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—— Abstract

A rational relation is conjugate if every pair of words in the relation are conjugates, i.e., cyclic shifts

of each other. We show that checking whether a rational relation is conjugate is decidable.

We assume that the rational relation is given as a rational expression over pairs of words.
Every rational expression is effectively equivalent to a sum of sumfree expressions, possibly with
an exponential size blow-up. Hence, the general problem reduces to determining the conjugacy
of sumfree rational expressions. To solve this specific case, we generalise the classical Lyndon-
Schiitzenberger’s theorem from word combinatorics that equates conjugacy of a pair of words (u,v)
and the existence of a word z (called a witness) such that uz = zv. We give two generalisations of
this result. We say that a set of conjugate pairs has a common witness if there is a word that is a
witness for every pair in the set. The generalisations are as follows:

1. If G is an arbitrary set of conjugate pairs, then G* is conjugate if and only if there is a common
witness for G. Moreover, a word is a common witness for G* if and only if it is a common
witness for G (Theorem 44).

2. If G¥,...,G¥, k > 0 are arbitrary sets of conjugate pairs and («o, o), - - -, (ak, Bi) are arbitrary
pairs of words, then the set of words

G = (aw, fo)GT (a1, B1) - - - G (aw, Bre)

is conjugate if and only if it has a common witness. Moreover, the common witnesses of G are
computable in polynomial time from the common witnesses of G¥,..., G} (Theorem 50).

A consequence of the above theorems is that a set of pairs generated by a sumfree rational
expression is conjugate if and only if it has a common witness. Further, the set of common witnesses
is computable by repeated applications of the above two results. This yields a polynomial time
algorithm for checking the conjugacy of a sumfree expression and an exponential time procedure for
the general problem.
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1 Introduction

Rational relations over words are precisely those defined by finite state transducers. A pair
of words is conjugate if they are cyclic shifts of each other. Conjugacy has been pivotal in
the study of rational relations, particularly used by Choffrut [6] in 1977 for characterising
the twinning property of transducers that in turn is used for deciding the sequentiality of
rational relations.

In this paper, we address the decidability of the following fundamental question:
1. Given a rational relation R, are all the pairs of words in R conjugates?

We provide a definitive answer to this by introducing the concept of a common witness of a
relation. A witness of a conjugate pair (u,v) is a word z such that either uz = zv (inner
witness) or zu = vz (outer witness). Succinctly, a word z is a common inner (resp. outer)
witness of a relation, if for every pair (u,v) in the relation, z is an inner witness (resp. outer
witness) of (u,v). We show that a rational relation is conjugate if and only if each of its
sumfree rational components has a common witness, i.e., either a common inner witness
or a common outer witness. This characterisation of conjugacy is a main contribution of
our paper. It is in fact a generalisation of Lyndon-Schiitzenberger theorem characterising
conjugacy of two words.

Subsequently, when dealing with a rational relation R, there are two interesting questions
regarding the common witness:

2. Is there a common witness for the relation R?

3. Given a word z, is it a common witness of R?

Question 3 proves comparatively tractable, as it can be reduced to verifying whether the
rational relation R’ = {(uz, zv) | (u,v) € R} (or, R’ = {(2u,vz) | (u,v) € R}) consists of only
identical pairs. To achieve this, we initially determine if R’ is length preserving, i.e., all
related words are of equal length. If it does, we can construct a letter-to-letter transducer for
R’ based on Eilenberg and Schiitzenberger’s theorem ([10], Theorem 6.1) stating that a length
preserving rational relation over A* x B* is a rational subset of (A x B)*, or equivalently, it
can be realised by a letter-to-letter transducer whose transitions are labelled with elements of
A x B. The final step involves validating whether this transducer indeed realises an identity
relation by checking the labels of each transition. In fact, the decidability of the twinning
property of a transducer is connected to Question 3. It is further elaborated in Section 1.5.

Question 2, on the other hand, is more difficult as a priori we do not have a bound on
the size of a possible common witness. The difference between Question 2 and Question
3 is analogous to that between the boundedness and k-boundedness questions of weighted
automata [9]. We provide a decision procedure for Question 2. This is another main
contribution of the paper. Our characterisation of conjugacy via common witness, together
with this procedure, yields an algorithm for deciding Question 1.

In the rest of this section, we give an overview of the paper and compare it with
related work. We begin by recalling the definitions of rational relations and expressions
and introduce the conjugacy problem of rational relations. The general problem is then
reduced to determining the conjugacy of sumfree expressions. Subsequently, it is argued that
decidability follows from two specific questions (Question 13 and Question 16). Finally, we
discuss related works.
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1.1 Rational Sets and Relations

A monoid M is a set M with an associative binary operation that has an identity. For
convenience, we speak of the monoid operation as a multiplication (-) and denote the identity
by 1. For example, the set of all finite words over an alphabet A, denoted as A*, forms
a monoid with concatenation as the operation and the empty word € as the identity. The
product operation can be extended to subsets of M as

X Y={x-y|lzeXyeY}. (1)

Since the operation is associative, we can define X’ without any ambiguity. For instance,
defined inductively, X° = {1}, and X* = X*~!. X, for i > 0. Similarly, the Kleene closure of
X, denoted as X*, is the closure of X under finite products, i.e.,

X*=Xx'uxty-- (2)

» Definition 1 (Rational Subset). The family of rational subsets of M is the smallest class
containing all the finite subsets of M and closed under union, product and Kleene closure.

A natural way to present a rational subset is as an expression.

» Definition 2 (Rational Expression). A rational expression over the monoid M is defined
recursively: 5, m € M are rational expressions, and if E1, Es are rational expressions then
Ey - Es, Ey + E3, and Ef are also rational expressions.

The language of a rational expression E, denoted as L(E) € M, is defined as follows:

L(D) = &, L(m) = {m}, and
L(E: - B») = L(Ey) - L(E»), L(Ey + E») = L(Ey) v L(B»), L(E¥) = L(E1)* .

It is easy to prove that rational expressions define precisely the class of rational subsets
of M. Two rational expressions are equivalent (denoted by =) if they define the same sets.

» Definition 3 (Rational Relation). A binary relation over two free monoids A* and B* is a
subset of the product monoid A* x B*. It is rational if it is a rational subset of A* x B*.

» Example 4. [23] Let monoid M = {a }* x{b,c}*. The set Ry = (a,b)*(¢,c)* = {(a™,b"c™) |
n,m = 0} is a rational subset of M. The set Ry = (¢,b)*(a, ¢)* = {(a™,b™c™) | n,m = 0} is
also a rational subset of M.

