambiguity. For instance,
defined inductively, X0 “ t1u, and Xi “ Xi´1 ¨ X, for i ą 0. Similarly, the Kleene closure of
X, denoted as X˚, is the closure of X under finite products, i.e.,

X˚ “ X0 Y X1 Y ¨ ¨ ¨ (2)

§ Definition 1 (Rational Subset). The family of rational subsets of M is the smallest class
containing all the finite subsets of M and closed under union, product and Kleene closure.

A natural way to present a rational subset is as an expression.

§ Definition 2 (Rational Expression). A rational expression over the monoid M is defined
recursively: H, m P M are rational expressions, and if E1, E2 are rational expressions then
E1 ¨ E2, E1 ` E2, and E˚

1 are also rational expressions.

The language of a rational expression E, denoted as LpEq Ď M , is defined as follows:
LpHq “ H, Lpmq “ tmu, and

LpE1 ¨ E2q “ LpE1q ¨ LpE2q, LpE1 ` E2q “ LpE1q Y LpE2q, LpE˚
1 q “ LpE1q˚ .

It is easy to prove that rational expressions define precisely the class of rational subsets
of M. Two rational expressions are equivalent (denoted by ”) if they define the same sets.

§ Definition 3 (Rational Relation). A binary relation over two free monoids A˚ and B˚ is a
subset of the product monoid A˚ ˆ B˚. It is rational if it is a rational subset of A˚ ˆ B˚.

§ Example 4. [23] Let monoid M “ ta u˚ˆtb, c u˚. The set R1 “ pa, bq˚pϵ, cq˚ “ tpan, bncmq |

n, m ě 0u is a rational subset of M . The set R2 “ pϵ, bq˚pa, cq˚ “ tpan, bmcnq | n, m ě 0u is
also a rational subset of M .

Rational relations are precisely those computable by a 2-tape 1-way finite automata, or
equivalently by a finite state transducer [16, 24]. The first systematic study of such relations
was established by Elgot and Mezei [11]. Recent surveys on transducers are found in [13, 22].

The class of rational relations is closed neither under intersection nor under complement.
For instance in the above example R1 X R2 “ tpan, bncnq | n ě 0u is not a rational subset of
M ([23], Example 1.3). Several algorithmic problems, such as universality, equivalence, and
intersection emptiness, are undecidable [14, 16].

1.2 Conjugacy of Words and Relations
§ Definition 5 (Conjugate Word). A pair of words pu, vq is conjugate, denoted as u „ v, if
there exist words x and y (possibly empty) such that u “ xy and v “ yx. In other words, u

and v are cyclic shifts of one another.
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For example, paaab, aabaq is a conjugate pair with x “ a and y “ aab. It is not difficult to
see that conjugacy relation is an equivalence relation on the set of words.

Let A and B be two finite alphabets. We say, a set of pairs from (or a relation over)
A˚ ˆB˚ is conjugate if each pair in the set is conjugate. In this work we address the following
question.

§ Question 6 (Conjugacy Problem). Given a rational relation over the product monoid
A˚ ˆ B˚, is it conjugate?

We assume that the input is given as a rational expression over the monoid A˚ ˆ B˚.
Furthermore, if there is a pair in the relation containing a letter in the symmetric difference
of A and B, then the pair as well as the relation is not conjugate. Since this can be easily
checked, the nontrivial part of the problem is when the alphabets are identical, i.e., when
A “ B. Therefore we assume that the given rational relation is over A˚ ˆ A˚ for a fixed
finite alphabet A.

The objective of this paper is to address the decidability of conjugacy problem for a
rational relation. We present a proof that conjugacy of a rational relation can be decided.

1.3 Sumfree Expressions
A rational expression is sumfree if it does not use the sum (i.e., `). The set of sumfree
expressions is formally defined as a hierarchy.

Fix a monoid M “ pM, ¨, 1q. Given a class C of expressions over M, the Kleene closure of
C, denoted as KC, is the class of expressions

KC “ C Y tE˚ | E P Cu.

The monoid closure of C, denoted as MC, is the class of expressions

MC “ C Y tE1 ¨ ¨ ¨ Ek | Ei P C for each 1 ď i ď k and k P Nu.

§ Definition 7 (Sumfree Expression). The family F of sumfree expressions is defined inductively.
Let F0 “ tHu Y M and Fi`1 “ MKFi for each i ě 0. We define

F “
ď

iě0
Fi.

The star height of an expression E is the smallest k P N such that E belongs to Fk.

Over the free monoid A˚, the set of expressions F0 is A˚ Y tHu and KF0 is the set of
expressions F0 Y tw˚ | w P A˚u (for convenience we assume that H is not used in any other
expression other than H itself). It is not difficult to see that MKF0 is the set of expressions
KF0 Y tu1v˚

1 u2v˚
2 ¨ ¨ ¨ ukv˚

k uk`1 | ui, vi P A˚, k P Nu.
A rational expression is in Sumfree Normal Form (SNF) if it is a finite sum of sumfree

expressions. The following lemma is standard.

§ Lemma 8. Every rational expression E can be converted to one in sumfree normal form
E1 in exponential time. Moreover, |E1| ď 22¨|E|.

Proof. Let E be a rational expression over the monoid M. We assume that the rational
expression E is given as a tree e. We take the size of e, denoted as |e|, to be the number of
nodes in the tree. We inductively define a tree e1 that has the same language as the sumfree
normal form of the expression E and furthermore, as shown in Figure 1, it is in the shape of
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`

e1 `

e2 `

e3 H

Figure 1 SNF tree for the SNF expression E1 ` E2 ` E3

a right-comb with the internal nodes of the spine labelled with `’s (and the leaf of the spine
is labelled with H) and the pendant left subtrees attached to the spine are sumfree. We call
e1 as the SNF tree of e.

We obtain an equivalent sumfree normal form expression and its expression tree e1 by
induction on the structure of E. We prove the following invariant along with the construction
of e1.

Ź Claim 9. |e1| ď 22|e|

The following definition is used in the analysis below. Let Npe1q denote the number of
summands in e1, i.e., Npe1q is the number of nodes in the spine of the comb, or equivalently,
1 more than the number of nodes labelled with ‘`1 in e1. Hence Npe1q ď |e1|.

Base Case

When E is H or m P M , then E is already sumfree. The tree e corresponds to a tree with a
single node. We take e1 to be the tree with 3 nodes in SNF with the left subtree of the root
being e. Hence |e1| “ 3 and the claim holds.

Inductive Case

Assume that G and H are rational expressions with expression trees g and h respectively.
Let g1 and h1 denote their SNF trees. By induction hypothesis, G ” α1 ` ¨ ¨ ¨ ` αk and
F ” β1 ` ¨ ¨ ¨ ` βℓ such that αi, βj , 1 ď i ď k, 1 ď j ď ℓ, are sumfree expressions. Also,
|g1| ď 22|g| and |h1| ď 22|h|.

1. If E “ G ` H, then by substituting for G and H, we get an equivalent expression of the
desired form. This step takes constant time. To obtain e1 we replace the leaf of the spine
of g1 with the root of h1. Clearly,

|e1| “ |g1| ` |h1| ´ 1

ď 22|g| ` 22|h| ´ 1

ď 22p|g|`|h|`1q

“ 22|e|.
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2. If E “ G ¨ H, then by substituting G and H we get E ” pα1 ` ¨ ¨ ¨ ` αkq ¨ pβ1 ` ¨ ¨ ¨ ` βℓq.
Distributing the monoid operation over the union, we get E ” pα1β1 ` ¨ ¨ ¨ ` α1βℓq ` ¨ ¨ ¨ `

pαkβ1 ` ¨ ¨ ¨ ` αkβℓq, that is in the required form. This step takes time quadratic in the
maximum among the length of the SNF expressions G and H.
Assume there are p-many (resp. q-many) pendant subtrees attached to the spine of g1

(resp. h1). The tree e1 is a right-comb with pq-many pendant subtrees where each subtree
is obtained by the pairwise concatenation of pendant subtrees from g1 and h1 respectively.
Clearly, Npe1q “ Npg1qNph1q ´ 1.

|e1| ď Npg1qNph1q ` |g1|Nph1q ` |h1|Npg1q ` Npg1qNph1q

ď 4|g1||h1|

ď 4 ¨ 22|g|22|h|

ď 22p|g|`|h|`1q

“ 22|e|.

3. Finally, if E “ G˚, then by repeatedly applying the rational identity pX ` Y q˚ “

pX˚Y ˚q˚, where X, Y are rational expressions, we get E “ G˚ ” pα1 ` α2 ` ¨ ¨ ¨ ` αkq˚ “

pα˚
1 α˚

2 ¨ ¨ ¨ α˚
k q˚. This step takes linear time w.r.t. the length of the SNF epression G.

We obtain the tree g1 corresponding to g, and construct a new tree h from g1 as follows.
Add an intermediate node labelled with ˚ between each pendant subtree and the spine
of g1.
Replace each ` labelled nodes in the spine with concatenation.
Replace H in the leaf of spine with epsilon.
Add a new root node labelled with ˚.

Now, e1 is obtained by attaching h as the left subtree of a right-comb in the desired form.
Clearly Npe1q “ 1.

|e1| ď |g1| ` Npg1q ` 3
ď |g1| ` |g1| ` 3

ď 2 ¨ 22|g| ` 3

“ 22|g|`1 ` 3

ď 2 ¨ 22|g|`1 (Since |g| ě 1, 22|g|`1 ě 8)

“ 22p|g|`1q

“ 22|e|

Hence proved that the upper bound on the size of the SNF expression is exponential in
the size of the given expression.

Each step of constructing an SNF expression takes polynomial time in the length of its
constituent SNF expressions. Therefore, any rational expression can be converted to an
equivalent sumfree normal form in exponential time.

đ

Rewriting a rational expression as a sum of sumfree expressions may result in an expo-
nential blow-up, both in the number of summands and the size of each summand.

§ Example 10. Consider the expression E “ ppa, aq ` pb, bqqn for some n ą 0. Any equivalent
expression in SNF will have at least 2n summands. Now consider E1 “ p$, $qpEp#, #qq˚.
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An equivalent SNF expression will have at least one summand of exponential size, and the
expression E ¨ E1 in SNF will have exponentially many summands of exponential size.

By Lemma 8, we can assume without loss of generality that a given rational expression is
in SNF.

1.4 Conjugacy of a Sumfree Expression
§ Proposition 11. Let E “ E1 ` ¨ ¨ ¨ ` Ek, k ě 1 be a rational expression over A˚ ˆ A˚ in
SNF. Then E is conjugate if and only if each of E1, . . . , Ek is conjugate.

Proof. Since each LpEiq Ď LpEq, for 1 ď i ď k, if E is conjugate then each Ei is conjugate
as well. For the other direction, assume that E1, . . . , Ek define conjugate relations. Then
each pair in LpEq belongs to some LpEiq, for 1 ď i ď k, and hence it is conjugate. Since all
pairs in LpEq are conjugate, E is conjugate by definition. đ

Therefore, to solve the conjugacy problem it suffices to solve it for sumfree expressions.
We use pairs of lowercase Greek letters pα, βq with suitable modifications to denote pairs
of words over A˚ ˆ A˚. Clearly H and pϵ, ϵq are conjugates. For an expression of the form
pα, βq, it is straightforward to check conjugacy. Thus, the conjugacy problem is decidable for
the class of expressions F0.

To show the decidability of the conjugacy problem for the whole family F , it suffices to
show that if the problem is decidable for Fi, i ě 0, then it is also decidable for KFi and
Fi`1 “ MKFi. Then by induction on i the decidability extends to the whole family F .

Assume that conjugacy is decidable for Fi. Let E be an expression in Fi and hence
E˚ P KFi. Since LpEq Ď LpE˚q,

§ Proposition 12. If the expression E˚ is conjugate, then E is conjugate.

Because conjugacy is decidable for Fi, we can check whether E is conjugate. Therefore,
to show the decidability of conjugacy for KFi, it suffices to show the decidability of the
following question.

§ Question 13 (Conjugacy of Kleene Closures). Given a conjugate sumfree expression E, is
E˚ conjugate?

Next, assume that conjugacy is decidable for KFi. Let E “ pα0, β0qE˚
1 pα1, β1q ¨ ¨ ¨ E˚

k pαk, βkq

be an expression in MKFi where E˚
1 , . . . , E˚

k are from KFi. Analogous to the case of Kleene
closures, E is conjugate only if E˚

1 , . . . , E˚
k are conjugate, as the next lemma shows.

§ Lemma 14. If the expression E “ pα0, β0qF ˚pα1, β1q is conjugate, then F ˚ is conjugate.

Proof. If F ˚ is an empty set, then it is conjugate. Otherwise, assume that pu, vq is a
nonempty pair in LpF ˚q. Therefore, puℓ, vℓq for each ℓ ě 0 is also in LpF ˚q. We can safely
assume that |u| “ |v|, otherwise each iteration will increase the difference in length between
uℓ and vℓ, leading to nonconjugacy of E.

Let k be the total length of |α0 ` β0 ` α1 ` β1|. Consider the pair pα0, β0qpuℓ, vℓqpα1, β1q

where ℓ is some value much larger than k, say 2k. Since ℓ is much larger than k and
pα0uℓα1, β0vℓβ1q is conjugate, there exist large factors of uℓ and vℓ that match as shown in
Figure 2. Since |u| “ |v|, we can infer that u is a factor of vv, and v is a factor of uu.

Since v is an infix of uu, the following holds as shown in Figure 2. There exist words
x, y, p, and q such that v “ xy and u “ px “ yq. Since |u| “ |v|, length of p and length of y

are the same, that implies p “ y (since u “ px “ yqq. Therefore, u “ yx. Hence u and v are
conjugate words. Since the pair pu, vq was arbitrary, F ˚ is conjugate. đ
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u u u u

v v v v

p x y q

p x y q

Figure 2 v as infix of uu.

We can generalize the above lemma to the general form of sumfree expressions.

§ Corollary 15. If the expression E “ pα0, β0qE˚
1 pα1, β1q ¨ ¨ ¨ E˚

k pαk, βkq is conjugate, then
each of E˚

1 , E˚
2 , . . . , E˚

k is conjugate.

Proof. If E is conjugate, then for each i P t1, . . . , ku,

pα0 ¨ ¨ ¨ αi´1, β0 ¨ ¨ ¨ βi´1qE˚
i pαi ¨ ¨ ¨ αk, βi ¨ ¨ ¨ βkq Ď E

is conjugate. Therefore, from Lemma 14 we get that each of E˚
1 , . . . , E˚

k is conjugate. đ

Since the conjugacy of KFi is decidable, we can check whether E˚
1 , . . . , E˚

k are conjugate
expressions. Thus, to show the decidability of MKFi, it suffices to show the decidability of
the following question.

§ Question 16 (Conjugacy of Monoid Closures). Given conjugate sumfree expressions E˚
1 , . . . , E˚

k ,
is the expression E “ pα0, β0qE˚

1 pα1, β1q ¨ ¨ ¨ E˚
k pαk, βkq conjugate?

We show that Question 13 and Question 16 can be effectively answered. The idea is to use
the notion of common witness that we mentioned in the beginning (further elaborated in
Definition 38).

We present two common witness theorems that address the above questions:

1. Let G be an arbitrary set of conjugate pairs. The set G˚ is conjugate if and only if G

has a common witness (Theorem 44).
2. Let G˚

1 , . . . , G˚
k , k ą 0, be arbitrary sets of conjugate pairs. The set

pα0, β0qG˚
1 pα1, β1q ¨ ¨ ¨ G˚

kpαk, βkq,

called a sumfree set, is conjugate if and only if it has a common witness (Theorem 50).

§ Remark 17. Note that the assumption of conjugacy of the sets G, G˚
1 , . . . , G˚

k is not necessary.
However, if they are not conjugate then the corresponding sets will neither have a common
witness nor be conjugate, and the statements will be vacuously true (Since Proposition 12
and Corollary 15 also hold for arbitrary sets).

Item 2 is a generalisation of Item 1, and its proof relies on Item 1. Both theorems are
generalisations of a classical theorem of Lyndon-Schützenberger (recalled in the next section).

When G, G˚
1 , . . . , G˚

k are rational sumfree expressions of pairs, the above theorems are
effective, that is a common witness, if exists, is computable in polynomial time in the length
of the expression (Section 7). Hence, we have the following decidability result.

§ Theorem 18 (Main Theorem). It is decidable to check if a rational relation is conjugate.
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1.5 Related Work
Conjugate Post Correspondence Problem: A problem much related to Theorem 44 is the
Conjugate Post Correspondence problem: given a finite set of pairs G, does there exist of a
pair pu, vq P G˚ such that u and v are conjugate? This problem is shown to be undecidable
by reduction to the word problem of a special type of semi-Thue systems [15]. In Section 3,
we show that the universal version of this problem — checking if all the pairs in G˚ are
conjugate — is decidable.

Twinning and subsequentiality: A rational function is sequential if it can be realised
by a sequential transducer, i.e., those that are deterministic in the input. These were
originally called subsequential in the literature by Schützenberger [25]. Sequentiality of
rational functions is a decidable property due to a topological characterisation called the
twinning property by Choffrut [6].

A transducer T from A˚ to B˚ is an automaton over A˚ ˆ B˚. A transition of T from
state p to state q is of the form pp, pu, vq, qq where the word u P A˚ is called the input and
the word v P B˚ is called the output. A path from state p to q on an input word w producing
an output word x is represented as p

w|x
ÝÝÑ q. The transducer T realises the rational relation

tpw, xq | q0
w|x

ÝÝÑ qf u over A˚ ˆ B˚ where q0, qf is an initial and a final state respectively.
The prefix delay between two words u and v such that one is a prefix of another,

denoted by ru, vsL, tells how much u is ahead of v, or how much it is behind. Precisely,
ru, vsL “ v´1u, if v is a prefix of u , and u´1v, if u is a prefix of v.

A transducer with the initial state q0 is twinning if for all states p, q and for all words
w1, w2 P A˚ and x, y, u, v P B˚, if q0

w1|x
ÝÝÝÑ p

w2|u
ÝÝÝÑ p and q0

w1|y
ÝÝÝÑ q

w2|v
ÝÝÝÑ q, then rx, ysL “

rxu, yvsL. This is equivalent to either u “ v “ ϵ, or u ‰ ϵ ‰ v and u and v are conjugates
with rx, ysL being a witness of pu, vq (Proposition 6.2 of [16]).

Since the twinning property compares paths with the same input label, an equivalent
definition for twinning can be defined on the square of the transducer [2, 19]. The square
of a transducer T , denoted by T 2, is a cartesian product of T by itself, equivalent to the
transducer from A˚ into B˚ ˆ B˚. The original definition of twinning has the following
equivalent form.

§ Definition 19 (Twinning). Let T be a trim transducer. Two states p and q of T are
twin if whenever pu, vq is a nonempty output pair of a loop in T 2 rooted at state pp, qq,
and for any path from initial state to pp, qq in T 2 with output px, yq, the following holds:
rx, ysL “ rxu, yvsL, or equivalently, rx, ysL is a witness of pu, vq.

A transducer T is twinning if any two states p and q such that pp, qq is in T 2 are twin.

Since the input words in T 2 are inconsequential for deciding twinning, we can construct
a rational relation R of pairs of output words of the transducer T 2 ignoring the input.

R “ tpu, vq P B˚ ˆ B˚ | pu, vq P T 2pwq, w P dompT qu .

Twinning reduces to checking if a word (here prefix delay) is a common witness of a
rational relation. Twinning can be decided as follows.

1. For each state pp, qq P T 2, compute the rational relation Rpp,qq of pairs of output words
of the loops in T 2 rooted at state pp, qq.

2. For each simple path from initial state to state pp, qq, compute the prefix delay z and
check if z is a common witness of Rpp,qq. If yes, pp, qq is twinning, else it is not.
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Note that, in step 2 if z is not a common witness, then there exists a pair pu, vq P Rpp,qq such
that z fails to be a witness of pu, vq. Hence, the states p and q are not twinned; thus, T is
not twinned.

Generalisation of the twinning property called weak twinning is used to characterise multi-
sequential (also called plurisubsequential or finitely sequential) functions [8] and relations
[17]. A different notion for weak twinning property can be found in [19], whose decidability
reduces to checking the conjugacy of loops in the square of a transducer. All these properties
of transducers are decidable using our results, albeit with higher complexity.

Other works: Another notion of conjugacy between weighted automaton is introduced
in [3] connecting conjugacy and equivalence of two weighted automata. It is shown that
two equivalent K-automata (automata with multiplicity in semiring K) are conjugate to a
third one, when K is equal to B,N,Z, or any (skew) field and that the same holds true for
functional transducers as well.

A generalisation of Lyndon-Schützenberger to infinite sets, though with no comparison to
ours, is considered in [5, 18], where solutions to the language equation XZ “ ZY , where
X, Y, Z are sets of words, are given for special cases. The general solution is still open.

1.6 Organisation of the Paper
In Section 2, we revisit the standard tools from combinatorics of words required to state
and prove our main theorems. We present the common witness theorems for addressing
Question 13 and Question 16, along with the proofs of the easier directions in Section 3.
However, the difficult directions require a detailed case analysis. To simplify the analysis, we
use some auxiliary results presented in Section 4. Using those results, we complete the proof
of common witness theorems for Kleene closure and monoid closure in Section 5 and Section 6
respectively. We outline the decision procedure for computing the witness in Section 7. This
section can be read independently of Sections 4, 5 and 6. In Section 8, we state some future
directions and conclude.

2 Tools from Combinatorics of Words

We recall some standard notions from combinatorics on words and introduce some new defin-
itions and associated facts (Definition 20, Definition 32, Proposition 33 and Proposition 34).

The set of all finite nonempty words over A is denoted by A`. We use I to denote an
index set used to label members of another set. The unique infinite word u ¨ u ¨ ¨ ¨ (ω-times)
is denoted by uω. A word u is called a factor (respectively prefix, suffix) of a word v, if there
exist words x, y P A˚ such that v “ xuy (respectively v “ uy, v “ xu). Let uri . . js denote
the factor of u from index i to j where 1 ď i ď j ď |u|. Let ur denote the word obtained by
reversing the word u, and for i ě 0, let lshiftipuq denote the word obtained after i left cyclic
shifts of a word u.

If u and v are words such that u is a prefix of v, the left quotient of v by u, denoted by
u´1v, is the word x such that v “ ux. Similarly, the right quotient of v “ xu by u, denoted
as vu´1, is the word x.

§ Definition 20 (Prefix Delay, Suffix Delay). If u and v are words such that one of them is a
prefix of another, we define the prefix delay between u and v as

ru, vsL “

#

u´1v if u is a prefix of v

v´1u if v is a prefix of u
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Similarly, the suffix delay of two words u and v such that one of them is suffix of another,
denoted by ru, vsR, is vu´1 if u is a suffix of v and uv´1 if v is a suffix of u.

For example, rabaa, absL “ aa “ rab, abaasL.

2.1 Primitive and Periodic words

A word u is said to be a power of a word v if u is obtained by concatenating v a certain
number of times, i.e.,

u “ vn for some n ě 1 .

§ Definition 21 (Primitive word). A word u P A` is primitive if it cannot be expressed as a
power of any strictly smaller word.

For example, aba is primitive but abab is not. The following fact is easy to verify.

§ Proposition 22. If u is primitive, then ur is also primitive.

A word ρ is called a primitive root of a word u if u “ ρn for n ě 1 and ρ is a primitive
word.

Following theorem relates primitivity and commutativity.

§ Theorem 23 (First Theorem of Lyndon-Schützenberger ([21], Lemma 3)). Two words u, v P A˚

commute, i.e., uv “ vu, if and only if they are powers of a same word.

The above theorem has an interesting corollary about primitive root of a word.

§ Corollary 24 ([20], Proposition 1.3.1). Every word u has a unique primitive root, denoted
by ρu.

§ Proposition 25. The primitive root of a word can be computed in time polynomial in the
length of the word.

Proof. For a word w, we can compute the smallest i P t1, . . . , |w|u such that lshiftipwq “ w

in time quadratic to |w|. If i divides |w|, then wr1 . . . is is the primitive root of word w. đ

Let w “ a1a2 ¨ ¨ ¨ an where ai P A, n ě 1. We say that 1 ď p ă n is a period of w if
ai “ ai`p for i P 1, . . . , n ´ p. For example, the word abababa has periods 2, 4, and 6. Below
is a fundamental periodicity result of words by Fine and Wilf.

§ Theorem 26 (Fine and Wilf ([7], Theorem 5)). If a word has two periods p and q, and it is
of length at least p ` q ´ gcdpp, qq, then it also has a period gcdpp, qq.

Below is a reformulation of the above theorem.

§ Corollary 27 ([7], Theorem 5). Let u and v be two nonempty words. They are powers
of the same word if and only if the words uω and vω have a common prefix of length
|u| ` |v| ´ gcdp|u|, |v|q.
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2.2 Characterisation of Conjugacy and the Uniqueness of Cuts
Given below is a complete characterisation of conjugacy.

§ Theorem 28 (Second Theorem of Lyndon-Schützenberger ([20], Proposition 1.3.4)). Two
words u and v are conjugate iff there exists a word z such that

uz “ zv . (3)

More precisely, Equation (3) holds iff there exist words x and y such that

u “ xy, v “ yx, z P pxyq˚x . (4)

If we switch the words u and v in the above theorem, we get that v and u are conjugates if
and only if there exists a word z1 such that z1u “ vz1 where v “ yx, u “ xy and z1 P pyxq˚y.
Therefore if pu, vq is a conjugate pair, then there exist words z, z1 such that uz “ zv and
z1u “ vz1.

The following proposition connects conjugate words and their primitive roots.

§ Proposition 29 ([7], Lemma 1). If u and v are conjugates, then their primitive roots ρu

and ρv respectively are also conjugates. In particular, the exponents are equal, i.e., u “ ρn
u

and v “ ρn
v for some n ě 1.

The theorem of Fine and Wilf (Corollary 27) can be adapted to yield primitive roots that
are conjugates.

§ Theorem 30 (Conjugate Fine and Wilf ([7], Theorem 5)). Let ℓpu, vq denote the maximal
common factor of words u and v. For any two words u, v P A`, if uω and vω have a common
factor of length at least |u| ` |v| ´ gcdp|u|, |v|q, then the primitive roots of u and v are
conjugates, i.e., we have

ℓpuω, vωq ě |u| ` |v| ´ gcdp|u|, |v|q ñ ρu „ ρv .

Like primitivity, conjugacy can also be decided easily.

§ Proposition 31. Deciding if a pair of words is conjugate can be done in quadratic time.

Proof. Let pu, vq be a pair of words. We can check if there exists an i P t1, . . . , |u|u such
that lshiftipuq “ v in time quadratic to the length of u. đ

§ Definition 32 (Cut). A cut of a conjugate pair pu, vq is a pair of words px, yq such that
u “ xy and v “ yx. Alternatively, we say that u has a cut at position |x|, or equivalently, v

has a cut at position |y|.
If either x or y is the empty word, then we say the cut is empty. Otherwise the cut is

nonempty.

For example, the pair paabb, bbaaq has a cut paa, bbq. There can be several cuts for a conjugate
pair. For instance, the pair pabab, babaq has cuts pa, babq and paba, bq.

If u and v are conjugates and one of them is primitive, by Proposition 29, the other is
also primitive. A pair pu, vq is primitive if both u and v are primitive words. For such pairs,
their cuts are also special.

§ Proposition 33 (Uniqueness of Cuts of Primitive Pairs). Let pu, vq be a conjugate primitive
pair. If pu, vq is distinct, then pu, vq has a unique cut px, yq. If pu, vq is not distinct (i.e,
u “ v), the only two possible cuts of pu, vq are pu, ϵq and pϵ, vq.
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Proof. By definition, if pair pu, vq is conjugate, then there exist a cut px, yq such that u “ xy

and v “ yx. Since u and v are distinct, x and y have to be nonempty. It suffices to show
that x and y are unique if u and v are primitive.

For the sake of contradiction, assume that px, yq is not unique, i.e., there exists a different
cut px1, y1q for pu, vq, i.e., u “ x1y1, v “ y1x1 and x1 ‰ x, y1 ‰ y. WLOG, assume that
|x| ą |x1|. Therefore there exists a nonempty word p such that x “ x1p and y1 “ py.
Substituting for x in v, we get

v “ yx “ yx1p

and substituting for y1 in v, we obtain

v “ y1x1 “ pyx1 .

Therefore yx1 and p commutes. By the first theorem of Lyndon-Schützenberger (Theorem 23),
they are powers of the same word. Since p and yx1 are nonempty words, v is a power of some
smaller word. Hence v is not primitive and it is a contradiction.

In the case where u “ v and u being primitive, two possible cuts are pu, ϵq and pϵ, vq, i.e.,
the empty cuts. Imagine there is a nonempty cut px, yq. Since u “ v, it follows that xy “ yx.
Using the first theorem of Lyndon-Schützenberger (Theorem 23), u and v are powers of a
smaller word and hence not primitive. Therefore, when u is primitive and u “ v, the only
possible cuts are the empty cuts. đ

§ Proposition 34. If px, yq is a cut of the conjugate pair pu, vq, then pur, vrq is also conjugate
with the cut pyr, xrq.

Proof. Since px, yq is a cut of pu, vq, u “ xy and v “ yx. Hence, ur “ yrxr and vr “ xryr.
Thus, pur, vrq is conjugate with the cut pyr, xrq. đ

3 Common Witness Theorems

In this section, it is shown that an infinite set of pairs that is generated by a sumfree set
is conjugate if and only if there is a word witnessing its conjugacy. This is an infinitary
analogue of Theorem 28.

3.1 Common Witness Theorem for Kleene Closure
Lyndon-Schützenberger theorem characterises conjugacy of a pair of words. We generalise
the notion in Theorem 28 to an infinite set of pairs closed under concatenation. The question
we ask is:

“Given an arbitrary set of pairs G, is G˚, i.e., the Kleene closure (Equation (2)) of G,
conjugate?”

We have already seen from the second theorem of Lyndon-Schützenberger (Theorem 28)
that if two words u and v are conjugates, then there exist words z, z1 such that uz “ zv and
z1u “ vz1. This leads to the following notion.

§ Definition 35 (Inner and Outer Witness). Given a conjugate pair pu, vq, the word z is an
inner witness of pu, vq if uz “ zv. Similarly, z is an outer witness of pu, vq if zu “ vz.

An inner witness of a pair pu, vq is an outer witness of the pair pv, uq. A conjugate pair
has infinitely many inner and outer witnesses by Theorem 28.

§ Example 36. The pair paba, baaq has inner witnesses pabaq˚a and outer witnesses pbaaq˚ba.
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We say that a pair of words has a witness if it has either an inner witness or an outer
witness.

§ Proposition 37. Powers of a conjugate pair is also conjugate. Furthermore, if a pair pu, vq

is conjugate with a witness z, then pun, vnq, n ě 1, is also conjugate with the same witness z.

Proof. If pu, vq is conjugate, by Theorem 28, there exists a word z such that uz “ zv (that
is z is an inner witness of pu, vq). By induction on n, we prove @n ě 1 unz “ zvn. It is true
when n “ 1. For all n ą 1,

unz “ un´1uz

“ un´1zv (Since uz “ zv)
“ zvn´1v (Inductive Hypothesis)
“ zvn

Symmetrically we can prove that z1un “ vnz1, for any outer witness z1 of pu, vq. Hence if
pu, vq is conjugate with a witness z, then pun, vnq for n ě 1 is also conjugate, with the same
witness z. đ

We generalise the notion of a witness of a pair to a set of pairs.

§ Definition 38 (Common Witness). A word is a common inner witness of a set of pairs P if
it is an inner witness of each pair in P . Similarly, a word is a common outer witness of P

if it is an outer witness of each pair in P .
A set of pairs has a common witness if it has either a common inner witness or a common

outer witness.

The structure of a common witness of a set of pairs can be obtained from Theorem 28.

§ Proposition 39. Let P “ tpui, viq | i P Iu be a set of pairs of words. The following are
equivalent.

1. z is a common inner witness of P .
2. There exists a cut pxi, yiq of each pair pui, viq such that z P

Ş

iPIpxiyiq
˚xi.

3. z P
Ş

iPI

Ť

jPt1,...,kiupxi,jyi,jq˚xi,j where tpxi,1, yi,1q, . . . pxi,ki
, yi,ki

qu is the set of all cuts
of pui, viq.

The statement for common outer witness is analogous.

Proof. We prove p3q ñ p2q ñ p1q ñ p3q. p3q ñ p2q is obvious. p2q ñ p1q follows from
Theorem 28. We show p1q ñ p3q. Suppose z is a common inner witness of P , i.e., z is an inner
witness of each pair in P . Hence uiz “ zvi for each i P I. Let tpxi,1, yi,1q, . . . pxi,ki , yi,ki qu

be the set of all cuts of pui, viq. Using Theorem 28, there exists a cut pxi, yiq for pui, viq

such that z P pxiyiq
˚xi. This implies that z also belongs to the set

Ť

jPt1,...,kiupxi,jyi,jq˚xi,j .
Therefore,

z P
č

iPI

ď

jPt1,...,kiu

pxi,jyi,jq˚xi,j .

The case when P has a common outer witness is symmetric. đ



16 Deciding Conjugacy of a Rational Relation

§ Example 40. Consider the set P “ tpab, baq, pabab, babaqu. The pair pab, baq has a unique
cut pa, bq, and the pair pabab, babaq has two cuts: pa, babq and paba, bq. The word a is a
common inner witness of P since a belongs to both pabq˚a and pababq˚a (using the first cut).
Similarly, aba is also a common inner witness of P since aba belongs to both pabq˚a and
pababq˚aba (using the second cut). Notice that aba is not in the intersection of pabq˚a and
pababq˚a.

When a set is not conjugate, clearly it has no common witness. However, even when a
set is conjugate, it may have both common inner and outer witnesses, or only common inner
witness, or only common outer witness, or neither of them as shown below.

§ Example 41. Consider the set P “ tpab, baq, pac, caqqu. The pair pab, baq has inner witnesses
pabq˚a and outer witnesses pbaq˚b. Similarly, the pair pac, caq has inner witnesses pacq˚a

and outer witnesses pcaq˚c. According to Proposition 39, the set P has a unique common
inner witness a “ pabq˚a X pacq˚a, but it does not have any common outer witness since
pbaq˚b X pcaq˚c “ H.

The set tpab, baq, pabab, babaqu has both common inner witnesses

pabq˚a “ pabq˚a X ppababq˚aba Y pababq˚aq

and common outer witnesses

pbaq˚b “ pbaq˚b X ppbabaq˚b Y pbabaq˚babq .

However, the set tpab, baq, pba, abqu has no common witnesses since pabq˚a X pbaq˚b “ H.

Next we analyse the number of common witnesses a set of primitive pairs can have.

§ Lemma 42. The following are equivalent for a set of conjugate primitive pairs P .

1. P has more than one common witness.
2. P has infinitely many common witnesses.
3. P is a singleton set.

Proof. p2q ñ p1q is obvious. p3q ñ p1q is is straightforward because when a P consists of
only one conjugate primitive pair with a cut, say px, yq, it has inner witnesses x and xyx (in
fact pxyq˚x). Hence P has more than one witness.

We show p1q ñ p2q and p1q ñ p3q. Let P “ tpui, viq | i P Iu. Suppose the set of pairs
P has two common inner witnesses, say z1 and z2. Since P is a set of primitive pairs, each
pair pui, viq P P either has a unique cut, denoted as pxi, yiq, using Proposition 33 (when
ui ‰ vi) or two empty cuts, namely pϵ, uiq and pui, ϵq (if ui “ vi). For the latter case, the
inner witnesses obtained using cut pϵ, uiq is a superset of inner witnesses obtained using
pui, ϵq. Hence, we can choose cut pxi, yiq “ pϵ, uiq for pair pui, viq when ui “ vi. Therefore,
as stated in Proposition 39, both z1 and z2 belongs to

Ş

iPIpxiyiq
˚xi.

Without loss of generality, assume that |z1| ă |z2|. As depicted in Figure 3, a common
factor w P

Ş

iPIpyixiq
ě1 exists for each uω

i that can be repeated one after another in uω
i to

get longer and longer common inner witnesses. By symmetry, when P has two common outer
witnesses, we get infinitely many common outer witnesses.

Let us assume that the P has a common inner witness z1 and a common outer witness
z2, where z1 ‰ z2. For each distinct primitive pair in P , there exists a unique cut. However,
for identical primitive pairs, we fix a cut based on the values of z1 and z2. We consider two
cases: either z1, z2 ‰ ϵ, or exactly one of z1 and z2 is equal to ϵ.
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z1 w

z2

uω
2

px2y2q
m2 x2 py2x2q

ě1

px2y2q
n2 x2

uω
1

px1y1q
m1 x1 py1x1q

ě1

px1y1q
n1 x1

...

Figure 3 When there are at least two common inner witnesses z1, z2.

In the case where z1, z2 ‰ ϵ, for primitive pairs pui, viq such that ui “ vi, we can choose
either of the two empty cuts as pxi, yiq, resulting in z1 P pxiyiq

˚xi and z2 P pyixiq
˚yi.

In the second case, if z1 “ ϵ, we select the cut pxi, yiq “ pϵ, uiq. This choice ensures
that z1 P pxiyiq

˚xi and z2 P pyixiq
˚yi (since z2 ‰ ϵ). Similarly, if z2 “ ϵ, we choose the cut

pxi, yiq “ pui, ϵq.
Consequently, we can conclude that z1 belongs to

Ş

iPIpxiyiq
˚xi and z2 belongs to

Ş

iPIpyixiq
˚yi. As shown in Figure 4, concatenating z1 ¨ z2 ¨ z1 in uω

i , we get one more
common inner witness z3 for P . By the above argument, P has infinitely many common
witnesses. This completes the proof of p1q ñ p2q.

z1 z2 z1

uω
1

px1y1q
m1 x1 py1x1q

n1 y1 px1y1q
m1 x1

...

uω
2

px2y2q
m2 x2 py2x2q

n2 y2 px2y2q
m2 x2

...

Figure 4 When there are 1 common inner witness z1 and 1 common outer witness z2.

In both the cases, we get that px1y1qω “ px2y2qω “ ¨ ¨ ¨ and py1x1qω “ py2x2qω “ ¨ ¨ ¨ .
Hence from Fine and Wilf Corollary 27, all ui’s has the same primitive root. Similarly, all
vi’s has the same primitive root. This proves p1q ñ p3q. đ

For the lemma stated above, it is worth noting that even if we relax the condition that
each pair must be primitive, the lemma still holds (Corollary 57). However, the proof of this
extended version requires an additional lemma (Lemma 53), that is shown later.

If G˚ has a common witness, then each pair in G˚ has a witness and is conjugate. Hence
G˚ is conjugate. We prove the converse, namely, if G˚ is conjugate, then it has a common
witness. To prove this direction, we need the notion of primitive roots of a set of conjugate
pairs.