Rational relations are precisely those computable by a 2-tape 1-way finite automata, or
equivalently by a finite state transducer [16, 24]. The first systematic study of such relations
was established by Elgot and Mezei [11]. Recent surveys on transducers are found in [13, 22].

The class of rational relations is closed neither under intersection nor under complement.
For instance in the above example Ry n Ry = {(a™,b"¢™) | n = 0} is not a rational subset of
M ([23], Example 1.3). Several algorithmic problems, such as universality, equivalence, and
intersection emptiness, are undecidable [14, 16].

1.2 Conjugacy of Words and Relations

» Definition 5 (Conjugate Word). A pair of words (u,v) is conjugate, denoted as u ~ v, if
there exist words x and y (possibly empty) such that uw = xy and v = yx. In other words, u
and v are cyclic shifts of one another.
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For example, (aaab, aaba) is a conjugate pair with = a and y = aab. It is not difficult to
see that conjugacy relation is an equivalence relation on the set of words.

Let A and B be two finite alphabets. We say, a set of pairs from (or a relation over)
A* x B* is conjugate if each pair in the set is conjugate. In this work we address the following
question.

» Question 6 (Conjugacy Problem). Given a rational relation over the product monoid
A* x B*, is it conjugate?

We assume that the input is given as a rational expression over the monoid A* x B*.
Furthermore, if there is a pair in the relation containing a letter in the symmetric difference
of A and B, then the pair as well as the relation is not conjugate. Since this can be easily
checked, the nontrivial part of the problem is when the alphabets are identical, i.e., when
A = B. Therefore we assume that the given rational relation is over A* x A* for a fixed
finite alphabet A.

The objective of this paper is to address the decidability of conjugacy problem for a
rational relation. We present a proof that conjugacy of a rational relation can be decided.

1.3 Sumfree Expressions

A rational expression is sumfree if it does not use the sum (i.e., +). The set of sumfree
expressions is formally defined as a hierarchy.

Fix a monoid M = (M, -,1). Given a class C of expressions over M, the Kleene closure of
C, denoted as KC, is the class of expressions

KC=Cu{E*|EeC}.
The monoid closure of C, denoted as MC, is the class of expressions
MC=CuU{E---E; | E;eCforeach1l<i<kandkeN}

» Definition 7 (Sumfree Expression). The family F of sumfree expressions is defined inductively.
Let Fo = {D} u M and Fiy1 = MKF; for each i = 0. We define

F=JF.

i>0
The star height of an expression E is the smallest k € N such that E belongs to F.

Over the free monoid A*, the set of expressions Fy is A* U {J} and KFy is the set of
expressions Fy U {w* | w e A*} (for convenience we assume that ¢ is not used in any other
expression other than (¥ itself). It is not difficult to see that MICFy is the set of expressions
KFo o {u1vfugvy - - - upviugsr | wi,v; € A* ke N},

A rational expression is in Sumfree Normal Form (SNF) if it is a finite sum of sumfree
expressions. The following lemma is standard.

» Lemma 8. Fvery rational expression E can be converted to one in sumfree normal form
E' in exponential time. Moreover, |E'| < 2%1Fl,

Proof. Let E be a rational expression over the monoid M. We assume that the rational
expression E is given as a tree e. We take the size of e, denoted as |e|, to be the number of
nodes in the tree. We inductively define a tree ¢’ that has the same language as the sumfree
normal form of the expression F and furthermore, as shown in Figure 1, it is in the shape of
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Figure 1 SNF tree for the SNF expression Ey + E2 + E3

a right-comb with the internal nodes of the spine labelled with +’s (and the leaf of the spine
is labelled with ¥) and the pendant left subtrees attached to the spine are sumfree. We call
e’ as the SNF tree of e.

We obtain an equivalent sumfree normal form expression and its expression tree ¢’ by
induction on the structure of . We prove the following invariant along with the construction
of €.

> Claim 9. |¢/| < 22l

The following definition is used in the analysis below. Let N(e’) denote the number of
summands in €', i.e., N(¢’) is the number of nodes in the spine of the comb, or equivalently,
1 more than the number of nodes labelled with ‘+" in ¢’. Hence N(¢’) < |¢/|.

Base Case

When E is J or m € M, then F is already sumfree. The tree e corresponds to a tree with a
single node. We take ¢’ to be the tree with 3 nodes in SNF with the left subtree of the root
being e. Hence |¢/| = 3 and the claim holds.

Inductive Case

Assume that G and H are rational expressions with expression trees g and h respectively.
Let ¢’ and A’ denote their SNF trees. By induction hypothesis, G = a3 + -+ + a3 and
F = 31+ -+ B¢ such that o;,8;, 1 <1 <k, 1 < j < ¢, are sumfree expressions. Also,
lg'| <2291 and |W/| < 227,

1. If E = G + H, then by substituting for G and H, we get an equivalent expression of the
desired form. This step takes constant time. To obtain e’ we replace the leaf of the spine
of ¢’ with the root of h’. Clearly,

€'l = lg'| + [P'] — 1
< 229l 4 22Ihl _q
< 92(gl+Ihl+1)

= 92lel,
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2. If E = G- H, then by substituting G and H we get £ = (aq + -+ ag) - (B1 + -+ Be)-
Distributing the monoid operation over the union, we get F = (181 +---+a1f¢) +-- -+
(g1 + -+ + agfe), that is in the required form. This step takes time quadratic in the
maximum among the length of the SNF expressions G and H.

Assume there are p-many (resp. ¢g-many) pendant subtrees attached to the spine of ¢’
(resp. h'). The tree €’ is a right-comb with pg-many pendant subtrees where each subtree

is obtained by the pairwise concatenation of pendant subtrees from ¢’ and A’ respectively.
Clearly, N(e/) = N(¢)N (') — 1.

€]

3. Finally, if E = G*, then by repeatedly applying the rational identity (X + Y)* =
(X*Y*)* where X,Y are rational expressions, we get £ = G* = (a1 +ag +-- -+ a)* =
(afag ---af)*. This step takes linear time w.r.t. the length of the SNF epression G.
We obtain the tree ¢’ corresponding to g, and construct a new tree h from ¢’ as follows.

Add an intermediate node labelled with * between each pendant subtree and the spine
of ¢'.

Replace each + labelled nodes in the spine with concatenation.

Replace F in the leaf of spine with epsilon.

Add a new root node labelled with .

Now, ¢’ is obtained by attaching h as the left subtree of a right-comb in the desired form.
Clearly N(e') = 1.

I<lg'l+N(g)+3

<lgl+1g'[+3

<2229 43

— 22‘9|+1 +3

< 2.2+t (Since |g| = 1,22%l91+1 > 8)
— 92(lgl+1)

le

— 92le]

Hence proved that the upper bound on the size of the SNF expression is exponential in
the size of the given expression.

Each step of constructing an SNF expression takes polynomial time in the length of its
constituent SNF expressions. Therefore, any rational expression can be converted to an
equivalent sumfree normal form in exponential time.

<

Rewriting a rational expression as a sum of sumfree expressions may result in an expo-
nential blow-up, both in the number of summands and the size of each summand.

» Example 10. Consider the expression E = ((a, a) + (b,b))™ for some n > 0. Any equivalent
expression in SNF will have at least 2" summands. Now consider E' = ($,3)(E(#, #))*.
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An equivalent SNF expression will have at least one summand of exponential size, and the
expression E - E' in SNF will have exponentially many summands of exponential size.

By Lemma 8, we can assume without loss of generality that a given rational expression is
in SNF.

1.4 Conjugacy of a Sumfree Expression

» Proposition 11. Let £ = Fy + -+ + Fy, k = 1 be a rational expression over A* x A* in
SNF. Then E is conjugate if and only if each of Fn, ..., Ex is conjugate.

Proof. Since each L(E;) € L(E), for 1 <i < k, if E is conjugate then each E; is conjugate
as well. For the other direction, assume that E1, ..., E; define conjugate relations. Then
each pair in L(FE) belongs to some L(E;), for 1 < i < k, and hence it is conjugate. Since all
pairs in L(E) are conjugate, E is conjugate by definition. <

Therefore, to solve the conjugacy problem it suffices to solve it for sumfree expressions.
We use pairs of lowercase Greek letters («, 8) with suitable modifications to denote pairs
of words over A* x A*. Clearly & and (¢, €) are conjugates. For an expression of the form
(a, B), it is straightforward to check conjugacy. Thus, the conjugacy problem is decidable for
the class of expressions Fy.

To show the decidability of the conjugacy problem for the whole family F, it suffices to
show that if the problem is decidable for F;, ¢ > 0, then it is also decidable for IF; and
Fir1 = MIKF;. Then by induction on ¢ the decidability extends to the whole family F.

Assume that conjugacy is decidable for F;. Let E be an expression in F; and hence
E* € KF;. Since L(E) € L(E*),

» Proposition 12. If the expression E* is conjugate, then E is conjugate.

Because conjugacy is decidable for F;, we can check whether E is conjugate. Therefore,
to show the decidability of conjugacy for F;, it suffices to show the decidability of the
following question.

» Question 13 (Conjugacy of Kleene Closures). Given a conjugate sumfree expression E, is
E* conjugate?

Next, assume that conjugacy is decidable for ICF;. Let E' = (ao, Bo) Ef (a1, B1) - - - Eff (o, Br)
be an expression in MKF; where EY, ..., Ef are from KF;. Analogous to the case of Kleene
closures, E is conjugate only if EY, ..., E} are conjugate, as the next lemma shows.

» Lemma 14. If the expression E = (ag, Bo)F*(au, 1) is conjugate, then F* is conjugate.

Proof. If F* is an empty set, then it is conjugate. Otherwise, assume that (u,v) is a
nonempty pair in L(F*). Therefore, (uf,v*) for each £ > 0 is also in L(F*). We can safely
assume that |u| = |v|, otherwise each iteration will increase the difference in length between
u? and v, leading to nonconjugacy of E.

Let k be the total length of |ag + Bo + oy + 1. Consider the pair (g, o) (u?, v%) (a1, B1)
where ¢ is some value much larger than k, say 2. Since ¢ is much larger than k and
(apubaq, Bov’B1) is conjugate, there exist large factors of u’ and v’ that match as shown in
Figure 2. Since |u| = |v|, we can infer that u is a factor of vv, and v is a factor of uu.

Since v is an infix of wu, the following holds as shown in Figure 2. There exist words
x,y,p, and ¢ such that v = zy and v = pz = yq. Since |u| = |v|, length of p and length of y
are the same, that implies p = y (since u = px = yq). Therefore, u = yz. Hence u and v are
conjugate words. Since the pair (u,v) was arbitrary, F'* is conjugate. <
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Figure 2 v as infix of uu.

We can generalize the above lemma to the general form of sumfree expressions.

» Corollary 15. If the expression E = (o, Bo)Ef (a1, p1) - - - Eff (ag, Br) is conjugate, then
each of EY,E5, ..., Ef is conjugate.

Proof. If F is conjugate, then for each i € {1,...,k},

(- ic1, B0 Bic1)Ef (-~ ou, Bi--- Be) € E
is conjugate. Therefore, from Lemma 14 we get that each of EY,..., Eff is conjugate. <

Since the conjugacy of KF; is decidable, we can check whether Ef, ..., E are conjugate
expressions. Thus, to show the decidability of MICF;, it suffices to show the decidability of
the following question.

» Question 16 (Conjugacy of Monoid Closures). Given conjugate sumfree expressions EY, ..., E¥,
is the expression E = (ag, fo) EY (a1, B1) - - - Ejf (o, Br) conjugate?

We show that Question 13 and Question 16 can be effectively answered. The idea is to use
the notion of common witness that we mentioned in the beginning (further elaborated in
Definition 38).

We present two common witness theorems that address the above questions:

1. Let G be an arbitrary set of conjugate pairs. The set G* is conjugate if and only if G
has a common witness (Theorem 44).
2. Let GF,...,G}, k> 0, be arbitrary sets of conjugate pairs. The set

(a07 ,60)G1k(041, ﬁl) T Gz(aka ﬁk)?
called a sumfree set, is conjugate if and only if it has a common witness (Theorem 50).

» Remark 17. Note that the assumption of conjugacy of the sets G, GF, ..., G} is not necessary.
However, if they are not conjugate then the corresponding sets will neither have a common
witness nor be conjugate, and the statements will be vacuously true (Since Proposition 12
and Corollary 15 also hold for arbitrary sets).

Item 2 is a generalisation of Item 1, and its proof relies on Item 1. Both theorems are
generalisations of a classical theorem of Lyndon-Schiitzenberger (recalled in the next section).

When G,GY,...,G} are rational sumfree expressions of pairs, the above theorems are
effective, that is a common witness, if exists, is computable in polynomial time in the length
of the expression (Section 7). Hence, we have the following decidability result.