§ Definition 43 (Primitive Root of a Set of Conjugate Pairs). The primitive root of a conjugate
pair pu, vq is the pair pρu, ρvq. By Proposition 29, when u and v are conjugate, ρu is conjugate
to ρv and there exists an n ě 1 such that pu, vq “ pρn

u, ρn
v q.

The primitive root of a set of conjugate pairs G “ tpui, viq | i P Iu, denoted by RpGq, is
the set of all primitive roots of each pair in G.

RpGq “ tpρui
, ρvi

q | i P Iu .
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For example, tpab, baq, pbab, abbqu is the primitive root of the set tpabab, babaq, pbab, abbqu.
Let G be a set of conjugate pairs. The set RpGq˚ is a superset of G˚, but not necessarily

the other way round — In the above example, G˚ does not contain the set tppabqn, pbaqnq |

n is odd u Ď RpGq˚.
The below theorem characterises conjugacy of a freely generated set of pairs of words.

§ Theorem 44 (Common Witness Theorem for Kleene Closure). Let G be an arbitrary conjugate
set of pairs of words. The following are equivalent.

1. G˚ is conjugate.
2. G˚ has a common witness z.
3. G has a common witness z.
4. RpGq has a common witness z.

Proof. We prove p4q ñ p3q ñ p2q ñ p1q ñ p4q. The directions p4q ñ p3q ñ p2q ñ p1q is
proved for common inner witness; the proof for common outer witness is symmetric. The
only nontrivial direction is p1q ñ p4q that is proved in Section 5. Let G “ tpui, viq | i P Iu

be a set of conjugate pairs.

p4q ñ p3q Assume RpGq “ tpρui
, ρvi

q | i P Iu has a common inner witness z. Therefore, z is
an inner witness of all pairs in RpGq, i.e., ρui

z “ zρvi
for each i P I. From Proposition 37,

we obtain z is also an inner witness of powers of pρui , ρvi q. Since each pair pui, viq P G is
conjugate, from Proposition 29, there exists an m ě 1 such that pui, viq “ pρm

ui
, ρm

vi
q. Because

ρm
ui

z “ zρm
vi

, word z is also an inner witness for pair pui, viq. Thus, G has a common inner
witness.
p3q ñ p2q Suppose there exists a common inner witness z of the set G. Hence uiz “ zvi

for each i P I. Let pu, vq be any arbitrary element from G˚. By definition, pu, vq “

pui1ui2 ¨ ¨ ¨ uin , vi1vi2 ¨ ¨ ¨ vin q for some n ě 1 and ij P I for j P t1, . . . , nu. By induction on n,
we equate uz “ zv as follows.

uz “ ui1 ¨ ¨ ¨ uin´1uinz

“ ui1 ¨ ¨ ¨ uin´1zvin
(Since uin

z “ zvin
)

“ zvi1 ¨ ¨ ¨ vin´1vin
(Inductive Hypothesis)

“ zv

Hence z is a common inner witness of set G˚. Therefore G˚ has a common witness.
p2q ñ p1q Follows from Theorem 28.

đ

§ Corollary 45. Let E be a rational expression of pairs. E˚ is conjugate if and only if E˚

has a common witness.

Below is an illustration of the common witness theorem for a set of pairs that is not
rational.

§ Example 46. Let G “ tpabp, bpaq | p is a prime numberu. The set G has a common inner
witness a P

Ş

pPN, p is a primepabpq˚a. It is also easy to verify that G˚ is conjugate and a is a
common inner witness of G˚.
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3.2 Common Witness Theorem for Monoid Closure
Next we prove the common witness theorem for monoid closures, i.e., sumfree sets of the
form

M “ pα0, β0qG1
˚

pα1, β1qG2
˚

¨ ¨ ¨ pαk´1, βk´1qGk
˚

pαk, βkq, k ą 0 .

where G˚
1 , G˚

2 , . . . , G˚
k are arbitrary sets of conjugate pairs. We show that such a set is

conjugate if and only if it has common witness. Note that this does not generalise to
arbitrary sets of pairs, in particular, rational sets using sum.

Conjugacy cannot be characterised by the existence of a common witness for arbitrary
sets of pairs, in particular, rational sets using sum. For instance, pab, baq˚ ` pba, abq˚ is an
infinite conjugate set with no common witness.

§ Definition 47 (Redux, Singleton Redux). Let M be the sumfree set

pα0, β0qG1
˚

pα1, β1qG2
˚

¨ ¨ ¨ pαk´1, βk´1qGk
˚

pαk, βkq .

The redux of M is the pair pα0α1 ¨ ¨ ¨ αk, β0β1 ¨ ¨ ¨ βkq obtained by substituting each G˚
i by the

empty pair pϵ, ϵq.
A singleton redux of M is a set obtained by substituting all but one of the G˚

i ’s by the
empty pair pϵ, ϵq. They are of the form pα0 ¨ ¨ ¨ αi´1, β0 ¨ ¨ ¨ βi´1qGi

˚
pαi ¨ ¨ ¨ αk, βi ¨ ¨ ¨ βkq where

1 ď i ď k.

§ Example 48. Consider M “ pa, aqpbaa, abaq˚pb, aqpaab, baaq˚pa, bq. Its redux is paba, aabq,
and singleton reduxes are pa, aqpbaa, abaq˚pba, abq and pab, aaqpaab, baaq˚pa, bq.

If a sumfree set has a common witness, it is conjugate. We prove the converse, i.e., if a
sumfree set is conjugate, then it has a common witness and that is in the intersection of the
common witnesses of the singleton reduxes of the set.

Following is the common witness theorem for a sumfree set with only one Kleene star,
i.e., M “ pα0, β0qG˚pα1, β1q. In short it states that such a set is conjugate if and only if it
has a common witness that is determined by the common witnesses of G Y tpα1α0, β1β0qu.

§ Proposition 49. Let M “ pα0, β0qG˚pα1, β1q be a sumfree set. The following are equivalent.

1. M is conjugate.
2. There exist a common witness z1 of G Y tpα1α0, β1β0qu.
3. M has a common witness z such that one of the following cases is true:

(a) If z1 is a unique common inner witness of GYtpα1α0, β1β0qu, then M has a unique com-
mon witness z “ rα0z1, β0sR “ rα1, z1β1sL. Moreover, if |α0z1| ě |β0| or equivalently
|α1| ď |z1β1|, then z is an inner witness, otherwise it is an outer witness.

(b) If z1 is a unique common outer witness of GYtpα1α0, β1β0qu, then M has a unique com-
mon witness z “ rα0, β0z1sR “ rz1α1, β1sL. Moreover, if |z1α1| ě |β1| or equivalently
|α0| ď |β0z1|, then z is an outer witness, otherwise it is an inner witness.

(c) If G and pα1α0, β1β0q have infinitely many common witnesses, then M is a set of
powers of the primitive root of its redux (not necessarily all powers). Thus, M has
infinitely many witnesses.

The proof of the above proposition as well as the the proof of the general case below are
given in Section 6.

A singleton redux of a sumfree set is nothing but a sumfree set with only one Kleene
star. Given any sumfree set M , if M is conjugate, each of its singleton reduxes are conjugate.
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From Proposition 49, a singleton redux of M has a common witness. Further, we prove that
M has a common witness that is the common witness of each of its singleton reduxes. The
below theorem characterises the conjugacy of a general sumfree set.

§ Theorem 50 (Common Witness Theorem for Monoid Closure). Let M be a sumfree set. The
following are equivalent.

1. M is conjugate.
2. There exists a word z that is a common witness of each of the singleton reduxes.
3. M has a common witness z.

§ Example 51. Let M “ pα0, β0qG˚pα1, β1q be a sumfree set with one Kleene star where
ˆ

α0
β0

˙

“

ˆ

ab

b

˙

, G “

"ˆ

bab

abb

˙*

,

ˆ

α1
β1

˙

“

ˆ

b

ab

˙

.

The redux of M is pα0α1, β0β1q “ pabb, babq. The set G Y tpα1α0, β1β0qu “ tpbab, abbqu Y

tpbab, abbqu “ tpbab, abbqu and, hence it has infinitely many common witnesses. By Proposi-
tion 49 (c), M is a set of powers of the primitive root of the redux, i.e., M “ pabb, babq`.
Therefore, M has infinitely many witnesses same as those of pabb, babq.

§ Example 52. Let M “ pα0, β0qG˚
1 pα1, β1qG˚

2 pα2, β2q be a sumfree set with two Kleene star
where

ˆ

α0
β0

˙

“

ˆ

b

a

˙

, G1 “

"ˆ

ac

ca

˙*

,

ˆ

α1
β1

˙

“

ˆ

ab

b

˙

, G2 “

"ˆ

bab

bab

˙*

,

ˆ

α2
β2

˙

“

ˆ

ϵ

b

˙

.

The redux of M is pα0α1α2, β0β1β2q “ pbab, abbq. The set M has two singleton reduxes,

M1 “

ˆ

α0
β0

˙

G˚
1

ˆ

α1α2
β1β2

˙

“

ˆ

b

a

˙ ˆ

ac

ca

˙˚ ˆ

ab

bb

˙

and,

M2 “

ˆ

α0α1
β0β1

˙

G˚
2

ˆ

α2
β2

˙

“

ˆ

bab

ab

˙ ˆ

bab

bab

˙˚ ˆ

ϵ

b

˙

.

The set G1 Y tpα1α2α0, β1β2β0qu “ tpac, caqu Y tpabb, bbaqu “ tpac, caq, pabb, bbaqu has a
unique common inner witness, say z1 “ a “ pacq˚a X pabbq˚a and no common outer witness
since pcaq˚c X pbbaq˚bb “ H. By Proposition 49 (a), the unique common inner witness of
the singleton redux M1 of M is rα0z1, β0sR “ rba, asR “ b.

The set G2 Y tpα2α0α1, β2β0β1qu “ tpbab, babqu has infinitely many common witnesses.
Thus the singleton redux M2 is a set of powers of the primitive root of the redux using
Proposition 49 (c), i.e., M2 “ pbab, abbq`. Thus M2 have infinitely many common inner
witnesses pbabq˚b and common outer witnesses pabbq˚ab.

By Theorem 50, M has a unique common inner witness b X pbabq˚b “ b, that equals to
the intersection of the common inner witness of its singleton reduxes M1 and M2.

4 Auxiliary Results for Case Analysis

For proving common witness theorems, we require a detailed case analysis. To ease the
analysis, we establish two lemmas, namely, the Cut Lemma and the Equal Length Lemma.
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4.1 Cut Lemma and its Corollaries
Simply stated, the content of the cut lemma is that a primitive word cannot be equal to any
of its nontrivial cyclic shifts, i.e., u ‰ lshiftipuq, 1 ď i ă |u| for any primitive word u. Cut
lemma is standard, see for instance [26, 1]. However, the statement of the lemma is given in
a fashion that is suitable for case analysis.

§ Lemma 53 (Cut Lemma). Assume pu, vq is a conjugate primitive pair.

I. If pu, vq is a distinct pair with the unique cut px, yq, then the following equalities cannot
hold for any nonempty words x1, x2, y1, y2 such that x “ x1x2 and y “ y1y2.

(a) xy “ x2yx1

(b) xy “ y2xy1

(c) yx “ y2xy1

(d) yx “ x2yx1

(e) xy “ yx

II. In the special case when u “ v, there are two empty cuts pu, ϵq and pϵ, uq. In both cases,
the equality u “ u2u1 cannot hold for any nonempty words u1, u2 such that u “ u1u2.

Proof. Consider the case when pu, vq is a distinct pair with the unique nonempty cut px, yq.
It suffices to show that if any of the equalities hold, there exists a different nonempty cut of
the primitive pair pu, vq contradicting Proposition 33.

1. In the case of I. (a), the other nonempty cut is px2, yx1q since pxy, yxq “ px2yx1, yx1x2q.
2. In the case of I. (b), the other nonempty cut is py2x, y1q since pxy, yxq “ py2xy1, y1y2xq.
3. When I. (c) is true, we obtain a different nonempty cut pxy1, y2q because pxy, yxq “

pxy1y2, y2xy1q.
4. If I. (d) holds, the other nonempty cut is px1, x2yq since pxy, yxq “ px1x2y, x2yx1q.
5. If I. (e) holds, the other nonempty cut is py, xq since pxy, yxq “ pyx, xyq and x ‰ y (since

u ‰ v).

Consider the special case when u “ v. If the equality u “ u2u1 holds, then we obtain
u “ u1u2 “ u2u1. Therefore, u1 and u2 commutes. Since u1 and u2 are nonempty words, u

is a power of some smaller word using Theorem 23. Hence u is not primitive and it is a
contradiction. đ

In the rest of the subsection we discuss a number of consequences of Cut Lemma. The
following proposition conveys that the cut of the primitive root decides the cuts of its power.

§ Proposition 54. Let pu, vq is a distinct conjugate primitive pair with the unique cut px, yq.
Any cut of the pair pun, vnq for n ě 1 is of the form ppxyq˚x, pyxq˚yq.

Proof. Let pu1, v1q “ pun, vnq for some n ě 1. The lemma is trivially true for n “ 1 by the
uniqueness of cut of primitive pairs by Proposition 33.

Consider the case when n ě 2. Substituting for u “ xy and v “ yx in u1 and v1,

u1 “

n times
hkkikkj

u ¨ ¨ ¨ u “ xy ¨ ¨ ¨ xy

v1 “ v ¨ ¨ ¨ v “ yx ¨ ¨ ¨ yx

We show that cut in u1 will always be at the end of some x and all other cases leads to one
of Cases I. (a) to I. (e) of Cut Lemma.
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Case 1: When the cut is at the end of y

I.e., there exists a cut pp, qq for pu1, v1q such that p P pxyq`. Then

u1 “

p
hkkkikkkj

xy ¨ ¨ ¨ xy

q
hkkkikkkj

xy ¨ ¨ ¨ xy (5)

v1 “ yx ¨ ¨ ¨ yxyx ¨ ¨ ¨ yx “ qp “

q
hkkkikkkj

xy ¨ ¨ ¨ xy

p
hkkkikkkj

xy ¨ ¨ ¨ xy (6)

Equating the suffixes of v1 of length |xy| in both side of the Equation (6), we deduce xy “ yx,
i.e., u “ v. It satisfies Case I. (e) of Cut Lemma. Hence a contradiction.

Case 2: When the cut is strictly within some x or y

We will make a further case analysis: when there is an xy present before the cut, and when
there is an xy present after the cut (since n ě 2).

Suppose the cut in u1 is in the ith xy for i ą 1, i.e., there is an xy present before the cut.

1. When the cut is within x, i.e., there exists a cut pp, qq of pu1, v1q such that p P pxyq`x1

where x1 is a nonempty proper prefix of x and x “ x1x2 for some word x2. Now,

u1 “

p
hkkkkkikkkkkj

¨ ¨ ¨ x1x2yx1

q
hkkikkj

x2y ¨ ¨ ¨ (7)

v1 “ yx1x2 ¨ ¨ ¨ yx1x2 “ qp “

q
hkkikkj

x2y ¨ ¨ ¨

p
hkkkkkikkkkkj

¨ ¨ ¨ x1x2yx1 (8)

As before, equating the suffixes of v1 of length |xy| on both sides of Equation (8), we
obtain

yx “ yx1x2 “ x2yx1

Here x1 and x2 satisfies Case I. (d) of Cut Lemma. Hence a contradiction.
2. When the cut is within y, i.e., there exists a cut pp, qq of pu1, v1q such that p P pxyq`xy1

where y1 is a nonempty prefix of y and y “ y1y2 for some word y2. Then,

u1 “

p
hkkkkkikkkkkj

¨ ¨ ¨ xy1y2xy1

q
hkkikkj

y2 ¨ ¨ ¨ (9)

v1 “ y1y2x ¨ ¨ ¨ y1y2x “ qp “

q
hkkikkj

y2 ¨ ¨ ¨

p
hkkkkkikkkkkj

¨ ¨ ¨ xy1y2xy1 (10)

On both sides of the Equation (10), equating the suffixes of v1 of length |xy|, we get

yx “ y1y2x “ y2xy1

that is Case I. (c) of Cut Lemma. Hence a contradiction.

The case when there is an xy after the cut is symmetric and leads to Cases I. (a) and I. (b)
of Cut Lemma.

Since we have eliminated all of other scenarios, the only possible cuts of the pair pu1, v1q

are of the form ppxyq˚x, pyxq˚yq. đ

Using Proposition 54, we relate the witnesses of a pair and its primitive root.

§ Proposition 55. Let pu, vq be a conjugate pair with the primitive root pρu, ρvq. The following
are equivalent for a word z.
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1. z is a witness of pu, vq.
2. z is a witness of pρu, ρvq.

Proof. From Proposition 37, we get p2q ñ p1q.
Next we prove p1q ñ p2q. From Proposition 29, if pu, vq is conjugate then pρu, ρvq is

conjugate as well. In the case where u “ v, it follows that ρu “ ρv. Consequently, any
witness z for the pair pu, vq belongs to the set u˚ that is a subset of ρ˚

u. Thus, z serves as a
witness for the pair pρu, ρvq as well, since ρ˚

u consists of witnesses for pρu, ρvq.
Consider the case when u ‰ v. It follows that ρu ‰ ρv. According to Proposition 33, the

pair pρu, ρvq has a unique cut, denoted as px, yq. From Proposition 54, all cuts of pu, vq are
of the form ppxyq˚x, pyxq˚yq. From Theorem 28, an inner witness of pu, vq belongs to

ppxyq˚xpyxq˚yq˚pxyq˚x “ pxyq˚x

and hence is an inner witness of pρu, ρvq. The proof for outer witness is symmetric. đ

From the above theorem we get the following corollary for a set of pairs of words.

§ Corollary 56. A set of pairs G has a common-witness z if and only if RpGq has a common-
witness z.

Proof. We proved pÐq in p4q ñ p3q of Theorem 44. Next we prove the direction pÑq. Let z

be a common witness of the set G. For any arbitrary pair pu, vq P G, z is a witness of pu, vq.
From Proposition 55, z is also a witness for its primitive root. Since each pair in RpGq is
a primitive root of some pair in G, all pairs in RpGq have z as a witness. Therefore, z is a
common witness for RpGq. đ

Using above corollary, we can extend Lemma 42 for a set of pairs of words (not necessarily
primitive pairs).

§ Corollary 57. Let G be a set of pairs of words. The following are equivalent.

1. G has more than one common witness.
2. G has infinitely many common witnesses.
3. All the pairs in G have the same primitive root.

Proof. p2q ñ p1q is obvious. We show p3q ñ p1q. If each pair in G is a power of a same
primitive root, then RpGq is a singleton set. Lemma 42 implies that RpGq has infinitely many
common witnesses. This implies G has infinitely many common witnesses using Corollary 56.

Now it suffices to show p1q ñ p2q and p1q ñ p3q. If the set G has two common witnesses,
namely z1 and z2, then according to Corollary 56, z1 and z2 are also common witnesses of
RpGq. Since RpGq has more than one common witness, it follows that RpGq is a singleton set
by Lemma 42. Hence it has infinitely many common witnesses. Additionally, since witnesses
of RpGq are also witnesses of G (as per Corollary 56), it implies that G itself has infinitely
many common witnesses. đ

4.2 Equal Length Lemma
Equal length lemma can be summarised as follows: Let G “ tpu1, v1q, . . . , puk, vkqu, k ą 1 be
a set of conjugate primitive pairs of identical length, i.e., |u1| “ ¨ ¨ ¨ “ |uk|. If G˚ is conjugate
then either x1 “ ¨ ¨ ¨ “ xk or y1 “ ¨ ¨ ¨ “ yk where pxi, yiq is a cut of pui, viq for 1 ď i ď k

(Proposition 59).
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§ Lemma 58 (Equal Length Lemma). Let pu1, v1q, pu2, v2q be two conjugate primitive pairs of
equal length (i.e., |u1| “ |u2|) and let px1, y1q and px2, y2q be their unique cuts respectively.
Any pair pu1, v1qℓ1 pu2, v2qℓ2 where ℓ2 " ℓ1 ą 2, is conjugate only if either x1 “ x2 or y1 “ y2.