» Theorem 18 (Main Theorem). It is decidable to check if a rational relation is conjugate.
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1.5 Related Work

Conjugate Post Correspondence Problem: A problem much related to Theorem 44 is the
Conjugate Post Correspondence problem: given a finite set of pairs G, does there exist of a
pair (u,v) € G* such that v and v are conjugate? This problem is shown to be undecidable
by reduction to the word problem of a special type of semi-Thue systems [15]. In Section 3,
we show that the universal version of this problem — checking if all the pairs in G* are
conjugate — is decidable.

Twinning and subsequentiality: A rational function is sequential if it can be realised
by a sequential transducer, i.e., those that are deterministic in the input. These were
originally called subsequential in the literature by Schiitzenberger [25]. Sequentiality of
rational functions is a decidable property due to a topological characterisation called the
twinning property by Choffrut [6].

A transducer 7 from A* to B* is an automaton over A* x B*. A transition of 7 from
state p to state ¢ is of the form (p, (u,v), ¢) where the word u € A* is called the input and
the word v € B* is called the output. A path from state p to ¢ on an input word w producing

an output word x is represented as p e, q. The transducer T realises the rational relation

{(w,z) | qo e, qr} over A* x B* where qo, ¢y is an initial and a final state respectively.

The prefix delay between two words w and v such that one is a prefix of another,
denoted by [u,v]r, tells how much w is ahead of v, or how much it is behind. Precisely,
[u,v]r = v~ 1u, if v is a prefix of u , and u~tv, if u is a prefix of v.

A transducer with the initial state g is twinning if for all states p, g and for all words

wi,ws € A* and x,y,u,v € B*, if ¢ mp%pand Qo oly, qmq, then [z, y]; =

[zu, yv]r. This is equivalent to either u = v = ¢, or u # € # v and v and v are conjugates
with [z, y]r being a witness of (u,v) (Proposition 6.2 of [10]).

Since the twinning property compares paths with the same input label, an equivalent
definition for twinning can be defined on the square of the transducer [2, 19]. The square
of a transducer 7, denoted by 772, is a cartesian product of T by itself, equivalent to the
transducer from A* into B* x B*. The original definition of twinning has the following
equivalent form.

» Definition 19 (Twinning). Let T be a trim transducer. Two states p and q of T are
twin if whenever (u,v) is a nonempty output pair of a loop in T2 rooted at state (p,q),
and for any path from initial state to (p,q) in T2 with output (z,y), the following holds:
[z,y]r = [zu,yv]L, or equivalently, [z,y]r is a witness of (u,v).

A transducer T is twinning if any two states p and q such that (p,q) is in T2 are twin.

Since the input words in 72 are inconsequential for deciding twinning, we can construct
a rational relation R of pairs of output words of the transducer 7?2 ignoring the input.

R = {(u,v) € B* x B* | (u,v) € T*(w),w € dom(T)} .

Twinning reduces to checking if a word (here prefix delay) is a common witness of a
rational relation. Twinning can be decided as follows.

1. For each state (p,q) € T2, compute the rational relation R,,q) of pairs of output words
of the loops in 72 rooted at state (p, q).

2. For each simple path from initial state to state (p,q), compute the prefix delay z and
check if z is a common witness of R, 4. If yes, (p,q) is twinning, else it is not.
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Note that, in step 2 if z is not a common witness, then there exists a pair (u,v) € Ry, q) such
that z fails to be a witness of (u,v). Hence, the states p and ¢ are not twinned; thus, T is
not twinned.

Generalisation of the twinning property called weak twinning is used to characterise multi-
sequential (also called plurisubsequential or finitely sequential) functions [8] and relations
[17]. A different notion for weak twinning property can be found in [19], whose decidability
reduces to checking the conjugacy of loops in the square of a transducer. All these properties
of transducers are decidable using our results, albeit with higher complexity.

Other works: Another notion of conjugacy between weighted automaton is introduced
in [3] connecting conjugacy and equivalence of two weighted automata. It is shown that
two equivalent K-automata (automata with multiplicity in semiring K) are conjugate to a
third one, when K is equal to B,N,Z, or any (skew) field and that the same holds true for
functional transducers as well.

A generalisation of Lyndon-Schiitzenberger to infinite sets, though with no comparison to
ours, is considered in [5, 18], where solutions to the language equation XZ = ZY, where
X,Y, Z are sets of words, are given for special cases. The general solution is still open.

1.6 Organisation of the Paper

In Section 2, we revisit the standard tools from combinatorics of words required to state
and prove our main theorems. We present the common witness theorems for addressing
Question 13 and Question 16, along with the proofs of the easier directions in Section 3.
However, the difficult directions require a detailed case analysis. To simplify the analysis, we
use some auxiliary results presented in Section 4. Using those results, we complete the proof
of common witness theorems for Kleene closure and monoid closure in Section 5 and Section 6
respectively. We outline the decision procedure for computing the witness in Section 7. This
section can be read independently of Sections 4, 5 and 6. In Section 8, we state some future
directions and conclude.

2 Tools from Combinatorics of Words

We recall some standard notions from combinatorics on words and introduce some new defin-
itions and associated facts (Definition 20, Definition 32, Proposition 33 and Proposition 34).

The set of all finite nonempty words over A is denoted by A*T. We use I to denote an
index set used to label members of another set. The unique infinite word w - u- -+ (w-times)
is denoted by u¥. A word u is called a factor (respectively prefiz, suffiz) of a word v, if there
exist words z,y € A* such that v = zuy (respectively v = uy, v = zu). Let u[i..j] denote
the factor of w from index 4 to j where 1 <14 < j < |u|. Let u" denote the word obtained by
reversing the word u, and for ¢ > 0, let Ishift,(u) denote the word obtained after i left cyclic
shifts of a word w.

If u and v are words such that w is a prefix of v, the left quotient of v by u, denoted by
u~ v, is the word z such that v = wz. Similarly, the right quotient of v = zu by u, denoted
as vu~ !, is the word z.

» Definition 20 (Prefix Delay, Suffix Delay). If u and v are words such that one of them is a
prefiz of another, we define the prefix delay between u and v as

v 1

vt ifuis a prefiz of v
[u’ U]L =
“tu if v is a prefix of u

11



12

Deciding Conjugacy of a Rational Relation

Similarly, the suffix delay of two words u and v such that one of them is suffiz of another,
denoted by [u,v]r, is vu=! if u is a suffiz of v and wv=" if v is a suffir of u.
For example, [abaa, ab], = aa = [ab, abaa]r,.

2.1 Primitive and Periodic words

A word wu is said to be a power of a word v if u is obtained by concatenating v a certain
number of times, i.e.,

u =" for somen>1.

» Definition 21 (Primitive word). A word uw € A" is primitive if it cannot be expressed as a
power of any strictly smaller word.

For example, aba is primitive but abab is not. The following fact is easy to verify.
» Proposition 22. If u is primitive, then u" is also primitive.

A word p is called a primitive root of a word w if u = p™ for n = 1 and p is a primitive
word.

Following theorem relates primitivity and commutativity.

» Theorem 23 (First Theorem of Lyndon-Schiitzenberger ([21], Lemma 3)). Two words u,v € A*
commute, i.e., uv = vu, if and only if they are powers of a same word.

The above theorem has an interesting corollary about primitive root of a word.

» Corollary 24 ([20], Proposition 1.3.1). Every word u has a unique primitive root, denoted
by pu.-

» Proposition 25. The primitive root of a word can be computed in time polynomial in the
length of the word.

Proof. For a word w, we can compute the smallest ¢ € {1,...,|w|} such that Ishift;(w) = w
in time quadratic to |w|. If ¢ divides |w]|, then w[1...{] is the primitive root of word w. <

Let w = ajas---a, where a; € A,n > 1. We say that 1 < p < n is a period of w if
a; = a;4p for i€ 1,...,n — p. For example, the word abababa has periods 2,4, and 6. Below
is a fundamental periodicity result of words by Fine and Wilf.

» Theorem 26 (Fine and Wilf ([7], Theorem 5)). If a word has two periods p and q, and it is
of length at least p + q — ged(p, q), then it also has a period gcd(p,q).

Below is a reformulation of the above theorem.

» Corollary 27 ([7], Theorem 5). Let u and v be two nonempty words. They are powers
of the same word if and only if the words u* and v“ have a common prefiz of length
lul + [v| = ged(Jul, [v]).
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2.2 Characterisation of Conjugacy and the Uniqueness of Cuts
Given below is a complete characterisation of conjugacy.

» Theorem 28 (Second Theorem of Lyndon-Schiitzenberger ([20], Proposition 1.3.4)). Two
words u and v are conjugate iff there exists a word z such that

uz = 2v . (3)
More precisely, Equation (3) holds iff there exist words x and y such that
u=uzy, v=uyz, 2z€ (xy) T . (4)

If we switch the words v and v in the above theorem, we get that v and u are conjugates if
and only if there exists a word 2’ such that 2z’u = vz’ where v = yx, u = zy and 2’ € (yz)*y.
Therefore if (u,v) is a conjugate pair, then there exist words z, 2’ such that uz = zv and
Z'u = vz,

The following proposition connects conjugate words and their primitive roots.

» Proposition 29 ([7], Lemma 1). If u and v are conjugates, then their primitive roots p,
and p, respectively are also conjugates. In particular, the exponents are equal, i.e., u = p]
and v = pY for somen > 1.

The theorem of Fine and Wilf (Corollary 27) can be adapted to yield primitive roots that
are conjugates.

» Theorem 30 (Conjugate Fine and Wilf ([7], Theorem 5)). Let ¢(u,v) denote the mazimal
common factor of words w and v. For any two words u,v € AT, if u¥ and v* have a common
factor of length at least |u| + |v| — ged(|ul, |v]), then the primitive roots of w and v are
conjugates, i.e., we have

C(u,0?) = Jul + [v] = ged(lul, [v]) = pu ~ po -
Like primitivity, conjugacy can also be decided easily.
» Proposition 31. Deciding if a pair of words is conjugate can be done in quadratic time.

Proof. Let (u,v) be a pair of words. We can check if there exists an i € {1,..., |u|} such
that Ishift,(u) = v in time quadratic to the length of w. ¥

» Definition 32 (Cut). A cut of a conjugate pair (u,v) is a pair of words (x,y) such that
u = zy and v = yx. Alternatively, we say that u has a cut at position |x|, or equivalently, v
has a cut at position |y|.

If either x or vy is the empty word, then we say the cut is empty. Otherwise the cut is
nonempty.

For example, the pair (aabb, bbaa) has a cut (aa, bb). There can be several cuts for a conjugate
pair. For instance, the pair (abab, baba) has cuts (a, bab) and (aba, b).

If w and v are conjugates and one of them is primitive, by Proposition 29, the other is
also primitive. A pair (u,v) is primitive if both w and v are primitive words. For such pairs,
their cuts are also special.

» Proposition 33 (Uniqueness of Cuts of Primitive Pairs). Let (u,v) be a conjugate primitive
pair. If (u,v) is distinct, then (u,v) has a unique cut (x,y). If (u,v) is not distinct (i.e,
u =v), the only two possible cuts of (u,v) are (u,€) and (e,v).

13
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Proof. By definition, if pair (u,v) is conjugate, then there exist a cut (z,y) such that u = xy
and v = yx. Since u and v are distinct, z and y have to be nonempty. It suffices to show
that = and y are unique if v and v are primitive.

For the sake of contradiction, assume that (z,y) is not unique, i.e., there exists a different
cut (2/,y') for (u,v), ie., u = 2'y, v = y2’ and 2’ # z,y # y. WLOG, assume that
’|. Therefore there exists a nonempty word p such that z = z'p and ¢/ = py.
Substituting for z in v, we get

x| > |z

v =yx=yz'p

and substituting for ¢’ in v, we obtain
v=1y'z =pyz .

Therefore ya’ and p commutes. By the first theorem of Lyndon-Schiitzenberger (Theorem 23),
they are powers of the same word. Since p and yx’ are nonempty words, v is a power of some
smaller word. Hence v is not primitive and it is a contradiction.

In the case where v = v and v being primitive, two possible cuts are (u,€) and (¢, v), i.e.,
the empty cuts. Imagine there is a nonempty cut (x,y). Since v = v, it follows that zy = yz.
Using the first theorem of Lyndon-Schiitzenberger (Theorem 23), u and v are powers of a
smaller word and hence not primitive. Therefore, when wu is primitive and u = v, the only
possible cuts are the empty cuts. <

» Proposition 34. If (x,y) is a cut of the conjugate pair (u,v), then (u”,v") is also conjugate
with the cut (y",z").