Proof. Let pu, vq “ pu1, v1qℓ1 pu2, v2qℓ2 such that ℓ1 ą 2 and ℓ2 " ℓ1 (ℓ2 ą ℓ1 ` 2 suffices).

u “

ℓ1 times
hkkkikkkj

u1 ¨ ¨ ¨ u1

ℓ2 times
hkkkkkkikkkkkkj

u2u2 ¨ ¨ ¨ u2u2

v “ v1 ¨ ¨ ¨ v1v2v2 ¨ ¨ ¨ v2v2

If pu, vq is conjugate, then they have a cut say pp, qq. There are two possibilities for a cut
of pu, vq: when the cut in u is within u1

ℓ1u2 or it is after u1
ℓ1u2.

In both the cases we show that either x1 “ x2, or y1 “ y2 or both.

Case 1: When the cut in u is within u1
ℓ1u2

In this case, the cut in v is within the suffix vℓ1`1
2 since the |u1| “ |u2| “ |v2| and ℓ2 " ℓ1.

Substituting pu1, v1q and pu2, v2q with px1y1, y1x1q and px2y2, y2x2q,

u “ x1y1 ¨ ¨ ¨ x1y1 x2y2 ¨ ¨ ¨ x2y2 “ pq

v “ y1x1 ¨ ¨ ¨ y1x1 ¨ ¨ ¨ y2x2 y2x2
loomoon

cut region

¨ ¨ ¨ “ qp

Since ℓ2 " ℓ1, there exist at least one y2x2 before the cut in v. We compare the suffixes of q

in both u and v. Since q ends with x2y2 in u, the cut in v should be at the end of a y2 by
Cases I. (a), I. (b), I. (e) and II. of Cut Lemma.

Hence p can be of the form x2 or px2y2q`x2 depending upon if the cut in v is within the
last y2x2 or not.

u “ x1y1 ¨ ¨ ¨ x1y1x2y2 ¨ ¨ ¨ x2y2 “ pq

v “ y1x1 ¨ ¨ ¨ y1x1 ¨ ¨ ¨ y2x2y2
looooooooooooomooooooooooooon

q

x2 ¨ ¨ ¨
loomoon

p

Suppose p P px2y2q`x2, then equating the prefixes of p in u and v of length |x2y2| “ |x1y1|

(Since |u1| “ |u2|), we obtain x2y2 “ x1y1. Substituting this in u,

u “ x1y1 ¨ ¨ ¨ x1y1x1y1 ¨ ¨ ¨ x1y1 “ pq

v “ y1x1 ¨ ¨ ¨ y1x1 ¨ ¨ ¨ y2x2y2
looooooooooooomooooooooooooon

q

x2y2 ¨ ¨ ¨ x2
looooomooooon

p

Now we compare the prefixes of q in u and v. Since q starts with y1x1 in v, from Cases I.
(c), I. (d), I. (e) and II. of Cut Lemma, the cut in u should be at the end of x1. Therefore,
p P px1y1q`x1 in u. Also, p P px2y2q`x2 in v. Since |x1y1| “ |x2y2| and |x1|, |x2| ă |x1y1|,
we can deduce p “ px1y1qix1 “ px2y2qix2 for some i. Hence, x1 “ x2. Therefore, it implies
y1 “ y2 since x1y1 “ x2y2 and hence, pu1, v1q and pu2, v2q are identical.

Suppose p “ x2 in v. Here, p in u is within the first x1y1 since |x1y1| “ |x2y2|. Moreover
p “ x1 since the only possible cut in u will be at the end of x1 by Cases I. (c), I. (d), I. (e)
and II. of Cut Lemma (comparing the prefixes of q in u and v). Hence x1 “ x2.
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Case 2: Cut in u is after u1
ℓ1u2

This case is symmetric. For the sake of completeness we prove it.
Substituting pu1, v1q and pu2, v2q with px1y1, y1x1q and px2y2, y2x2q,

u “ x1y1 ¨ ¨ ¨ x1y1 ¨ ¨ ¨ x2y2

cut region
hkkikkj

x2y2 ¨ ¨ ¨ “ pq

v “ y1x1 ¨ ¨ ¨ y1x1y2x2 ¨ ¨ ¨ y2x2 “ qp

Note that there is at least one x2y2 before the cut. We compare the suffixes of p in u and
v. Since p ends with y2x2 in v, the cut in u should be at the end of x2 by Cases I. (c), I. (d),
I. (e) and II. of Cut Lemma.

u “

p
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

x1y1 ¨ ¨ ¨ x1y1 ¨ ¨ ¨ x2y2x2

q
hkkikkj

¨ ¨ ¨ y2

v “ y1x1 ¨ ¨ ¨ y1x1y2x2 ¨ ¨ ¨ y2x2 “ qp

Hence q is of the form y2 or py2x2q`y2 depending upon if the cut in u is within the last
x2y2 or not.

If q P py2x2q`y2, then comparing the prefixes of q of length |y2x2| “ |y1x1| (Since
|v1| “ |v2|) in u and v, we obtain y2x2 “ y1x1. Substituting this in v,

u “

p
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

x1y1 ¨ ¨ ¨ x1y1 ¨ ¨ ¨ x2y2x2

q
hkkikkj

¨ ¨ ¨ y2

v “ y1x1 ¨ ¨ ¨ y1x1y1x1 ¨ ¨ ¨ y1x1 “ qp

We compare the prefixes of p in u and v. Since p starts with x1y1 in u, the cut in v

should be at the end of y1 using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma. Therefore,
q P py1x1q`y1 in v and q P py2x2q`y2 in u. Hence, as before we can deduce that y1 “ y2. It
also implies x1 “ x2 since y1x1 “ y2x2 and thus pu1, v1q and pu2, v2q are identical..

If q “ y2. The cut in v is within first y1x1. In fact, q “ y1 since the only possible cut in
u will be at the end of y1 by Cases I. (a), I. (b), I. (e) and II. of Cut Lemma (comparing the
prefixes of p in u and v). Hence y1 “ y2. đ

Using Equal Length Lemma we characterise the conjugacy of the closure of a set of
conjugate primitive pairs of equal length.

§ Proposition 59. Let G be a set of conjugate pairs such that all pairs in RpGq are of equal
length. Let pxi, yiq be the unique cut of the primitive pair pui, viq P RpGq. If G˚ is conjugate
then either x1 “ x2 “ ¨ ¨ ¨ or y1 “ y2 “ ¨ ¨ ¨ .

Proof. Proof is by induction on the number of pairs in RpGq.

1. Base Case: When RpGq has only 2 pairs, i.e., RpGq “ tpu1, v1q, pu2, v2qu. There exist
ℓ1, ℓ2 such that l2 " l1 ą 2 and pu1, v1ql1 pu2, v2ql2 P G˚ and hence it is conjugate. From
Equal Length Lemma we get either x1 “ x2 or y1 “ y2.

2. Inductive Case: Let us assume that the statement is true for k equal length pairs in
RpGq, i.e., RpGq “ tpu1, v1q, . . . , puk, vkqu. By induction hypothesis, G˚ is conjugate only
if x1 “ ¨ ¨ ¨ “ xk or y1 “ ¨ ¨ ¨ “ yk. WLOG, assume x1 “ ¨ ¨ ¨ “ xk . We aim to prove for
k `1 pairs. Let G1 Ě G be such that G1˚ is conjugate and RpG1q “ RpGqYtpuk`1, vk`1qu

where puk`1, vk`1q is a conjugate primitive pair of identical length to that of pairs in
RpGq. Let pxk`1, yk`1q be the cut of puk`1, vk`1q. There exists the set of pairs

tpui, viq
ℓi puk`1, vk`1qℓk`1 | ℓk`1 " ℓi ą 2, 1 ď i ď ku Ă G1˚
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that is conjugate. Therefore, the pairs pui, viq and puk`1, vk`1q satisfy either xi “ xk`1
or yi “ yk`1 by Equal Length Lemma. There are two cases:

(a) Suppose there exist an i such that xi “ xk`1. Since i P t1, . . . , ku and x1 “ ¨ ¨ ¨ “ xk,
we conclude x1 “ ¨ ¨ ¨ “ xk “ xk`1 as required.

(b) Otherwise yi “ yk`1 for all i. Then it follows that y1 “ ¨ ¨ ¨ “ yk “ yk`1.

đ

5 Existence of Common Witness for Kleene Closure

In this section, we prove the direction p1q ñ p4q of Theorem 44 recalled in the following
lemma.

§ Lemma 60. For a set of pairs G, if G˚ is conjugate then RpGq has a common witness.

We prove the lemma when G is finite by case analysis and then extend it for a countably
infinite set of pairs using a compactness argument.

5.1 For a Finite Set of Pairs
We now prove the common witness theorem for a finite set.

§ Lemma 61. Let G be a finite set of k pairs. If G˚ is conjugate then RpGq as well G has a
common witness.

Proof. When k “ 1, G has only one pair pu, vq and by assumption it is conjugate. By
Theorem 28, pu, vq has a witness. From Proposition 55, we obtain that the witnesses of
RpGq “ tpρu, ρvqu are same as that of pu, vq.

Next we assume that k ą 1. Let « be the equivalence relation on G whereby pu, vq «

pu1, v1q if ρu „ ρu1 , i.e., the primitive roots of the pairs are conjugates. Assume that « has d

equivalence classes. Clearly 1 ď d ď k. We do a cases analysis on whether d “ 1 or otherwise.
If « has only one equivalence class, then the primitive roots of all the pairs in G are

conjugates. Consequently, their lengths are identical. Since G˚ is conjugate and all the pairs
in RpGq have identical lengths, by Proposition 59, RpGq has a common witness.

Now we assume that d ą 1. Choose d pairs pu1, v1q, pu2, v2q, . . . , pud, vdq from each
equivalence class. We construct a pair pu, vq P pu1, v1q˚pu2, v2q˚ ¨ ¨ ¨ pud, vdq˚ Ď G˚ and show
that pu, vq is conjugate only if RpGq has a common witness.

Let m be the least common multiple of |u1|, . . . , |ud|. Let ℓij “ |ui|`|uj |´gcdp|ui|, |uj |q ą

0 for 1 ď i, j ď d and i ‰ j. Let ℓ “ max tℓij | 1 ď i, j ď d, i ‰ ju. Let N be a multiple of
m that is ą 2ℓ.

Let pu, vq “ pu1, v1qj1 pu2, v2qj2 ¨ ¨ ¨ pud, vdqjd such that j1, . . . , jd ą 2 and |uji

i | “ N for
each 1 ď i ď d.

u “

N
hkkkikkkj

u1 ¨ ¨ ¨ u1

N
hkkkikkkj

u2 ¨ ¨ ¨ u2 ¨ ¨ ¨

N
hkkkikkkj

ud ¨ ¨ ¨ ud

v “ v1 ¨ ¨ ¨ v1 v2 ¨ ¨ ¨ v2 ¨ ¨ ¨ vd ¨ ¨ ¨ vd

Since pu, vq is conjugate, it has a cut, say pp, qq. Substituting each pair in pu, vq with
their primitive roots, we get

u “ ρu1 ¨ ¨ ¨ ρu1ρu2 ¨ ¨ ¨ ρu2 ¨ ¨ ¨ ρud
¨ ¨ ¨ ρud

“ pq

v “ ρv1 ¨ ¨ ¨ ρv1ρv2 ¨ ¨ ¨ ρv2 ¨ ¨ ¨ ρvd
¨ ¨ ¨ ρvd

“ qp
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Let pxi, yiq be the unique cut of pρui , ρvi q for 1 ď i ď d. Let B1, B2, . . . , Bd represent the
blocks in u, and let B1

1, B1
2, . . . , B1

d represent the blocks in v.
The cut in u can be either within the first block B1, or the last block Bd, or anywhere

between the first and the last blocks in u. We do a case analysis on all the possible cuts of
pu, vq and show that there exists a common witness of RpGq in each of the cases.

Case 1: When the cut in u is in the first block B1

We make a further case analysis depending upon if the cut is within the first half or the
second half of the first block.

Suppose the cut in u is within the first half of the block, i.e., p is of length at most N{2.
In this case, since the length of each block are equal, the cut in v is within the second half of
the last block B1

d, i.e., p is a suffix of v of length at most N{2.

u “

p
hkkikkj

ρu1 ¨ ¨ ¨

q
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

¨ ¨ ¨ ρu1ρu2 ¨ ¨ ¨ ρu2 ¨ ¨ ¨ ρud
¨ ¨ ¨ ρud

v “ ρv1 ¨ ¨ ¨ ¨ ¨ ¨ ρv1ρv2 ¨ ¨ ¨ ρv2 ¨ ¨ ¨ ρvd
¨ ¨ ¨

loooooooooooooooooooomoooooooooooooooooooon

q

¨ ¨ ¨ ρvd
loomoon

p

We obtain q “ p´1pB1B2 ¨ ¨ ¨ Bdq “ pB1
1B1

2 ¨ ¨ ¨ B1
dqp´1 .

Ź Claim 62. The following holds for each 1 ď i ď du.

1. Bi is of the form pqi and B1
i is of the form qip, and

2. p is of the form pxiyiq
mixi and qi is of the form pyixiq

miyi for some mi ě 0.

Proof. Proof is by induction on i.

1. Base Case: when i “ 1. We compare the prefixes of q in u and v. Since |p| ď N{2, the
prefix of q in u must begin within the first block B1. Also, there must be at least one
occurrence of the factor ρu1 “ x1y1 following the cut. Since q in v starts with ρv1 “ y1x1,
the cut should be at the end of x1 by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma.
Hence p “ px1y1qm1x1 for some integer m1 ě 0. Consequently, the prefix of q in the block
B1, denoted as q1, is of the form y1px1y1qn1 , for some n1 ą 0. After matching q1 in v, we
observe that a factor equal to p appears in the suffix of the block B1

1, as shown below.

u “

p
hkkkkkikkkkkj

px1y1qm1x1

q1
hkkkkkikkkkkj

y1px1y1qn1

q1
´1q

hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

ρu2 ¨ ¨ ¨ ρu2 ¨ ¨ ¨ ρud
¨ ¨ ¨ ρud

v “ y1px1y1qn1
looooomooooon

q1

px1y1qm1x1
looooomooooon

“p

ρv2 ¨ ¨ ¨ ρv2 ¨ ¨ ¨ ρvd
¨ ¨ ¨ ρvd

“ qp

2. Inductive Case: Assume the claim is true for first i blocks where 1 ď i ă k.

u “

p
hkkkkkikkkkkj

px1y1qm1x1

q1
hkkkkkikkkkkj

y1px1y1qn1 ¨ ¨ ¨

p
hkkkkkikkkkkj

pxiyiq
mixi

qi
hkkkkikkkkj

yipxiyiq
ni

q2
“pq1p¨¨¨qi´1pqiq

´1q
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

ρui`1 ¨ ¨ ¨ ρui`1 ¨ ¨ ¨ ρud
¨ ¨ ¨ ρud

“ pq

v “ y1px1y1qn1
looooomooooon

q1

px1y1qm1x1
looooomooooon

p

¨ ¨ ¨ yipxiyiq
ni

loooomoooon

qi

pxiyiq
mixi

looooomooooon

p

ρvi`1 ¨ ¨ ¨ ρvi`1 ¨ ¨ ¨ ρvd
¨ ¨ ¨ ρvd

“ qp

Let q2 denote the remaining suffix of q in u after the i-th block Bi. We obtain q2 “

pq1p ¨ ¨ ¨ qi´1pqiq
´1q. By comparing the prefixes of q2 in u and v, we get that the suffix

of the block B1
i in v, that is equal to p, matches within the first half of the block Bi`1

in u since |p| ă N{2. Moreover, the matching should end at xi`1 by Cases I. (c), I. (d),
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I. (e) and II. of Cut Lemma. Hence p “ pxi`1yi`1qmi`1xi`1 for some integer mi`1 ě 0.
Consequently, the remaining suffix of the block Bi`1, denoted by qi`1, is of the form
pyi`1xi`1qni`1yi`1 for some integer ni`1 ą 0. After matching qi`1 in B1

i`1, we observe
that a factor equal to p appears in the suffix of the block B1

i`1. Hence, Bi`1 “ pqi`1 and
B1

i`1 “ qi`1p.

đ

From the above claim, it follows that q “ q1pq2p ¨ ¨ ¨ pqd and

p “ px1y1qm1x1 “ px2y2qm2x2 “ ¨ ¨ ¨ “ pxdydqmdxd

for m1, . . . , md ě 0. Since above equation holds for any two pairs between the equivalence
classes, from Proposition 39 we obtain p is a common inner witness of RpGq.

Next we assume the cut in u is in the second half of B1. We compare the prefixes of q

in u and v and deduce that there exist a common factor of length at least N{2 ą ℓ ą ℓ12
between block B1

1 and block B2. From Theorem 30, ρv1 is conjugate to ρu2 , that is in turn is
conjugate to ρv2 . From transitivity of conjugacy, ρv1 is conjugate to ρv2 , which contradicts
the fact that pu1, v1q and pu2, v2q belong to different equivalence classes. Hence cut in second
half of B1 is not possible.

Case 2: When the cut in u is in the last block Bd

We make a further case analysis depending upon if the cut in u is in the first half or second
half of the last block Bd. The proof is symmetric to that of the previous case.

Suppose the cut in u is within the suffix of the block Bd of length N{2.

u “

p
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

ρu1 ¨ ¨ ¨ ρu1ρu2 ¨ ¨ ¨ ρu2 ¨ ¨ ¨ ρud
¨ ¨ ¨

q
hkkikkj

¨ ¨ ¨ ρud

v “ ρv1 ¨ ¨ ¨
loomoon

q

¨ ¨ ¨ ρv1ρv2 ¨ ¨ ¨ ρv2 ¨ ¨ ¨ ρvd
¨ ¨ ¨ ρvd

loooooooooooooooooomoooooooooooooooooon

p

Consider the pair pur, vrq, where ur, vr are the reverses of the words u and v respectively.
Since pu, vq is conjugate with the cut pp, qq, from Proposition 34 we obtain that the pair
pur, vrq is also conjugate with cut pqr, prq.

ur “

qr

hkkikkj

ρr
ud

¨ ¨ ¨

pr

hkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

¨ ¨ ¨ ρr
ud

ρr
ud´1

¨ ¨ ¨ ρr
ud´1

¨ ¨ ¨ ρr
u1

¨ ¨ ¨ ¨ ¨ ¨ ρr
u1

vr “ ρr
vd

¨ ¨ ¨ ρr
vd

ρr
vd´1

¨ ¨ ¨ ρr
vd´1

¨ ¨ ¨ ρr
v1

¨ ¨ ¨
looooooooooooooooooooomooooooooooooooooooooon

pr

¨ ¨ ¨ ρr
v1

loomoon

qr

Since pxi, yiq is the unique cut of pρui
, ρvi

q, from Proposition 34 and Proposition 22, we
get that the unique cut of pρr

ui
, ρr

vi
q is pyr

i , xr
i q for 1 ď i ď k.

This reduces to Case 1 where the cut in ur is in the first half of the first block. Therefore,
there exist integers m1, m2, . . . , mk ě 0 such that

qr “ pyr
1xr

1qm1yr
1 “ pyr

2xr
2qm2yr

2 “ ¨ ¨ ¨ “ pyr
dxr

dqmk yr
d .

Since ppyr
i xr

i qmiyr
i qr “ pyixiq

miyi , we obtain

q “ py1x1qm1y1 “ py2x2qm2y2 “ ¨ ¨ ¨ “ pydxdqmdyd .
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From the above equation, that is valid for any two pairs belonging to the equivalence classes,
we can deduce from Proposition 39 that q is a common outer witness of RpGq.

Next assume that the cut in u is in the first half of the last block Bk. We compare
the suffixes of p in u and v and deduce that there exist a common factor of length at least
N{2 ą ℓ ą ℓpd´1qd between the block Bd´1 and the block B1

d. As before, from Theorem 30,
ρvd

is conjugate to ρud´1 , that is in turn conjugate to ρvd´1 . Since conjugacy is transitive,
this implies that ρvd

is conjugate to ρvd´1 , which contradicts the fact that pud, vdq and
pud´1, vd´1q belong to different equivalence classes. Therefore, the cut in first half of Bd is
not possible.

Case 3: When the cut in u is within the block Bj for 1 ă j ă d

WLOG, assume that the cut in u is within the first half of the block Bj . In this case the cut
in v will be within the second half of the block Bd´j`1.

u “

p
hkkkkkkkkkkkikkkkkkkkkkkj

ρu1 ¨ ¨ ¨ ρu1 ¨ ¨ ¨ ρuj ¨ ¨ ¨

q
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

¨ ¨ ¨ ρuj ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ρud
¨ ¨ ¨ ρud

v “ ρv1 ¨ ¨ ¨ ρv1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ρvd´j`1 ¨ ¨ ¨
loooooooooooooooooomoooooooooooooooooon

q

¨ ¨ ¨ ρvd´j`1 ¨ ¨ ¨ ρud
¨ ¨ ¨ ρud

loooooooooooooomoooooooooooooon

p

By matching q in u and v, we get ρv1 and ρuj
shares a common factor of length at least

N{2 ą ℓ ą ℓ1j and hence they are conjugates to each other by Theorem 30. Since ρuj
is

conjugate to ρvj
, by transitivity of conjugacy we obtain ρv1 and ρvj

are conjugates. This
contradicts the fact that pu1, v1q and puj , vjq belongs to different equivalence classes. Hence
cut in Bj where 1 ă j ă d is not possible.

Hence, for a finite set of pairs G, G˚ is conjugate only if RpGq has a common witness.
By Corollary 56, we also conclude that G has a common witness. đ

Hence, we proved Lemma 60 for the finite case.

5.2 For an Infinite Set of Pairs
We now extend Lemma 60 from a finite set to an infinite set of pairs.

§ Lemma 63 (Compactness Theorem). Let G be an infinite set of pairs. If every finite subset
of G has a common witness, then G has a common witness.

Proof. From Corollary 57, if a set has a witness, it has exactly one common witness or
infinitely many common witnesses. Given that every finite subset of G has a common witness,
there are two possible cases: a finite subset of G with a unique witness exists, or every finite
subset of G has infinitely many witnesses.

1. Assume that there exists a finite subset Gf of G with exactly one common witness, say
z. We claim that z is a common witness of G as well. By assumption, the finite set
Gf Y tpu, vqu has a common witness, for any pair pu, vq P G. Moreover, the witness for
this set must be z; otherwise, it contradicts the uniqueness of the witness of Gf . This
implies that z is a witness for any pair in G. Hence z is a common witness of G.

2. Next we assume that every finite subset of G has infinitely many common witnesses.
Take any pair pui, viq and puj , vjq from G. The set tpui, viq, puj , vjqu is a finite set with
infinitely many witnesses by assumption. Therefore, from Corollary 57, both pui, viq and
puj , vjq have the same primitive root. Since primitive roots are unique by Corollary 24,
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the primitive root of every pair in G is the same. From Proposition 55, the witnesses
of the primitive root is same as that of the witnesses of each pair in G. Hence, G has a
common witness.

đ

The proof of Lemma 60 is a straightforward corollary of the Compactness Theorem. If G˚ is
conjugate, then the closure of every finite subset of G is also conjugate. From Lemma 61,
every finite subset of G has a common witness. Using Compactness Theorem, G has a
common witness. From Corollary 56, we conclude that RpGq has a common witness.

This concludes the proof of Common Witness Theorem (Theorem 44).

6 Existence of Common Witness for Monoid Closure

In this section, we prove the equivalence between conjugacy and the presence of a common
witness in sumfree sets. We begin by proving Proposition 49 for sumfree sets that contain
only one Kleene star. Subsequently, we establish Theorem 50 that extends the result to
general sumfree sets.

6.1 Common Witness of a Singleton Redux
We prove Proposition 49 by showing p1q ñ p2q ñ p3q ñ p1q. It is trivial that p3q ñ p1q, i.e.,
if a sumfree set M has a common witness, then M is conjugate.

Now we proceed to prove p1q ñ p2q, namely, if a sumfree set M “ pα0, β0qG˚pα1, β1q is
conjugate, then there exists a common witness of G Y tpα1α0, β1β0qu. We first prove this
direction when G is just a singleton set and later generalise it to any arbitrary set of pairs G.

§ Proposition 64. Let pu, vq be a nonempty conjugate pair. If the pair pα0, β0qpu, vq4npα1, β1q,
for some n such that n|u| ě |α0| ` |α1| ` |β0| ` |β1|, is conjugate then there exists a common
witness of tpu, vq, pα1α0, β1β0qu.

Proof. Consider the pair pu1, v1q “ pα0, β0qpu, vq4npα1, β1q. Let px, yq denote the cut of the
primitive root of the conjugate pair pu, vq. Thus, pu, vq can be expressed as a power of
pxy, yxq.

We now examine the possible cuts of pu1, v1q in u1 and show that in each case, a common
witness of tpu, vq, pα1α0, β1β0qu exists.

Case 1: When the cut in u1 is within α0

I.e., there exists a cut pp, qq for pu1, v1q such that p “ α1
0 is a prefix of α0 and α0 “ α1

0α2
0 for

some word α2
0. Substituting pu, vq with powers of pxy, yxq,

u1 “

p
hkkikkj

α1
0

q
hkkkkkkkikkkkkkkj

α2
0xy ¨ ¨ ¨ xyα1

v1 “ β0yx ¨ ¨ ¨ yxβ1

Comparing prefixes of q in u1 and v1, we obtain three possible cases for β0.

(a) β0 is a proper prefix of α2
0: After matching β0 with the prefix of q in u1, we find that the

remaining suffix of α2
0 matches with the prefix of the block yx ¨ ¨ ¨ yx in v1. Since the total

length of the block yx ¨ ¨ ¨ yx is greater than 4|α0|, it follows that α2
0 must end within the
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first half of the block. Furthermore, using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma,
it should end after a y since there exists an xy after α2

0 in u1. Thus, we can express α2
0 as

α2
0 “ β0pyxqmy (11)

for some integer m ě 0. Continuing to match q in u1 and v1, we obtain

u1 “ α1
0α2

0

“
hkkikkj

xy ¨ ¨ ¨ xpyxqmyα1 “ pq (12)

v1 “ β0pyxqmy
loooomoooon

α2
0

xy ¨ ¨ ¨ x
loomoon

“

β1 “ qp “ α2
0

“
hkkikkj

xy ¨ ¨ ¨ xpyxqmyα1α1
0 (13)

By equating the sets for v1 on both sides of Equation (13), we get

β1 “ pyxqmyα1α1
0 . (14)

Concatenating Equation (11) and Equation (14), we obtain

pyxqmyα1α0 “ β1β0pyxqmy .

From Theorem 28, we get pyxqmy is a outer witness for pα1α0, β1β0q, and it is also a outer
witness of pu, vq using Proposition 55. Therefore, pyxqmy is a common outer witness of
tpu, vq, pα1α0, β1β0qu.

(b) The case when β0 “ α2
0:

u1 “ α1
0α2

0

“
hkkkikkkj

xy ¨ ¨ ¨ xy α1 “ pq (15)

v1 “ β0
loomoon

α2
0

yx ¨ ¨ ¨ yx
looomooon

“

β1 “ qp “ α2
0

“
hkkkikkkj

xy ¨ ¨ ¨ xy α1α1
0 (16)

Equating v1 on both sides of the Equation (16), we get that xy “ yx and

β1 “ α1α1
0 . (17)

Appending the equation β0 “ α2
0 to Equation (17), we get α1α0 “ β1β0 . Hence

pα1α0, β1β0q is conjuagte with ϵ as a witness. Since xy “ yx, we can also deduce that
pu, vq is an identical pair with ϵ as a witness. Therefore, ϵ is a common witness of
tpu, vq, pα1α0, β1β0qu.

(c) α2
0 is a proper prefix of β0: Since the total length of block xy ¨ ¨ ¨ xy is at least 4|β0|, it

follows that β0 must end within the first half of the block of xy. Moreover, it should end
after an x by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma since there is at least one
yx after β0 in v1. Therefore,

β0 “ α2
0pxyqmx (18)

for some integer m ě 0. Continuing with the analysis, we have:

u1 “ α1
0

β0
hkkkkikkkkj

α2
0pxyqmx

“
hkkikkj

yx ¨ ¨ ¨ y α1 “ pq (19)

v1 “ β0 yx ¨ ¨ ¨ y
loomoon

“

pxyqmxβ1 “ qp “

β0
hkkkkikkkkj

α2
0pxyqmx

“
hkkikkj

yx ¨ ¨ ¨ y α1α1
0 (20)
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By equating the sets for v1 on both sides of Equation (20), we get

pxyqmxβ1 “ α1α1
0 . (21)

Concatenating Equation (18) and Equation (21), we obtain

α1α0pxyqmx “ pxyqmxβ1β0 .

From Theorem 28, we get pxyqmx is an inner witness of pα1α0, β1β0q, and it is also an
inner witness for pu, vq using Proposition 55. Thus, pxyqmx is a common inner witness of
tpu, vq, pα1α0, β1β0qu.

Case 2: When the cut in u1 is within the block of pu, vq ¨ ¨ ¨ pu, vq

A cut pp, qq exists such that p ends within the block of pu, vq’s. There are two cases based on
whether the cut in u1 is within the first half or the second half of the block of pu, vq ¨ ¨ ¨ pu, vq.

(a) When p ends within the first half of the block of pu, vq’s:

u1 “ α0

cut region
hkkkikkkj

xy ¨ ¨ ¨ xy

ě2n times
hkkkikkkj

xy ¨ ¨ ¨ xy α1 “ pq

v1 “ β0yx ¨ ¨ ¨ yxyx ¨ ¨ ¨ yxβ1 “ qp

We compare the prefixes of q in u1 and v1. Since the length of the remaining half of the
block of xy’s is still greater than 2n|u| ą 2|β0|, it follows that β0 in v1 matches within
the block of xy’s in u1 and there is at least one xy occurring after it. Moreover, it ends
after an x by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma, as there is at least one yx

in v1 after β0. Therefore,

pβ0 “ α0pxyqmx (22)

for some integer m ě 0.

u1 “

pβ0
hkkkkikkkkj

α0pxyqmx

“
hkkikkj

yx ¨ ¨ ¨ y α1 “ pq (23)

v1 “ β0 yx ¨ ¨ ¨ y
loomoon

“

pxyqmxβ1 “ qp “ β0

“
hkkikkj

yx ¨ ¨ ¨ y α1p (24)

By equating the sets for v1 on both sides of Equation (24), we get

pxyqmxβ1 “ α1p ñ pxyqmxβ1β0 “ α1pβ0 (Appending β0)
ñ pxyqmxβ1β0 “ α1α0pxyqmx (Substituting Equation (22))

Therefore we obtain,

α1α0pxyqmx “ pxyqmxβ1β0 .

From Theorem 28, pxyqmx is an inner witness of pα1α0, β1β0q, and it is also an inner
witness for pu, vq using Proposition 55. Therefore, pxyqmx is a common inner witness of
tpu, vq, pα1α0, β1β0qu.
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(b) When p ends within the second half of the block of pu, vq’s:

u1 “ α0

ě2n times
hkkkikkkj

xy ¨ ¨ ¨ xy

cut region
hkkkikkkj

xy ¨ ¨ ¨ xy α1 “ pq

v1 “ β0yx ¨ ¨ ¨ yxyx ¨ ¨ ¨ yxβ1 “ qp

We compare the suffixes of p in u1 and v1. Since the suffix of p within the block xy is still
greater than 2n|u| ą 2|β1|, it follows that the suffix β1 in v1 matches within the block of
xy’s in u1 and there is at least one xy occurring before it. Moreover, it starts with a y by
Cases I. (c), I. (d), I. (e) and II. of Cut Lemma since there is at least one yx before β1.
Hence,

β1q “ pyxqmyα1 (25)

for some integer m ě 0.

u1 “ α0

“
hkkikkj

xy ¨ ¨ ¨ x

β1q
hkkkkikkkkj

pyxqmyα1 “ pq (26)

v1 “ β0pyxqmy xy ¨ ¨ ¨ x
loomoon

“

β1 “ qp “ qα0

“
hkkikkj

xy ¨ ¨ ¨ x β1 (27)

By equating v1 on both sides of the Equation (27), we get

β0pyxqmy “ qα0 ñ β1β0pyxqmy “ β1qα0 (Concatenating β1 on the left side)
ñ β1β0pyxqmy “ pyxqmyα1α0 (Substituting Equation (25))

Therefore, we obtain

pyxqmyα1α0 “ β1β0pyxqmy .

From Theorem 28, we get pyxqmy is an outer witness of pα1α0, β1β0q, and it is also
an outer witness for pu, vq using Proposition 55. Therefore, pyxqmy is a common outer
witness of tpu, vq, pα1α0, β1β0qu.

Case 3: When the cut in u1 is within α1

I.e., there exist a cut pp, qq for pu1, v1q such that q “ α2
1 is a suffix of α1 and α1 “ α1

1α2
1 for

some word α1
1.

u1 “

p
hkkkkkkkikkkkkkkj

α0xy ¨ ¨ ¨ xyα1
1

q
hkkikkj

α2
1

v1 “ β0yx ¨ ¨ ¨ yxβ1

This case is symmetric to Case 1, where the cut in u1 is within α0. đ

§ Corollary 65. If a set M “ pα0, β0qpu, vq˚pα1, β1q is conjugate then there exist a common
witness of tpu, vq, pα1α0, β1β0qu.

Proof. Since M is conjugate, as stated in Lemma 14, pu, vq is also conjugate. Furthermore,
the pair pα0, β0qpu, vq4npα1, β1q P M is conjugate, where n|u| ě 2¨(length of the redux of M).
From Proposition 64, we conclude that there exists a common witness of tpu, vq, pα1α0, β1β0qu.

đ
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Now we extend the above corollary to an arbitrary set G. First, we prove the following
lemma.

§ Lemma 66. Let M “ pα0, β0qG˚pα1, β1q be a conjugate sumfree set. If there exist a pair
pu, vq P G such that the set tpu, vq, pα1α0, β1β0qu has a unique common witness z, then z is
a common witness of G.

Proof. Let pu1, v1q be any pair in G. We show that z is a witness of pu1, v1q. Consider the
set M 1 “ pα0, β0qpu, vq˚pu1, v1q˚pα1, β1q, that is a subset of the set M and thus conjugate.
We show that there exists a pair in M 1 such that it is conjugate only if z is a witness of
pu1, v1q. We divide into two cases depending upon if the primitive roots of pu, vq and pu1, v1q

are conjugates to each other, i.e., ρu „ ρu1 or not.
Let m be the least common multiple of |u| and |u1|, and let ℓ “ |u| ` |u1| ´ gcdpu, u1q be

the Fine and Wilf index of u and u1. Let C denote the length of the redux of M . Let n be
the smallest number such that nm ě maxpC, ℓq. Let px, yq and px1, y1q be the unique cut of
the primitive roots of pu, vq and pu1, v1q respectively.

Case 1: When ρu „ ρu1

We have |xy| “ |x1y1| in this case. Since G˚ is conjugate, there exist l1, l2 such that l2 " l1 ą 2
and pxy, yxql1 px1y1, y1x1ql2 is conjugate. From Equal Length Lemma, either x “ x1 or y “ y1.

Consider a pair pū, v̄q P M 1 as follows.

ū “ α0

2nm
hkkikkj

u ¨ ¨ ¨ u

8nm
hkkikkj

u1 ¨ ¨ ¨ u1 α1

v̄ “ β0 v ¨ ¨ ¨ v v1 ¨ ¨ ¨ v1 β1

As M 1 is conjugate, pū, v̄q is conjugate with some cut, say pp, qq. We do a case analysis on
the cuts possible and show that z is also a witness of pu1, v1q. There are two cases to consider:
when the cut p in ū ends within the first 2nm length of the block u1 ¨ ¨ ¨ u1, or after it.

Substituting pu, vq with powers of pxy, yxq and pu1, v1q with powers of px1, y1q, we get

ū “ α0

2nm
hkkkikkkj

xy ¨ ¨ ¨ xy

2nm
hkkkkkikkkkkj

x1y1 ¨ ¨ ¨ x1y1

6nm
hkkkkkikkkkkj

x1y1 ¨ ¨ ¨ x1y1 α1

v̄ “ β0yx ¨ ¨ ¨ yxy1x1 ¨ ¨ ¨ y1x1y1x1 ¨ ¨ ¨ y1x1β1

1. When the cut p in ū ends atmost within the first 2nm length of block x1y1 ¨ ¨ ¨ x1y1.

ū “

cut region
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

α0xy ¨ ¨ ¨ xyx1y1 ¨ ¨ ¨ x1y1

ě6nm
hkkkkkkkikkkkkkkj

x1y1 ¨ ¨ ¨ ¨ ¨ ¨ x1y1 α1 “ pq

v̄ “ β0yx ¨ ¨ ¨ yxy1x1 ¨ ¨ ¨ y1x1y1x1 ¨ ¨ ¨ ¨ ¨ ¨ y1x1β1 “ qp

In this case, the total length of p is less than 5nm. As the total length of the block
consisting of y1x1 is at least 8nm, the cut in v̄ is at most within the suffix of the block
y1x1 ¨ ¨ ¨ y1x1. We compare the suffixes of q in ū and v̄. Since the length of the remaining
block of y1x1 before the cut is still greater than 3nm, we conclude that α1 in ū matches
at most within the block y1x1’s in v̄.

v̄ “ β0yx ¨ ¨ ¨ yxy1x1 ¨ ¨ ¨ ¨ ¨ ¨ y1x1β1
loooomoooon

“α1p

“ qp

There are 3 possible cases for α1p.
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(a) α1p is a proper suffix of β1: We continue comparing the suffixes of q, and deduce that
β1 starts within the block of x1y1’s, and there is at least one occurrence of x1y1 before
it. Moreover, by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma, we determine that
β1 starts from y1 since there is at least one y1x1 preceding β1 in v̄. Therefore, we can
express β1 as

β1 “ py1x1qm2y1α1p (28)

for some integer m2 ě 0. Let w1 “ py1x1qm2y1. Continuing the matching of q in ū and
v̄,

ū “ α0xy ¨ ¨ ¨ xy

“
hkkikkj

x1 ¨ ¨ ¨ x1 w1α1 “ pq

v̄ “ β0yx ¨ ¨ ¨ yxw1 x1 ¨ ¨ ¨ x1
loomoon

“

β1
loomoon

w1α1p

“ qp

On matching further, we get a factor of w1 in v̄ that needs to be matched within the
block of xy’s. There are two cases for w1 depending on whether m2 “ 0 or not.
Suppose w1 “ y1. In this case, w1 in v̄ must match with the suffix of xy in ū since
|xy| “ |x1y1|. Given that there is at least one occurrence of yx before w1 in v̄, we can
apply Cases I. (c), I. (d), I. (e) and II. of Cut Lemma to conclude that w1 “ y1 “ y.
Proceeding with further matchings, we obtain

ū “

pβ0y
hkkikkj

α0

“
1

hkkikkj

x ¨ ¨ ¨ x y

“
hkkikkj

x1 ¨ ¨ ¨ x1 y1α1 “ pq

v̄ “ β0y x ¨ ¨ ¨ x
loomoon

“1

y1 x1 ¨ ¨ ¨ x1
loomoon

“

β1 “ qp

Therefore, we have p “ α0pβ0yq´1. Substituting it in the Equation (28), we obtain

y1α1α0 “ β1β0y . (29)

Since y “ y1, it follows from Equation (29) that y, y1 is an outer witness of pα1α0, β1β0q

using Theorem 28. Also, y and y1 are outer witnesses of pu, vq and pu1, v1q respectively,
using Proposition 55. Overall, we obtain that y, y1 is a common outer witness of
tpu, vq, pu1, v1q, pα1α0, β1β0qu.
Since z is the unique common witness of tpu, vq, pα1α0, β1β0qu, z “ y “ y1 is a witness
of pu1, v1q.
Suppose w1 P py1x1q`y1. By matching w1 in v̄ with the suffix of the block xy ¨ ¨ ¨ xy in
ū, we obtain xy “ x1y1 since |xy| “ |x1y1|. It also follows that yx “ y1x1 because either
x “ x1 or y “ y1. Therefore, the primitive roots of pu, vq and pu1, v1q are the same.
Thus, z is also a witness for pu1, v1q.