Ta,T

Proof. Since (z,y) is a cut of (u,v), u = xy and v = yx. Hence, u” = y" 2" and v" = z"y".
Thus, (u",v") is conjugate with the cut (y",z"). <

3 Common Witness Theorems

In this section, it is shown that an infinite set of pairs that is generated by a sumfree set
is conjugate if and only if there is a word witnessing its conjugacy. This is an infinitary
analogue of Theorem 28.

3.1 Common Witness Theorem for Kleene Closure

Lyndon-Schiitzenberger theorem characterises conjugacy of a pair of words. We generalise
the notion in Theorem 28 to an infinite set of pairs closed under concatenation. The question
we ask is:

“Given an arbitrary set of pairs G, is G*, i.e., the Kleene closure (Equation (2)) of G,
conjugate?”

We have already seen from the second theorem of Lyndon-Schiitzenberger (Theorem 28)
that if two words v and v are conjugates, then there exist words z, 2’ such that uz = zv and
2z'u = vz’. This leads to the following notion.

» Definition 35 (Inner and Outer Witness). Given a conjugate pair (u,v), the word z is an
inner witness of (u,v) if uz = zv. Similarly, z is an outer witness of (u,v) if zu = vz.

An inner witness of a pair (u,v) is an outer witness of the pair (v,u). A conjugate pair
has infinitely many inner and outer witnesses by Theorem 28.

» Example 36. The pair (aba, baa) has inner witnesses (aba)*a and outer witnesses (baa)*ba.
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We say that a pair of words has a witness if it has either an inner witness or an outer
witness.

» Proposition 37. Powers of a conjugate pair is also conjugate. Furthermore, if a pair (u,v)
is conjugate with a witness z, then (u™,v™), n = 1, is also conjugate with the same witness z.

Proof. If (u,v) is conjugate, by Theorem 28, there exists a word z such that uz = zv (that
is z is an inner witness of (u,v)). By induction on n, we prove Vn > 1 u"z = zv™. It is true
when n = 1. For all n > 1,

u"z = u" tuz
=u"" 'z (Since uz = zv)
= 20"ty (Inductive Hypothesis)
=zo"

Symmetrically we can prove that z’u™ = v™z’, for any outer witness 2’ of (u,v). Hence if
(u,v) is conjugate with a witness z, then (u™,v™) for n > 1 is also conjugate, with the same
witness z. <

We generalise the notion of a witness of a pair to a set of pairs.

» Definition 38 (Common Witness). A word is a common inner witness of a set of pairs P if
it is an inner witness of each pair in P. Similarly, a word is a common outer witness of P
if it is an outer witness of each pair in P.

A set of pairs has a common witness if it has either a common inner witness or a common
outer witness.

The structure of a common witness of a set of pairs can be obtained from Theorem 28.

» Proposition 39. Let P = {(u;,v;) | i € I} be a set of pairs of words. The following are
equivalent.

1. z is a common inner witness of P.

2. There exists a cut (x;,v;) of each pair (u;,v;) such that z € (o, (w;y;)* ;.

3. z€ Mier Ujeqr, iy (@i9i,) @i where {(251,9i1), - -« (Ti ki Yiks) } s the set of all cuts
of (u;,v;).

The statement for common outer witness is analogous.

Proof. We prove (3) = (2) = (1) = (3). (3) = (2) is obvious. (2) = (1) follows from
Theorem 28. We show (1) = (3). Suppose z is a common inner witness of P, i.e., z is an inner
witness of each pair in P. Hence w;z = zv; for each i € I. Let {(z;1,¥i1),--- (@i ks Yiks)}
be the set of all cuts of (u;,v;). Using Theorem 28, there exists a cut (x;,y;) for (u;, v;)
such that z € (z;y;)*x;. This implies that z also belongs to the set Uje{l,.‘.,ki}(xi7jyi,j)*xi7j'
Therefore,

S ﬂ U (a:myi,j)*xi,j .

i€l je{l,...,k;}

The case when P has a common outer witness is symmetric. «

15
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» Example 40. Consider the set P = {(ab, ba), (abab, baba)}. The pair (ab,ba) has a unique
cut (a,b), and the pair (abab, baba) has two cuts: (a,badb) and (aba,b). The word a is a
common inner witness of P since a belongs to both (ab)*a and (abab)*a (using the first cut).
Similarly, aba is also a common inner witness of P since aba belongs to both (ab)*a and
(abab)*aba (using the second cut). Notice that aba is not in the intersection of (ab)*a and
(abab)*a.

When a set is not conjugate, clearly it has no common witness. However, even when a
set is conjugate, it may have both common inner and outer witnesses, or only common inner
witness, or only common outer witness, or neither of them as shown below.

» Example 41. Consider the set P = {(ab, ba), (ac, ca))}. The pair (ab, ba) has inner witnesses
(ab)*a and outer witnesses (ba)*b. Similarly, the pair (ac, ca) has inner witnesses (ac)*a
and outer witnesses (ca)*c. According to Proposition 39, the set P has a unique common
inner witness a = (ab)*a n (ac)*a, but it does not have any common outer witness since
(ba)*b N (ca)*c = .

The set {(ab, ba), (abab, baba)} has both common inner witnesses

(ab)*a = (ab)*a n ((abab)*aba U (abab)*a)
and common outer witnesses
(ba)*b = (ba)*b n ((baba)*b U (baba)*bab) .
However, the set {(ab, ba), (ba, ab)} has no common witnesses since (ab)*a n (ba)*b = .
Next we analyse the number of common witnesses a set of primitive pairs can have.
» Lemma 42. The following are equivalent for a set of conjugate primitive pairs P.

1. P has more than one common witness.
2. P has infinitely many common witnesses.
3. P is a singleton set.

Proof. (2) = (1) is obvious. (3) = (1) is is straightforward because when a P consists of
only one conjugate primitive pair with a cut, say (z,y), it has inner witnesses z and xyz (in
fact (zy)*z). Hence P has more than one witness.

We show (1) = (2) and (1) = (3). Let P = {(u;,v;) | i € I'}. Suppose the set of pairs
P has two common inner witnesses, say z; and zs. Since P is a set of primitive pairs, each
pair (u;,v;) € P either has a unique cut, denoted as (z;,y;), using Proposition 33 (when
u; # v;) or two empty cuts, namely (e, u;) and (u;,€) (if u; = v;). For the latter case, the
inner witnesses obtained using cut (€,u;) is a superset of inner witnesses obtained using
(u;,€). Hence, we can choose cut (z;,y;) = (€, u;) for pair (u;,v;) when u; = v;. Therefore,
as stated in Proposition 39, both z; and 2, belongs to (,;(z:y:)* ;.