(b) The case when α1p “ β1: Further matching q in ū and v̄ we get x1y1 “ y1x1 and
xy “ yx. Thus, pu, vq and pu1, v1q are identical pairs with ϵ as a common witness. Let’s
consider the sets of ū and v̄:

ū “ α0

“
hkkkkkkkkkkkikkkkkkkkkkkj

xy ¨ ¨ ¨ xyx1y1 ¨ ¨ ¨ x1y1 α1 “ pq

v̄ “ β0 yx ¨ ¨ ¨ yxy1x1 ¨ ¨ ¨ y1x1
looooooooooomooooooooooon

“

β1
loomoon

“α1p

“ qp
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On further matching, we obtain

p “ α0pβ0q´1 . (30)

Substituting Equation (30) in the equation α1p “ β1, we obtain α1α0 “ β1β0. Thus, ϵ

is a common witness for tpu, vq, pu1, v1q, pα1α0, β1β0qu. Since z is the unique witness of
pu, vq and pα1α0, β1β0q, we conclude that z “ ϵ. Therefore, z is a witness of pu1, v1q.

(c) β1 is proper suffix of α1p: We continue by comparing the suffixes of q in ū and v̄. Since
|α1p| ď C ` 5nm ď 6nm and the total length of the block of y1x1’s is at least 8nm,
α1p starts within the y1x1’s, and there is at least one occurrence of x1y1 before that.
Furthermore, it starts from x1 by using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma,
as there exists at least one x1y1 before α1 in ū. Thus, we get

α1p “ px1y1qm2x1β1 (31)

for some integer m2 ě 0. Let w1 “ px1y1qm2x1.

ū “ α0xy ¨ ¨ ¨ xyw1

“
hkkikkj

y1 ¨ ¨ ¨ y1 α1

v̄ “ β0yx ¨ ¨ ¨ yx y1 ¨ ¨ ¨ y1
loomoon

“

w1β1
loomoon

α1p

On matching further, a factor w1 in ū to be matched within the block of yx’s in v̄.
There are two cases of w1 depending upon if m2 “ 0 or not.
Let us consider the case when w1 “ x1. In this scenario, w1 in ū must match with
the suffix of yx in v̄ since |xy| “ |x1y1|. Given that there is at least one occurrence of
xy before w1 in ū, we can apply Cases I. (a), I. (b), I. (e) and II. of Cut Lemma to
conclude that w1 “ x1 “ x. By further matching, we obtain:

ū “

pβ0
hkkikkj

α0x

“
1

hkkikkj

y ¨ ¨ ¨ y x1

“
hkkikkj

y1 ¨ ¨ ¨ y1 α1

v̄ “ β0 y ¨ ¨ ¨ y
loomoon

“1

x y1 ¨ ¨ ¨ y1
loomoon

“

x1β1

We have p “ α0xβ0
´1. Substituting it in the Equation (31), we obtain

α1α0x “ x1β1β0 . (32)

Since x “ x1, it follows from Equation (32) that x, x1 is an inner witness of pα1α0, β1β0q

using Theorem 28. Also, x and x1 are inner witnesses of pu, vq and pu1, v1q respectively,
using Proposition 55. Overall, we obtain that x, x1 is a common inner witness of
tpu, vq, pu1, v1q, pα1α0, β1β0qu.
Since z is the unique common witness of tpu, vq, pα1α0, β1β0qu, z “ x “ x1 is a witness
of pu1, v1q.
Suppose w1 P px1y1q`x1. By matching w1 in ū with the suffix of the block yx ¨ ¨ ¨ yx in
v̄, we obtain yx “ y1x1 since |yx| “ |y1x1|. It also follows that xy “ x1y1 because either
x “ x1 or y “ y1. Therefore, the primitive roots of pu, vq and pu1, v1q are the same.
Thus, z is also a witness for pu1, v1q.

2. When the cut in ū ends after the first 2nm length of the block x1y1 ¨ ¨ ¨ x1y1.

ū “ α0xy ¨ ¨ ¨ xy

ě2nm
hkkkkkikkkkkj

x1y1 ¨ ¨ ¨ x1y1

cut region
hkkkkkkkkkikkkkkkkkkj

x1y1 ¨ ¨ ¨ ¨ ¨ ¨ x1y1α1

v̄ “ β0yx ¨ ¨ ¨ yxy1x1 ¨ ¨ ¨ y1x1y1x1 ¨ ¨ ¨ ¨ ¨ ¨ y1x1β1
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We compare the suffixes of p in ū and v̄. In v̄, β1 starts matching within the block of
x1y1’s in ū since the length of β1 is at most C, that is less than or equal to nm, and the
length of the block of x1y1’s before the cut is at least 2nm.

ū “ α0xy ¨ ¨ ¨ xyx1y1 ¨ ¨ ¨

β1q
hkkkkikkkkj

¨ ¨ ¨ x1y1α1

There are three possible cases for β1q, that are symmetric to the three cases for α1p

discussed earlier:
(a) β1q is a proper suffix of α1.
(b) β1q “ α1
(c) α1 is a proper suffix of β1q.
We conclude that z is a witness of the pair pu1, v1q in all three cases.

Case 2: When ρu ȷ ρu1

Consider a pair pū, v̄q P M 1 as follows.

ū “ α0

6nm
hkkikkj

u ¨ ¨ ¨ u

6nm
hkkikkj

u1 ¨ ¨ ¨ u1 α1

v̄ “ β0 v ¨ ¨ ¨ v v1 ¨ ¨ ¨ v1 β1

Since M 1 is conjugate, the pair pū, v̄q is conjugate with some cut pp, qq. To analyze the cuts
and demonstrate that z is also a witness of pu1, v1q, we consider three main cases:

The cut p in ū is positioned within the initial 2nm length of the block u ¨ ¨ ¨ u. (When p

is short)
The cut p in ū is located within the suffix starting from the last 2nm length of the block
u1 ¨ ¨ ¨ u1. (When q is short).
The cut p is located between the remaining portion, i.e., the portion following the first
2nm length of the block u’s and before the last 2nm length of the block u1’s.

Substituting pui, viq with powers of pxiyi, yixiq we get,

ū “ α0

2nm
hkkkikkkj

xy ¨ ¨ ¨ xy

4nm
hkkkikkkj

xy ¨ ¨ ¨ xy

4nm
hkkkkkikkkkkj

x1y1 ¨ ¨ ¨ x1y1

2nm
hkkkkkikkkkkj

x1y1 ¨ ¨ ¨ x1y1 α1

v̄ “ β0yx ¨ ¨ ¨ yxyx ¨ ¨ ¨ yxy1x1 ¨ ¨ ¨ y1x1xy1x1 ¨ ¨ ¨ y1x1β1

1. When p is short, i.e., when the cut in ū is within first 2nm length of the block u’s.

ū “

cut region
hkkkkkikkkkkj

α0xy ¨ ¨ ¨ xy

ě4nm
hkkkikkkj

xy ¨ ¨ ¨ xy

ě6nm
hkkkkkikkkkkj

x1y1 ¨ ¨ ¨ x1y1 α1

In this case, we perform a further analysis based on whether the cut in ū is within α0 or
within the block xy ¨ ¨ ¨ xy.
Let’s consider the scenario where the cut p is within α0, i.e., p “ α1

0 is a prefix of α0 and
α0 “ α1

0α2
0, for some word α2

0. Next, we compare the prefixes of q in ū and v̄. We can
further divide this analysis into three cases:

β0 is a proper prefix of α2
0.

β0 “ α2
0.

α2
0 is a proper prefix of β0.
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In the last case, we also consider the scenario where the cut is within the block xy ¨ ¨ ¨ xy.
We examine these cases and show that z is a witness of pu1, v1q in every situation.

(a) When the cut is within α0 and β0 is a proper prefix of α2
0. We continue to match the

prefixes of q in ū and v̄. After matching β0 with the prefix of q in ū, we find that the
remaining suffix of α2

0 matches with the prefix of the block yx ¨ ¨ ¨ yx in v̄. Since the
total length of the block yx ¨ ¨ ¨ yx is far greater than |α0| and there exists a xy after
α2

0 in ū, it should end at a y using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma.
Thus, we can express α2

0 as

α2
0 “ β0pyxqmy (33)

for some integer m ě 0. Let w “ pyxqmy. Continuing to match q in ū and v̄, we obtain

ū “ α1
0α2

0

“
hkkikkj

x ¨ ¨ ¨ x wx1y1 ¨ ¨ ¨ x1y1α1

v̄ “ β0w
loomoon

α2
0

x ¨ ¨ ¨ x
loomoon

“

y1x1 ¨ ¨ ¨ y1x1β1

Furthermore, a factor equal to w in ū must be matched with a prefix of the block y1x1’s
in v̄. Given that the length of w is smaller than the length of α0, i.e., |w| ă |α0| ă nm,
we can conclude that w matches within the block y1x1’s. By applying Cases I. (a), I.
(b), I. (e) and II. of Cut Lemma, we determine that w ends at y1 since there is at least
one occurrence of x1y1 following w in ū. Let w1 “ py1x1qm2y1 for some m2 ě 0, and it
follows that w “ w1. On further matching, we obtain

ū “ α0

“
hkkikkj

x ¨ ¨ ¨ x w

“
1

hkkikkj

x1 ¨ ¨ ¨ x1 w1α1 “ pq

v̄ “ β0w x ¨ ¨ ¨ x
loomoon

“

w1 x1 ¨ ¨ ¨ x1
loomoon

“1

β1 “ qp

We have,

β1 “ w1α1p . (34)

By substituting p “ α1
0 and appending the Equation (33) in Equation (34), we

can deduce that w1α1α0 “ β1β0w. Since we know that w “ w1, it follows that
wα1α0 “ β1β0w and w1α1α0 “ β1β0w1. Therefore, w, w1 is an outer witness of
pα1α0, β1β0q using Theorem 28. Also, w P pyxq˚y and w1 P py1x1q˚y1 are outer
witnesses of pu, vq and pu1, v1q respectively, using Proposition 55. Since w “ w1, we get
w, w1 is a common outer witness of tpu, vq, pu1, v1q, pα1α0, β1β0qu.
Since we know that z is the unique common witness for tpu, vq, pα1α0, β1β0qu, z “

w “ w1 is a witness of pu1, v1q.
(b) When the cut p is within α0 and β0 “ α2

0: We observe that through further matchings
in q, we obtain xy “ yx and x1y1 “ y1x1. Consequently, pu, vq and pu1, v1q form an
identical pair with ϵ as a witness. This scenario is equivalent to the previous case
where w “ w1 “ ϵ.

(c) The remaining cases involve either the cut being within α0 and α2
0 being a proper suffix

of β0, or the cut being located within the first 2nm length of the block xy ¨ ¨ ¨ xy. In
both cases, as the length of the remaining half of xy’s is still greater than nm ě |β0|,
we can match the prefixes of q in ū and v̄ to determine that β0 ends within the block
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xy’s. Furthermore, using Cases I. (c), I. (d), I. (e) and II. in Cut Lemma, β0 should
end after an x because there exists a yx after β0 in v̄. Thus, we can express pβ0 as

pβ0 “ α0w (35)

where w “ pxyqm1x for some integer m1 ě 0. On matching further, we obtain

ū “

pβ0
hkkikkj

α0w

“
hkkikkj

y ¨ ¨ ¨ y x1y1 ¨ ¨ ¨ x1y1α1

v̄ “ β0 y ¨ ¨ ¨ y
loomoon

“

wy1x1 ¨ ¨ ¨ y1x1β1

Note that the maximum length of w is atmost 3nm (that is equal to |p| ` |β0|). Given
that the total length of the block x1y1 ¨ ¨ ¨ x1y1 is at least 6nm, we can conclude that
w matches within the block x1y1’s and ends after an x1. This can be inferred from
Cases I. (c), I. (d), I. (e) and II. in Cut Lemma, as there exists a y1x1 after w in v̄. Let
w1 “ px1y1qm2x1, where m2 ě 0, and we have w “ w1.

ū “ α0w

“
hkkikkj

y ¨ ¨ ¨ y w1

“
1

hkkikkj

y1 ¨ ¨ ¨ y1 α1

v̄ “ β0 y ¨ ¨ ¨ y
loomoon

“

w
“

1

y1 ¨ ¨ ¨ y1
loomoon

w1β1

We have,

w1β1 “ α1p . (36)

By substituting p of Equation (35) in the Equation (36), we can deduce that α1α0w “

w1β1β0. Since we know that w “ w1, it follows that α1α0w “ wβ1β0 and α1α0w1 “

w1β1β0. From Theorem 28, we get w, w1 is an inner witness of pα1α0, β1β0q. Also,
w P pxyq˚x and w1 P px1y1q˚x1 are inner witnesses of pu, vq and pu1, v1q respectively,
using Proposition 55. Since w “ w1, we get w, w1 is a common inner witness of
tpu, vq, pu1, v1q, pα1α0, β1β0qu.
Since we know that z is the unique common witness of tpu, vq, pα1α0, β1β0qu, we can
conclude that z “ w “ w1 is a witness of pu1, v1q.

2. When q is short, i.e., when the cut p in ū is positioned within the suffix starting from the
last 2nm length of the block u1 ¨ ¨ ¨ u1. This situation is symmetric to the previous case
where p is short, and we can analyze it similarly.

3. Suppose ū has a long cut on either side, meaning that the cut p is located between the
remaining portion, i.e., the portion following the first 2nm length of the block u’s and
before the last 2nm length of the block u1’s. In this case, the block of xy’s and the block
of x1y1’s have a common factor of length at least nm, that is greater than or equal to ℓ

(the fine and Wilf index of u and u1). According to Theorem 30, it follows that xy and
x1y1 are conjugates.
Hence, the primitive roots of pu, vq and pu1, v1q are conjugates, which contradicts our
assumption that ρu ȷ ρu1 .

Therefore, z is a witness of any pair in G. Hence, z is a common witness of G. đ

§ Proposition 67. If a set M “ pα0, β0qG˚pα1, β1q is conjugate then one of the following is
true:
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1. G has infinitely many witnesses: In this case, each pair in G shares the same primitive
root that has a common witness with pα1α0, β1β0q.

2. G has a unique common witness z: There exist a pair in G that has a unique common
witness with pα1α0, β1β0q, that is equal to z. Hence, z is the only common witness of
G Y tpα1α0, β1β0qu.

Proof. Given that pα0, β0qG˚pα1, β1q is conjugate, we can deduce that G˚ is conjugate by
Lemma 14. Furthermore, according to Corollary 45, G˚ is conjugate if and only if G has a
common witness. Considering Corollary 57, there are two possibilities for G: it either has a
unique common witness or infinitely many common witnesses.

Assume that G has infinitely many common witnesses. From Corollary 57, G is a set of
powers of a primitive root, say pρ, ρ1q. The common witnesses of G are the same as that of
the witnesses of pρ, ρ1q using Corollary 56. Since M is conjugate, pα0, β0qpρn, ρ1nq

˚
pα1, β1q

is conjugate for some n ě 1. From Corollary 65, there exists a common witness of
tpρn, ρ1nq, pα1α0, β1β0qu. Furthermore, according to Proposition 55, the witness of pρ, ρ1q is
the same as the witness of pρn, ρ1nq. Therefore, we can conclude that there exists a common
witness of tpρ, ρ1q, pα1α0, β1β0qu, and thus of G Y tpα1α0, β1β0qu.

Next we assume that G has a unique common witness. We know that each pair in G

has a common witness with pα1α0, β1β0q using Corollary 65. Moreover, we claim that there
exists a pair pu, vq P G such that pu, vq and pα1α0, β1β0q share a unique common witness.
Suppose not, i.e., every pair in G has infinitely many common witnesses with pα1α0, β1β0q.
Consequently, each pair in G can be expressed as a power of the primitive root of pα1α0, β1β0q.
Hence, G itself has infinitely many common witnesses by Corollary 57, a contradiction.

From Lemma 66, we obtain that the unique common witness of pu, vq and pα1α0, β1β0q

is a common witness of G. Thus, the unique common witness of G is the common witness of
the set G Y tpα1α0, β1β0qu. đ

The remaining direction to prove is p2q ñ p3q in Proposition 49. This direction states
that if there exists a common witness for both G and pα1α0, β1β0q for a given set M “

pα0, β0qG˚pα1, β1q, then M has a common witness. It is a straightforward corollary of the
below lemma.

§ Lemma 68. Let M “ pα0, β0qG˚pα1, β1q be a sumfree set. If there exists a common witness
z1 for G Y tpα1α0, β1β0qu, then one of the following cases is true:

(a) If z1 is a unique common inner witness, then M has a unique common witness z “

rα0z1, β0sR “ rα1, z1β1sL. Moreover, if |α0z1| ě |β0| or equivalently |α1| ď |z1β1|, then z

is an inner witness, otherwise it is an outer witness.
(b) If z1 is a unique common outer witness, then M has a unique common witness z “

rα0, β0z1sR “ rz1α1, β1sL. Moreover, if |z1α1| ě |β1| or equivalently |α0| ď |β0z1|, then z

is an outer witness, otherwise it is an inner witness.
(c) If G Y tpα1α0, β1β0qu have infinitely many common witnesses, then M is a set of powers

of the primitive root of its redux. Thus, M has infinitely many witnesses.

Proof. Case paq: When z1 is a common inner witness of G Y tpα1α0, β1β0qu

The following equations hold:

α1α0z1 “ z1β1β0 (37)
uz1 “ z1v for any pair pu, vq P G˚ (38)
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We claim that z “ rα0z1, β0sR “ rα1, z1β1sL is a common witness for M . There are two cases
depending upon whether β0 is a suffix of α0z1 or vice-versa in Equation (37).

(a) When β0 is a suffix of α0z1 or equivalently, when α1 is a prefix of z1β1. We get z “

α0z1β0
´1

“ α´1
1 z1β1 . We show that z is a common inner witness for M .

For any pu, vq P G˚,

α0uα1z “ α0uz1β1 (Substituting α1z “ z1β1)
“ α0z1vβ1 (z1 is an inner witness of pu, vq)
“ zβ0vβ1 (Substituting α0z1 “ zβ0)

(b) When α0z1 is a suffix of β0 or equivalently z1β1 is a prefix of α1. We get z “ β0pα0z1q´1 “

pz1β1q´1α1. We show that z is a common outer witness for M .
For any pu, vq P G˚,

zα0uα1 “ zα0uz1β1z (Substituting α1 “ z1β1z)
“ zα0z1vβ1z (z1 is an inner witness of pu, vq)
“ β0vβ1z (Substituting zα0z1 “ β0)

Case pbq: When z1 is a common outer witness of G and pα1α0, β1β0q

Therefore, the following equations hold:

z1α1α0 “ β1β0z1 (39)
z1u “ vz1 for any pair pu, vq P G˚ (40)

We claim that z “ rα0, β0z1sR “ rz1α1, β1sL is a witness for M . There are two cases depending
upon if α0 is a suffix of β0z1 or vice-versa in Equation (39).

(a) When α0 is a suffix of β0z1 or equivalently, β1 is a prefix of z1α1. We get z “ β0z1α´1
0 “

β´1
1 z1α1. We show that z is a common outer witness for M .

For any pu, vq P G˚,

zα0uα1 “ β0z1uα1 (Substituting zα0 “ β0z1)
“ β0vz1α1 (z1 is an outer witness of pu, vq)
“ β0vβ1z (Substituting z1α1 “ β1z)

(b) If β0z1 is a suffix of α0 or equivalently, z1α1 is a prefix of β1. Therefore, z “ α0pβ0z1q´1 “

pz1α1q´1β1 . We show that z is a common inner witness for M .
For any pu, vq P G˚,

α0uα1z “ zβ0z1uα1z (Substituting α0 “ zβ0z1)
“ zβ0vz1α1z (z1 is an outer witness of pu, vq)
“ zβ0vβ1 (Substituting z1α1z “ β1)

Therefore, if there exists a common witness z1 for G and pα1α0, β1β0q, there also exists a
common witness z for M .

Ź Claim 69. If z1 is a unique common witness for G Y tpα1α0, β1β0qu then z is the unique
common witness of M .
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Proof. Since G Y tpα1α0, β1β0qu have a unique witness z1, as stated in the second item
of Proposition 67, there exists a pair pu, vq in G that has a unique common witness with
pα1α0, β1β0q, that is equal to z1.

Let zm be any common witness for M . Thus, zm is a common witness for the pair
P “ pα0, β0qpu, vq4npα1, β1q P M , where n is the smallest number such that n|u| ě maxt2 ¨

length of the redux, zmu. According to Proposition 64, for any cut in P , there exists a
common witness for tpu, vq, pα1α0, β1β0qu. Since tpu, vq, pα1α0, β1β0qu have a unique witness
z, there is only one unique cut for P , as any other cut would lead to a new common witness.
Therefore, zm “ z. đ

Case pcq: When G Y tpα1α0, β1β0qu has infinitely many witnesses

According to Corollary 57, it is a set of powers of the same primitive root, let us say pρ, ρ1q.
Therefore, G˚pα1, β1qpα0, β0q is a set of powers of pρ, ρ1q and is conjugate. Since M is a
cyclic shift of G˚pα1, β1qpα0, β0q and is also conjugate, it is a set of powers of a primitive
root, let us say pρm, ρ1

mq, that is a cyclic shift of pρ, ρ1q. Moreover, α1 (resp. β1) is an inner
(resp. outer) witness of pρ, ρmq (resp. pρ1, ρ1

mq). We observe that pρm, ρ1
mq is the primitive

root of the redux of M . Hence, M is a set of powers of the primitive root of its redux. đ

6.2 Common Witness of a Sumfree Set
We prove p1q ñ p2q, p3q ñ p1q and p2q ðñ p3q in Theorem 50. p3q ñ p1q is obvious. We
show p2q ðñ p3q first.

§ Lemma 70. Given a sumfree set M “ pα0, β0qG1
˚

pα1, β1qG2
˚

¨ ¨ ¨ Gk
˚

pαk, βkq. The fol-
lowing are equivalent.

1. z is a common witness of M .
2. z is a common witness of each of its singleton redux.

Proof. Let Mi be the singleton redux of M keeping only the Kleene star G˚
i , i.e., Mi “

pα0 ¨ ¨ ¨ αi´1, β0 ¨ ¨ ¨ βi´1qG˚
i pαi ¨ ¨ ¨ αk, βi ¨ ¨ ¨ βkq for i P t1, . . . , ku. The proof of p1q ñ p2q is

trivial.
We prove p2q ñ p1q. Assume z is a common inner witness of each Mi’s. For each i, let zi

denote the common witness of Gi Y tpαi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1, βi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1qu. There are 3
possible cases for zi.

(a) zi is a unique common inner witness. Therefore, for any pair pui, viq P G˚
i ,

uizi “ zivi (41)
αi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1zi “ ziβi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1 (42)

z “ α0 ¨ ¨ ¨ αi´1zipβ0 ¨ ¨ ¨ βi´1q´1 “ pαi ¨ ¨ ¨ αkq´1ziβi ¨ ¨ ¨ βk (By Lemma 68 (a)) (43)

(b) zi is a unique common outer witness. Therefore, for any pair pui, viq P G˚
i ,

ziui “ vizi (44)
ziαi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1 “ βi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1zi (45)

z “ α0 ¨ ¨ ¨ αi´1pβ0 ¨ ¨ ¨ βi´1ziq
´1 “ pziαi ¨ ¨ ¨ αkq´1βi ¨ ¨ ¨ βk (By Lemma 68 (b)) (46)

(c) When Gi Y tpαi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1, βi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1qu has infinitely many witnesses, by
Corollary 57, it is a set of powers of the same primitive root say pρi, ρ1

iq. Therefore
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zi belongs to witnesses of pρi, ρ1
iq. From Lemma 68 (c), the set Mi reduces to a set

of powers of the primitive root of the redux pα0 ¨ ¨ ¨ αk, β0 ¨ ¨ ¨ βkq, say pρ, ρ1q. Note that
αi ¨ ¨ ¨ αk (resp. α0 ¨ ¨ ¨ αi´1) is an inner (resp. outer) witness of pρi, ρq. Similarly βi ¨ ¨ ¨ βk

(resp. β0 ¨ ¨ ¨ βi´1) is an inner (resp. outer) witness of pρ1
i, ρ1q.

We show that z is a common inner witness of M , i.e., for any arbitrary pair pui, viq P G˚
i

(possibly empty), we prove α0u1α1u2α2 ¨ ¨ ¨ αk´1ukαkz “ zβ0v1β1v2β2 ¨ ¨ ¨ βk´1vkβk. The
proof is by induction on the number of singleton reduxes, 0 ď i ď k.

Base Case:

When i “ 0, it is vacuously true since z is a witness of the redux.

Inductive Case:

Assume for induction that it is true for the first i ´ 1 singleton reduxes, i.e.,

α0u1α1u2α2 ¨ ¨ ¨ ui´1αi´1 ¨ ¨ ¨ αkz “ zβ0v1β1v2β2 ¨ ¨ ¨ vi´1βi´1 ¨ ¨ ¨ βk .

We prove it for the first i singleton reduxes, i.e., we show

α0u1α1u2α2 ¨ ¨ ¨ ui´1αi´1uiαi ¨ ¨ ¨ αkz “ zβ0v1β1v2β2 ¨ ¨ ¨ vi´1βi´1viβi ¨ ¨ ¨ βk .

There are 3 possible cases for the common witness zi of GiYtpαi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1, βi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1qu.

1. When zi is a unique common inner witness. From Equation (43), z “ pαi ¨ ¨ ¨ αkq´1ziβi ¨ ¨ ¨ βk.

α0u1α1 ¨ ¨ ¨ ui´1αi´1uiαiαi`1 ¨ ¨ ¨ αkz

“ α0u1α1 ¨ ¨ ¨ ui´1αi´1uiziβi ¨ ¨ ¨ βk (Subs. z)
“ α0u1α1 ¨ ¨ ¨ ui´1αi´1ziviβi ¨ ¨ ¨ βk (uizi “ zivi)
“ α0u1α1 ¨ ¨ ¨ ui´1αi´1αi ¨ ¨ ¨ αkzpβi ¨ ¨ ¨ βkq´1viβi ¨ ¨ ¨ βk (Subs. zi)
“ zβ0v1β1 ¨ ¨ ¨ vi´1βi´1βi ¨ ¨ ¨ βkpβi ¨ ¨ ¨ βkq´1viβi ¨ ¨ ¨ βk (Inductive Hypothesis)
“ zβ0v1β1 ¨ ¨ ¨ vi´1βi´1viβi ¨ ¨ ¨ βk (Simplifying)

2. When zi is a unique outer witness. By Equation (46), z “ pziαi ¨ ¨ ¨ αkq´1βi ¨ ¨ ¨ βk.

α0u1α1 ¨ ¨ ¨ ui´1αi´1uiαiαi`1 ¨ ¨ ¨ αkz

“ α0u1α1 ¨ ¨ ¨ ui´1αi´1uiαiαi`1 ¨ ¨ ¨ αkpziαi ¨ ¨ ¨ αkq´1βi ¨ ¨ ¨ βk (Subs. z)
“ α0u1α1 ¨ ¨ ¨ ui´1αi´1uiz

´1
i βi ¨ ¨ ¨ βk (Simplifying)

“ α0u1α1 ¨ ¨ ¨ ui´1αi´1zi
´1viβi ¨ ¨ ¨ βk (ui “ zi

´1vizi)
“ α0u1α1 ¨ ¨ ¨ ui´1αi´1αi ¨ ¨ ¨ αkzpβi ¨ ¨ ¨ βkq´1viβi ¨ ¨ ¨ βk (Subs. z´1

i )
“ zβ0v1β1 ¨ ¨ ¨ vi´1βi´1βi ¨ ¨ ¨ βkpβi ¨ ¨ ¨ βkq´1viβi ¨ ¨ ¨ βk (Inductive Hypothesis)
“ zβ0v1β1 ¨ ¨ ¨ vi´1βi´1viβi ¨ ¨ ¨ βk (Simplifying)

3. When zi is a witness of the primitive root pρi, ρ1
iq of GiYtpαi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1, βi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1qu

(The case where Gi Y tpαi ¨ ¨ ¨ αkα0 ¨ ¨ ¨ αi´1, βi ¨ ¨ ¨ βkβ0 ¨ ¨ ¨ βi´1qu have infinitely many wit-
nesses). Here pui, viq is some mth power of pρi, ρ1

iq. Since z is a witness of a singleton
redux, it is also a witness of the redux pα0 ¨ ¨ ¨ αk, β0 ¨ ¨ ¨ βkq, and hence a witness of its
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primitive root pρ, ρ1q. We also know that αi ¨ ¨ ¨ αk is an inner witness of pρi, ρq and
βi ¨ ¨ ¨ βk is an inner witness of pρ1

i, ρ1q.

α0u1α1 ¨ ¨ ¨ ui´1αi´1uiαiαi`1 ¨ ¨ ¨ αkz

“ α0u1α1 ¨ ¨ ¨ ui´1αi´1pρiq
mαiαi`1 ¨ ¨ ¨ αkz (Subs. ui)

“ α0u1α1 ¨ ¨ ¨ ui´1αi´1αiαi`1 ¨ ¨ ¨ αkpρqmz (αi ¨ ¨ ¨ αk is an i.w. of pρi, ρq)
“ α0u1α1 ¨ ¨ ¨ ui´1αi´1αiαi`1 ¨ ¨ ¨ αkzpρ1qm (z is a witness of pρ, ρ1q)
“ α0u1α1 ¨ ¨ ¨ ui´1αi´1αiαi`1 ¨ ¨ ¨ αkzpβi ¨ ¨ ¨ βkq´1pρi

1qmβi ¨ ¨ ¨ βk (βi ¨ ¨ ¨ βk is an i.w. of pρ1
i, ρ1q)

“ α0u1α1 ¨ ¨ ¨ ui´1αi´1αiαi`1 ¨ ¨ ¨ αkzpβi ¨ ¨ ¨ βkq´1viβi ¨ ¨ ¨ βk (Subs. vi “ pρ1
iq

m)
“ zβ0v1β1 ¨ ¨ ¨ vi´1βi´1βi ¨ ¨ ¨ βkpβi ¨ ¨ ¨ βkq´1viβi ¨ ¨ ¨ βk (Inductive Hypothesis)
“ zβ0v1β1 ¨ ¨ ¨ vi´1βi´1viβi ¨ ¨ ¨ βk (Simplifying)

Thus z is a common witness of M . đ

We prove p1q ñ p2q in Theorem 50 in the case when a sumfree set contains only two
Kleene stars. Later we extend it to an arbitrary number of Kleene stars.

§ Lemma 71. Let M “ pα0, β0qG˚
1 pα1, β1qG˚

2 pα2, β2q. If M is conjugate then there exists a
common witness z such that z is a common witness for each of its singleton reduxes.

Proof. Consider the singleton redux of M denoted as M1 and M2. We have M1 “

pα0, β0qG˚
1 pα1α2, β1β2q and M2 “ pα0α1, β0β1qG˚

2 pα2, β2q. Since M is conjugate, it fol-
lows that M1 and M2 are also conjugate. According to Proposition 49, both M1 and M2 has
a common witness.

If both M1 and M2 have infinitely many common witnesses, we can conclude, based on
the third item in Lemma 68, that both M1 and M2 are sets of powers of the primitive root
of the redux of M . Thus, any witness for the primitive root of the redux is also a witness for
both M1 and M2 using Proposition 55. Therefore, it holds true that when both M1 and M2
have infinitely many common witnesses.

Let us consider the scenario where exactly one of M1 and M2 has a unique witness.
Without loss of generality, let us assume that M1 has a unique witness, while M2 has
infinitely many witnesses. According to Lemma 68, we can conclude that M2 is a set of
powers of the primitive root of the redux. Consequently, the witnesses of M2 are the same as
the witnesses of the primitive root of the redux. Since the unique witness, say z, for M1 is
also a witness for the redux, we can apply Proposition 55 to conclude that z is also a witness
for the primitive root of the redux. Therefore, z is also a witness for M2.

If both M1 and M2 have a unique witness. From Lemma 68, G1 has a unique common
witness z1 with pα1α2α0, β1β2β0q. Moreover, From Proposition 67, there exist a pair pu1, v1q P

G such that it has a unique common witness with pα1α2α0, β1β2β0q equal to z1. Similarly,
there exists a pair pu2, v2q P G2 that has a unique common witness with pα2α0α1, β2β0β1q,
that is same as the unique witness of G2 say z2.

Consider the set M 1 “ pα0, β0qpu1, v1q˚pα1, β1qpu2, v2q˚pα2, β2q, which is a subset of the
sumfree set M and therefore M 1 is conjugate.

We construct a pair in M 1 and do a case analysis on its cuts. Our objective is to show that
a nontrivial relation exists between z1, z2, and the redux for all possible cuts. By equating
this relation, we can establish that the unique witnesses of M1 and M2 are identical.

Let m be the least common multiple of |u1| and |u2|, and let C be the length of the
redux. We choose n as the smallest number such that nm ě C. Let px1, y1q and px2, y2q is
the unique cut of the primitive root of pu1, v1q and pu2, v2q respectively.
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Consider a pair pu1, v1q P M 1 as follows.

u1 “ α0

2nm
hkkkikkkj

u1 ¨ ¨ ¨ u1 α1

8nm
hkkkikkkj

u2 ¨ ¨ ¨ u2 α2

v1 “ β0 v1 ¨ ¨ ¨ v1 β1 v2 ¨ ¨ ¨ v2 β2

Since M 1 is conjugate, pu1, v1q is conjugate with some cut denoted as pp, qq. We do a case
analysis based on the cuts possible and show that M1 and M2 share the same unique witness.
There are two cases to consider: when the cut in u1 occurs at most within the initial 2nm

length of the block of x2y2 ¨ ¨ ¨ x2y2, or after it.
Substituting pui, viq with powers of pxiyi, yixiq we get,

u1 “ α0

2nm
hkkkkkkikkkkkkj

x1y1 ¨ ¨ ¨ x1y1 α1

2nm
hkkkkkkikkkkkkj

x2y2 ¨ ¨ ¨ x2y2

6nm
hkkkkkkikkkkkkj

x2y2 ¨ ¨ ¨ x2y2 α2

v1 “ β0y1x1 ¨ ¨ ¨ y1x1β1y2x2 ¨ ¨ ¨ y2x2y2x2 ¨ ¨ ¨ y2x2β2

Case 1: When the cut p in u1 ends at most within the first 2nm length of block
x2y2 ¨ ¨ ¨ x2y2

u1 “

cut region
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

α0x1y1 ¨ ¨ ¨ x1y1α1x2y2 ¨ ¨ ¨ x2y2

ě6nm
hkkkkkkkkikkkkkkkkj

x2y2 ¨ ¨ ¨ ¨ ¨ ¨ x2y2 α2

v1 “ β0y1x1 ¨ ¨ ¨ y1x1β1y2x2 ¨ ¨ ¨ y2x2y2x2 ¨ ¨ ¨ ¨ ¨ ¨ y2x2β2

In this case, the total length of p is less than 5nm. As the total length of the block consisting
of y2x2 is at least 8nm, the cut in v1 is at most within the suffix of the block y2x2 ¨ ¨ ¨ y2x2.
We compare the suffixes of q in u1 and v1. Since the length of the remaining block of y2x2
before the cut is still greater than 3nm, we conclude that α2 in u1 matches at most within
the y2x2’s in v1.

v1 “ β0y1x1 ¨ ¨ ¨ y1x1β1y2x2 ¨ ¨ ¨ ¨ ¨ ¨ y2x2β2
loooomoooon

“α2p

There are 3 possible cases for α2p.