Without loss of generality, assume that |z1]| < |22|. As depicted in Figure 3, a common
factor w € [, (yiw;)>! exists for each u¢ that can be repeated one after another in u¢ to
get longer and longer common inner witnesses. By symmetry, when P has two common outer
witnesses, we get infinitely many common outer witnesses.

Let us assume that the P has a common inner witness z; and a common outer witness
za, where 21 # z5. For each distinct primitive pair in P, there exists a unique cut. However,
for identical primitive pairs, we fix a cut based on the values of z; and zo. We consider two
cases: either z1, zo # €, or exactly one of z; and z5 is equal to €.
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Z2

Z1 w

(z1y1)" @y (yrz1)>!
u(ij 0 00000000 00000 OCNOGCNOSNOGNOGOEOSNEOSNONONOSNEOSEOSNOINOP

(z1y1)" 1z

(z2y2)""2 w2 (y2w2)>?
UQ 0 00000000 000 0ONOCNOGCNOSNOSNOGOEOSNOSNONONOSNEOSEOSNOINOP

(zoy2)"2 22

Figure 3 When there are at least two common inner witnesses z1, z2.

In the case where z1, 22 # ¢, for primitive pairs (u;,v;) such that u; = v;, we can choose
either of the two empty cuts as (z;,y;), resulting in 21 € (z;y;)*z; and 22 € (y;2;)*y;.

In the second case, if z; = €, we select the cut (x;,v;) = (€,u;). This choice ensures
that 21 € (z;y;)*x; and 25 € (y;x;)*y; (since zo # €). Similarly, if zo = €, we choose the cut
(@i, yi) = (uis€).

Consequently, we can conclude that z; belongs to ()., (ziy;)*z; and z; belongs to
(Micr (yizi)*yi. As shown in Figure 4, concatenating z; - 2o - z1 in u¥, we get one more
common inner witness z3 for P. By the above argument, P has infinitely many common
witnesses. This completes the proof of (1) = (2).

Z1 Z2 Z1

(z1y1)" g (yriz1)™"tyr (z1y1)" ey
u(ij 9 0 00000000 000000000000 CCSISEOSEOSEOSNOSNOSNONEOSNEDBSNOSNOSNOND

(z2y2)"2 @2 (y2x2)"2y2 (z2y2)™2 22
u‘éj 9 0 00000000 000000000000 CNCSIDSEOSEOSEOSNONOSNOSNEOSNEBSNOSNOSNOND

Figure 4 When there are 1 common inner witness z; and 1 common outer witness z2.

In both the cases, we get that (z1y1)¥ = (22y2)¥ = -+ and (y121)* = (yex2)* = ---

Hence from Fine and Wilf Corollary 27, all u;’s has the same primitive root. Similarly, all

v;’s has the same primitive root. This proves (1) = (3). “«

For the lemma stated above, it is worth noting that even if we relax the condition that
each pair must be primitive, the lemma still holds (Corollary 57). However, the proof of this
extended version requires an additional lemma (Lemma 53), that is shown later.

If G* has a common witness, then each pair in G* has a witness and is conjugate. Hence
G* is conjugate. We prove the converse, namely, if G* is conjugate, then it has a common
witness. To prove this direction, we need the notion of primitive roots of a set of conjugate
pairs.

» Definition 43 (Primitive Root of a Set of Conjugate Pairs). The primitive root of a conjugate
pair (u,v) is the pair (pu, pv). By Proposition 29, when u and v are conjugate, p, s conjugate
to p, and there exists an n =1 such that (u,v) = (pl, pl').

The primitive root of a set of conjugate pairs G = {(u;,v;) | i € I}, denoted by R(G), is
the set of all primitive roots of each pair in G.

R(G) = {(pui> ;) [ 1€ T}
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For example, {(ab, ba), (bab, abb)} is the primitive root of the set {(abab, baba), (bab, abb)}.

Let G be a set of conjugate pairs. The set R(G)* is a superset of G*, but not necessarily
the other way round — In the above example, G* does not contain the set {((ab)™, (ba)™) |
n is odd} < R(G)*.

The below theorem characterises conjugacy of a freely generated set of pairs of words.

» Theorem 44 (Common Witness Theorem for Kleene Closure). Let G be an arbitrary conjugate
set of pairs of words. The following are equivalent.

G* is conjugate.
. G* has a common witness z.

. G has a common witness z.

»won e

R(G) has a common witness z.

Proof. We prove (4) = (3) = (2) = (1) = (4). The directions (4) = (3) = (2) = (1) is
proved for common inner witness; the proof for common outer witness is symmetric. The
only nontrivial direction is (1) = (4) that is proved in Section 5. Let G = {(u;,v;) | i € I}
be a set of conjugate pairs.

(4) = (3) Assume R(G) = {(pu,,pv;) | © € I} has a common inner witness z. Therefore, z is
an inner witness of all pairs in R(G), i.e., py,z = zpy, for each i € I. From Proposition 37,
we obtain z is also an inner witness of powers of (pu,, pu;). Since each pair (u;,v;) € G is
conjugate, from Proposition 29, there exists an m > 1 such that (us, v;) = (o5, pi}). Because
purz = zp,., word z is also an inner witness for pair (u;,v;). Thus, G has a common inner
witness.

(3) = (2) Suppose there exists a common inner witness z of the set G. Hence u;z = zv;
for each ¢ € I. Let (u,v) be any arbitrary element from G*. By definition, (u,v) =
(Wiy Wiy -+ - Uz, , Vi, Uy - - - 05, ) fOr some n > 1 and i; € I for j € {1,...,n}. By induction on n,
we equate uz = zv as follows.

Uz = Ujy * - Ugp,,_Uj, 2
= Uy Ui, 2V, (Since u;, z = zv;,)

(Inductive Hypothesis)

Hence z is a common inner witness of set G*. Therefore G* has a common witness.
(2) = (1) Follows from Theorem 28.

» Corollary 45. Let E be a rational expression of pairs. E* is conjugate if and only if E*
has a common witness.

Below is an illustration of the common witness theorem for a set of pairs that is not
rational.