(a) α2p is a proper suffix of β2. We continue comparing the suffixes of q, and deduce that
β2 starts within the block of x2y2’s, and there is at least one occurrence of x2y2 before
it. Moreover, by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma, we determine that
β2 starts from y2 since there is at least one y2x2 preceding β2 in v1. Therefore, we can
express β2 as py2x2qm2y2α2p, where m2 is an integer greater than or equal to 0. Let
w2 “ py2x2qm2y2. Continuing the matching of q in u1 and v1,

u1 “ α0x1y1 ¨ ¨ ¨ x1y1α1

“
hkkkikkkj

x2 ¨ ¨ ¨ x2 w2α2 “ pq

v1 “ β0y1x1 ¨ ¨ ¨ y1x1β1w2 x2 ¨ ¨ ¨ x2
looomooon

“

β2
loomoon

w2α2p

“ qp

On matching further, we deduce p “ α0x1y1 ¨ ¨ ¨ x1y1α1pβ0y1x1 ¨ ¨ ¨ y1x1β1w2q´1. By
substituting it in the equation w2α2p “ β2, we obtain

w2α2α0x1y1 ¨ ¨ ¨ x1y1α1 “ β2β0y1x1 ¨ ¨ ¨ y1x1β1w2 .
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We deduce w2 is an outer witness for pα2α0, β2β0qpx1y1, y1x1q ¨ ¨ ¨ px1y1, y1x1qpα1, β1q

using Theorem 28. Furthermore, w2 is the unique outer witness for this set, as pu1, v1q

and pα1α2α0, β1β2β0q share a unique common witness z1. By applying Lemma 68, we
can equate w2 accordingly. There are two cases to consider based on whether z1 is a
unique common inner or outer witness.

a. When z1 is a unique inner witness of pu1, v1q and pα1α2α0, β1β2β0q.

w2 “ β2β0pα2α0z1q´1 “ pz1β1q´1α1 . (47)

We obtain w2α2α0α1 “ β2β0β1w2 by solving Equation (47). Since w2 P py2x2q˚y2, w2
is a common outer witness of px2, y2q and pα2α0α1, β2β0β1q. Since z2 is the unique
common witness of pu2, v2q and pα2α0α1, β2β0β1q, we get w2 “ z2, which implies that
z2 is the unique common outer witness.
From Proposition 49, the unique witness of M1 is rα0z1, β0sR and the unique witness
of M2 is rβ0β1z2, α0α1sR. We show that they are equal as follows.

rβ0β1z2, α0α1sR “ rβ0β1z2, α0z1β1z2sR (Since z1β1z2 “ α1 in Equation (47))
“ rβ0, α0z1sR (ruw, vwsR “ ru, vsR for any word w, u and v)
“ rα0z1, β0sR (ru, vsR “ rv, usR for any word u and v)

Thus the witness of M1 and M2 are the same.
b. When z1 is a unique outer witness of pu1, v1q and pα1α2α0, β1β2β0q.

w2 “ β2β0z1pα2α0q´1 “ β´1
1 z1α1 . (48)

We get w2α2α0α1 “ β2β0β1w2 by solving Equation (48). Since w2 P py2x2q˚y2, w2
is a common outer witness of px2, y2q and pα2α0α1, β2β0β1q. Since z2 is the unique
common witness of pu2, v2q and pα2α0α1, β2β0β1q, we get w2 “ z2, which implies z2 is
the unique common outer witness.
From Proposition 49, the unique witness of M1 is rβ1β2, z1α1α2sL and the unique
witness of M2 is rβ2, z2α2sL. We show that they are equal as follows.

rβ1β2, z1α1α2sL “ rβ1β2, β1z2α2sL (Since z1α1 “ β1z2 in Equation (48))
“ rβ2, z2α2sL (rwu, wvsL “ ru, vsL for any word w, u and v)

Thus the witness of M1 and M2 are the same.

(b) α2p “ β2. In this case by further matchings in q we get x2y2 “ y2x2. Thus u2 “ v2 and
hence pu2, v2q is an identical cycle with ϵ as witness. It is the same as the above case
where w2 “ ϵ.

(c) When β2 is proper suffix of α2p. β1 is proper suffix of α1p. We continue by comparing
the suffixes of q in u1 and v1. Since |α2p| ď C ` 5nm ď 6nm and the total length of the
block of y2x2’s is at least 8nm, α2p starts within the y2x2’s, and there is at least one
occurrence of x2y2 before that. Furthermore, it starts from x2 by using Cases I. (a), I.
(b), I. (e) and II. of Cut Lemma, as there exists at least one x2y2 before α2 in u1. Thus,
we can write α2p “ px2y2qm2x2β2, where m2 ě 0. Let w2 “ px2y2qm2x2.

u1 “ α0x1y1 ¨ ¨ ¨ x1y1α1w2

“
hkkkikkkj

y2 ¨ ¨ ¨ y2 α2

v1 “ β0y1x1 ¨ ¨ ¨ y1x1β1 y2 ¨ ¨ ¨ y2
looomooon

“

w2β2
loomoon

α2p
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On matching further, we deduce p “ α0x1y1 ¨ ¨ ¨ x1y1α1w2pβ0y1x1 ¨ ¨ ¨ y1x1β1q´1. By
substituting it in the equation α2p “ px2y2qm2x2β2, we obtain

α2α0x1y1 ¨ ¨ ¨ x1y1α1w2 “ w2β2β0y1x1 ¨ ¨ ¨ y1x1β1w2 .

We deduce w2 is an inner witness for pα2α0, β2β0qpx1y1, y1x1q ¨ ¨ ¨ px1y1, y1x1qpα1, β1q

using Theorem 28. Furthermore, w2 is the unique inner witness for this set, as pu1, v1q

and pα1α2α0, β1β2β0q share a unique common witness z1. By applying Lemma 68, we
can equate w2 accordingly. There are two cases to consider based on whether z1 is a
unique common inner or outer witness.

a. When z1 is a unique inner witness of pu1, v1q and pα1α2α0, β1β2β0q.

w2 “ α2α0z1pβ2β0q´1 “ pα1q´1z1β1 . (49)

We deduce α2α0α1w2 “ w2β2β0β1 by solving Equation (49). Since w2 P px2y2q˚x2,
w2 is a common inner witness of px2, y2q and pα2α0α1, β2β0β1q. Since z2 is the unique
common witness of pu2, v2q and pα2α0α1, β2β0β1q, we get w2 “ z2, which implies z2 is
the unique common inner witness.
From Proposition 49, the unique witness of M1 is rα0z1, β0sR and the unique witness
of M2 is rα0α1z2, β0β1sR. We show that they are equal as follows.

rα0α1z2, β0β1sR “ rα0z1β1, β0β1sR (Since α1z2 “ z1β1 in Equation (49))
“ rα0z1, β0sR (ruw, vwsR “ ru, vsR for any word w, u and v)

Thus the witness of M1 and M2 are the same.
b. When z1 is a unique outer witness of pu1, v1q and pα1α2α0, β1β2β0q.

w2 “ α2α0pβ2β0z1q´1 “ pz1α1q´1β1 . (50)

We obtain α2α0α1w2 “ w2β2β0β1 by solving Equation (50). Since w2 P px2y2q˚x2, w2
is a common inner witness of px2, y2q and pα2α0α1, β2β0β1q. Since z2 is the unique
common witness of pu2, v2q and pα2α0α1, β2β0β1q, we get w2 “ z2, which implies z2 is
the unique common inner witness.
From Proposition 49, the unique witness of M1 is rβ1β2, z1α1α2sL and the unique
witness of M2 is rα2, z2β2sL. We show that they are equal as follows.

rβ1β2, z1α1α2sL “ rz1α1z2β2, z1α1α2sL (Since z1α1z2 “ β1 in Equation (50))
“ rz2β2, α2sL (rwu, wvsL “ ru, vsL for any word w, u and v)
“ rα2, z2β2sL (ru, vsL “ rv, usL for any word u and v)

Thus the witness of M1 and M2 are the same.

Case 2: When the cut in u1 ends after the first 2nm length of the block x2y2 ¨ ¨ ¨ x2y2

u1 “ α0x1y1 ¨ ¨ ¨ x1y1α1

ě2nm
hkkkkkkikkkkkkj

x2y2 ¨ ¨ ¨ x2y2

cut region
hkkkkkkkkkkikkkkkkkkkkj

x2y2 ¨ ¨ ¨ ¨ ¨ ¨ x2y2α2

v1 “ β0y1x1 ¨ ¨ ¨ y1x1β1y2x2 ¨ ¨ ¨ y2x2y2x2 ¨ ¨ ¨ ¨ ¨ ¨ y2x2β2
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We compare the suffixes of p in u1 and v1. In v1, β2 starts matching within the block of
x2y2’s in u1 since the length of β2 is at most C, which is less than or equal to nm, and the
length of the block of x2y2’s before the cut is at least 2nm.

u1 “ α0x1y1 ¨ ¨ ¨ x1y1α1x2y2 ¨ ¨ ¨

β2q
hkkkkikkkkj

¨ ¨ ¨ x2y2α2

There are three possible cases for β2q, which are symmetric to the three cases for α2p

discussed earlier:

(a) β2q is a proper suffix of α2.
(b) β2q “ α2.
(c) α2 is a proper suffix of β2q.

đ

§ Theorem 72. If M is conjugate, then a common witness exists for the set of singleton
reduxes of M .

Proof. Let M consist of k singleton reduxes where k ě 1. Suppose all singleton redux has
infinitely many common witnesses. From the third item of Lemma 68, each singleton redux
is a set of powers of the primitive root of the redux. Hence, any witness for the primitive
root of the redux is a witness for any singleton redux of M . Therefore, a common witness
exists for the set of singleton reduxes of M .

Suppose there are ℓ singleton reduxes with unique witnesses zn1 , zn2 , . . . , znℓ
, where

1 ď ℓ ď k.
We claim that zn1 “ zn2 “ ¨ ¨ ¨ “ znℓ

. For any two positions i, j P tn1, . . . , nℓu, since the
subset of M obtained by keeping the Kleene star at positions i and j is conjuagte, according
to Lemma 71, zi “ zj .

Thus, all the unique witnesses of the ℓ singleton reduxes are the same, and let it be z.
Since z is also a witness for the redux, as stated in Proposition 55, it is a witness for the
primitive root of the redux. Therefore, z is also a witness for all singleton reduxes with
infinitely many witnesses, as they are sets of powers of the primitive root of the redux. Hence,
z is a common witness of each singleton reduxes of M . đ

7 Computing Witness of a Sumfree Expression

In this section, we give a decision procedure to compute the common witness of a sumfree
expression, if it exists. A sumfree expression can have no common witness, a unique
common witness, or infinitely many common witnesses. Thus, the set of common witnesses
(abbreviated as the witness set) is either empty, singleton, or infinite. Whenever there are
infinitely many common witnesses for an expression, the witnesses are the same as those of
its primitive root (Corollary 57). In that case we compute the primitive root as their finite
representation.

The witness set of a sumfree expression is equal to the intersection of witness sets of
each of its singleton reduxes. So first, we show how to compute the witness set of a sumfree
expression with only one Kleene star, in effect the witness set of a singleton redux. Using
this procedure, we show how to compute the witness set of a general sumfree expression.

First we bound the size of the unique common witness of two conjugate primitive pairs,
if it exists.
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§ Proposition 73. If two conjugate primitive pairs pu1, v1q and pu2, v2q have a unique common
witness z, then |z| ď 2 ¨ maxp|u1|, |u2|q.

Proof. Let z be a common inner witness. Therefore, z “ px1y1qn1x1 “ px2y2qn2x2 for some
n1, n2 ě 0 where pxi, yiq is the unique cut of pair pui, viq for i P t1, 2u. We claim either
n1 or n2 is less than 2. Suppose not, i.e., n1 ě 2 and n2 ě 2. Thus uω

1 and uω
2 share

a common prefix of length at least |u1| ` |u2|. From Corollary 27, they have the same
primitive root. It implies that x1y1 “ x2y2 since u1 and u2 are primitive words. Since
px1y1qn1x1 “ px2y2qn2x2, x1y1 “ x2y2 and |x1|, |x2| ă |x1y1|, we obtain n1 “ n2, and hence,
x1 “ x2. This implies y1 “ y2 and hence, y1x1 “ y2x2. Both pu1, v1q and pu2, v2q are the
same word; thus, they have infinitely many common witnesses, that is a contradiction. Hence
|z| ď 2 ¨ maxt|u1|, |u2|u.

The case for common outer witness is symmetric. đ

The above proposition holds true for any two conjugate pairs (not necessarily primitive) by
Corollary 56.

The following proposition gives a decision procedure to compute the witness set of two
conjugate primitive pairs.

§ Proposition 74. The witness set of two conjugate primitive pairs of words is computable in
quadradic time.

Proof. Let G “ tpu1, v1q, pu2, v2qu be a set of two primitive conjugate pairs and let pxi, yiq

be the cut of pui, viq for i P t1, 2u. These cuts can be computed in quadratic time w.r.t. the
length of u1, u2 by finding the smallest i P t0, . . . , |u|u, such that lshiftipuq “ v.

According to Lemma 42, one of the following possibilities holds true for G: it has no
common witness, a unique common witness, or infinitely many common witnesses. The
following algorithm outlines the computation of the witness set of G:

1. Check if the primitive pairs are identical, i.e., verify if u1 “ u2 and v1 “ v2. If yes, then G

has infinitely many common witnesses by Lemma 42. The witness is finitely represented
by the primitive pair pu1, v1q. This step takes linear time w.r.t. the length of the primitive
pairs.

2. If the pairs are not identical, then check if G has a unique common witness using
Proposition 73 as follows: WLOG assume that |u1| ą |u2|. According to Proposition 73,
if a unique common witness exists for G, its length is at most 2 ¨ maxp|u1|, |u2|q “ 2 ¨ |u1|.
Thus, it suffices to check whether px1y1qω and px2y2qω share equal prefixes of length |x1|

or |x1y1x1|, that also end in x2. If it is satisfied, then G has a unique common witness.
This step can be performed in linear time w.r.t. the length of the primitive pairs.

3. If none of the above holds, then G has no common witness.

The overall complexity of the algorithm is quadratic w.r.t the length of the primitive pairs. đ

§ Corollary 75. The witness set of two conjugate pairs can be computed in quadratic time.

Proof. We can compute the primitive roots of the conjugate pairs in quadratic time by
Proposition 25. From Corollary 56 (or, 3 ðñ 4 in Theorem 44), the common witnesses of
a set of pairs are the same as that of its primitive root. Hence, using Proposition 74, we can
compute the witness set of the conjugate pairs. đ

Now we proceed to compute the common witness of a sumfree expression with only one
Kleene star.
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§ Lemma 76. Let M “ pα0, β0qE˚pα1, β1q be a sumfree expression. Given the witness set
of E, we can compute the witness set of M in time Oppm ` nq2q where m is the size of the
expression M , and n is the size of the witness of E.

Proof. From Proposition 49, M has a common witness iff E Y tpα1α0, β1β0qu has a common
witness. The common witness of M is computed from the common witness of E and
pα1α0, β1β0q.

The idea is to check if a common witness exists for EYtpα1α0, β1β0qu using Proposition 67.
If it exists, using that we compute the common witness for M . There are two possibilities
for common witnesses of E:

1. E has a unique common inner (resp. outer) witness z. By Item 2 of Proposition 67,
it suffices to check if z is a common inner (resp. outer) witness of pα1α0, β1β0q. This
can be checked in Opm ` nq time using Theorem 28. If so, z is the common wit-
ness of E Y tpα1α0, β1β0qu. Now compute the common witness of M using Proposi-
tion 49(a) (resp. Proposition 49(b)). This can be computed in Opm ` nq time. Otherwise,
E Y tpα1α0, β1β0qu has no common witness and hence, M has no common witness by
Proposition 49.

2. E has infinitely many common witnesses. In this case, the witnesses of E are the same as
that of its primitive root, say pρ, ρ1q. From Item 1 of Proposition 67, it suffices to check if
pρ, ρ1q and pα1α0, β1β0q has a common witness. For this, first check if the primitive root
of pα1α0, β1β0q is equal to pρ, ρ1q. This step takes time Opm2 ` nq. We have two cases:

(a) If pα1α0, β1β0q have same primitive root as that of E, then E and pα1α0, β1β0q have
infinitely many common witnesses by Corollary 57. In this case, M is a set of powers
of the primitive root of the redux by Proposition 49(c). Thus M has infinitely many
witnesses. Compute the primitive root of its redux using Proposition 25. This step
takes Opm2q time.

(b) Otherwise, compute the unique common witness of pρ, ρ1q and pα1α0, β1β0q if it exists
using Corollary 75. If so, we are back to Case 1 ; else M has no common witness. This
step takes Oppm ` nq2q time.

đ

Using the above algorithm, we compute the common witness of a general sumfree
expression as follows.

§ Lemma 77. Let M be a sumfree expression. Given the witness set of each Kleene star in
M , we can compute the witness set of M in time Opm ¨ pm ` nq2q where m is the size of the
expression and n is the maximum size among the given witnesses.

Proof. From Theorem 50, the witness set of M is the intersection of the witness sets of its
singleton reduxes. The algorithm is as follows.

1. Check if the redux of M is conjugate using Proposition 31 (in time m2). If yes, then
compute the primitive root of the redux, say pρm, ρ1

mq, using Proposition 25 (in time m2).
Otherwise, M has no common witness.

2. Check if each singleton redux of M has a common witness and compute it using Lemma 76.
This step takes Opm ¨ pm ` nq2q. If there is a singleton redux with no common witness,
then M has no common witness by Theorem 50.

(a) If all the singleton reduxes have infinitely many witnesses, then M is a set of powers of
the primitive root of the redux pρm, ρ1

mq by Proposition 49(c). Thus M has infinitely
many common witnesses.
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(b) If there exists a singleton redux with a unique common witness, say z, then for all
other singleton reduxes of M with a unique witness z1, check if z “ z1 (for all other
singleton reduxes z is already a witness by virtue of being a witness of the redux of M).
If so, z is the unique common witness of M , otherwise M has no common witness.

đ

Computation of the Witness Set: Given a sumfree expression M , we compute its witness
set bottom-up. We start from the innermost Kleene star. It is a pair of words pu, vq. First,
we check if pu, vq is conjugate using Proposition 31. If yes, then there are infinitely many
common witnesses for pu, vq˚, namely the witnesses of its primitive root, otherwise M has
no witness. This step can be done in a time polynomial in the length of pu, vq. Now we
recursively use Lemma 77 to compute the common witness of the expression under the Kleene
star in each level. If there is no common witness for any level of Kleene star expression, then
M is not conjugate.

To find out the complexity of the decision procedure, it suffices to estimate the maximum
length of a witness involved in the computation.

Length of the Witness of a Sumfree Expression: We claim that if a sumfree expression
M is conjugate, then there exists a witness of length linear in size of M .

If M has infinitely many witnesses, from Corollary 57, M is a set of powers of a primitive
root. Therefore, there exists a witness of length that is less than that of the length of the
primitive root.

Next suppose M has a unique common witness. In that case, there exists a subexpression
E˚

i such that

E˚
i has a unique common witness,

and all Kleene star appearing in Ei has infinitely many witnesses. Therefore, all of them
have a common witness at most |Ei|.

Therefore, there is a singleton redux Mi of E˚
i that has a unique witness zi. The size of zi is

linear in Mi and the size of the witnesses of subexpressions of Ei. Both are upper bounded
by size of M . Furthermore, the common witnesses for all subsequent levels is unique (if it
exists) and its length is bounded by |M |.

Complexity of the Algorithm: Since the size of the common witness of M is linear in |M |,
by Lemma 77, the overall complexity of computing a common witness of a sumfree expression
is Oph ¨ m3q where h is the star height of M and m is the length of the expression.

8 Conclusion

It is shown that the conjugacy problem of a rational relation is decidable. The decidability
rests on the theorem that a sumfree expression of pairs is conjugate if and only if there exists
a word that witnesses the conjugacy of all the pairs that belong to the expression.

Computing a witness of a given sumfree expression, if one exists, can be done in polynomial
time. However, converting a rational expression into a sum of sumfree expressions may result
in an exponential blowup. Thus, the algorithm presented in the paper is of exponential time.
It remains to find the precise complexity of this problem.
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It is natural to look at the conjugacy problem of more general classes, for instance
functions definable by a deterministic two-way transducers (regular functions [12]), or by
two-way pebble automata (polyregular functions [4]).

Another line of work is to look at applications of our result. We were motivated to
study the conjugacy problem while studying approximate comparisons between two rational
transducers. In this setting, if we had a black box for solving the conjugacy of rational
relations, we have an algorithm for comparing them approximately. This is one of our
immediate future work.
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