» Example 46. Let G = {(ab?,bPa) | p is a prime number}. The set G has a common inner
witness @ € () ey p is a prime(@0F)*a. It is also easy to verify that G* is conjugate and a is a
common inner witness of G*.
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3.2 Common Witness Theorem for Monoid Closure

Next we prove the common witness theorem for monoid closures, i.e., sumfree sets of the
form

M = (a0, Bo)G1* (a1, B1)G2™ -+ - (-1, Br—1)Gr™ (ak, Br), k > 0 .

where G7,G35, ..., G} are arbitrary sets of conjugate pairs. We show that such a set is
conjugate if and only if it has common witness. Note that this does not generalise to
arbitrary sets of pairs, in particular, rational sets using sum.

Conjugacy cannot be characterised by the existence of a common witness for arbitrary
sets of pairs, in particular, rational sets using sum. For instance, (ab,ba)* + (ba,ab)* is an
infinite conjugate set with no common witness.

» Definition 47 (Redux, Singleton Redux). Let M be the sumfree set

(a0, Bo)G1* (a1, B1)G2™* -+ (—1, Bre—1)Gr™ (o, B) -

The redux of M is the pair (apas - - ag, BoB1 - - - Bx) obtained by substituting each G by the
empty pair (€, €).

A singleton redux of M is a set obtained by substituting all but one of the G¥’s by the
empty pair (e,€). They are of the form (ag--- ;1,80 Bi_1)Gi*(ay -+ au, Bi - - Bi) where
1<i<k.

» Example 48. Consider M = (a, a)(baa, aba)* (b, a)(aab, baa)*(a,b). Its redux is (aba, aabd),
and singleton reduxes are (a,a)(baa, aba)*(ba, ab) and (ab, aa)(aab, baa)*(a,b).

If a sumfree set has a common witness, it is conjugate. We prove the converse, i.e., if a
sumfree set is conjugate, then it has a common witness and that is in the intersection of the
common witnesses of the singleton reduxes of the set.

Following is the common witness theorem for a sumfree set with only one Kleene star,
ie., M = (ag, Bo)G*(a1, f1). In short it states that such a set is conjugate if and only if it
has a common witness that is determined by the common witnesses of G U {(a10, 5150)}-

» Proposition 49. Let M = («g, Bo)G* (a1, 81) be a sumfree set. The following are equivalent.

1. M is conjugate.
2. There exist a common witness z' of G U {(a1a, 5150)}-
3. M has a common witness z such that one of the following cases is true:

a) If 2’ is a unique common inner witness of Gu{(ai1ag, B150)}, then as a unique com-
If 2 i ) j it G B815o)}, then M h ]
mon witness z = [apz’, Bolr = [, 2/ B1]L. Moreover, if |apz'| = |Bo| or equivalently
laq| < |2/ B8], then z is an inner witness, otherwise it is an outer witness.

(b) If 2’ is a unique common outer witness of G u{(a1p, 8150)}, then M has a unique com-
mon witness z = [ap, Boz'|r = [Za1, B1]r. Moreover, if |2’ a1| = |B1] or equivalently
|| < |BoZ'|, then z is an outer witness, otherwise it is an inner witness.

c) If G and (a1, f18o) have infinitely many common witnesses, then M is a set o

Y Y
powers of the primitive root of its reduz (not necessarily all powers). Thus, M has
infinitely many witnesses.

The proof of the above proposition as well as the the proof of the general case below are
given in Section 6.

A singleton redux of a sumfree set is nothing but a sumfree set with only one Kleene
star. Given any sumfree set M, if M is conjugate, each of its singleton reduxes are conjugate.
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From Proposition 49, a singleton redux of M has a common witness. Further, we prove that
M has a common witness that is the common witness of each of its singleton reduxes. The
below theorem characterises the conjugacy of a general sumfree set.

» Theorem 50 (Common Witness Theorem for Monoid Closure). Let M be a sumfree set. The
following are equivalent.

1. M is conjugate.
2. There exists a word z that is a common witness of each of the singleton reduzes.

3. M has a common witness z.

» Example 51. Let M = (ag, 80)G* (a1, 51) be a sumfree set with one Kleene star where

ag\ _ (ab G- bab ar\ (b

Bo) \b) " \abb) [ \B/) \ab)’
The redux of M is (aga, Bof1) = (abb,bab). The set G U {(a1a, 5150)} = {(bab, abb)} U
{(bab, abb)} = {(bab, abb)} and, hence it has infinitely many common witnesses. By Proposi-

tion 49 (c), M is a set of powers of the primitive root of the redux, i.e., M = (abb, bab)*.
Therefore, M has infinitely many witnesses same as those of (abb, bab).

» Example 52. Let M = (o, 5o)GF (a1, £1)G5(ag, B2) be a sumfree set with two Kleene star

-G ({0 -()

The redux of M is (apay g, BoB102) = (bab, abb). The set M has two singleton reduxes,
M — Qg s (12 (b ac * ab
P \B) TP\ BiBe) T \a) \ea) \bb
*
(oo « (a2 _ (bab\ (bad €
M= <ﬁ0ﬂ1> G <Bg> B (ab) (bab b) -

The set G U {(a1eaq, 8152050)} = {(ac, ca)} v {(abb,bba)} = {(ac, ca), (abb, bba)} has a
unique common inner witness, say z1 = a = (ac)*a n (abb)*a and no common outer witness
since (ca)*c n (bba)*bb = . By Proposition 49 (a), the unique common inner witness of
the singleton redux M; of M is [agz1, Bo]r = [ba,alr = b.

The set Go U {(aaapa, B28051)} = {(bab, bab)} has infinitely many common witnesses.
Thus the singleton redux M is a set of powers of the primitive root of the redux using
Proposition 49 (c), i.e., My = (bab,abb)*. Thus M5 have infinitely many common inner
witnesses (bab)*b and common outer witnesses (abb)*ab.

By Theorem 50, M has a unique common inner witness b n (bab)*b = b, that equals to
the intersection of the common inner witness of its singleton reduxes M; and Mo.

and,

4  Auxiliary Results for Case Analysis

For proving common witness theorems, we require a detailed case analysis. To ease the
analysis, we establish two lemmas, namely, the Cut Lemma and the Equal Length Lemma.
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4.1 Cut Lemma and its Corollaries

Simply stated, the content of the cut lemma is that a primitive word cannot be equal to any
of its nontrivial cyclic shifts, i.e., u # Ishift;(u), 1 <14 < |u| for any primitive word u. Cut
lemma is standard, see for instance [26, 1]. However, the statement of the lemma is given in
a fashion that is suitable for case analysis.

» Lemma 53 (Cut Lemma). Assume (u,v) is a conjugate primitive pair.

L If (u,v) is a distinct pair with the unique cut (z,y), then the following equalities cannot

hold for any nonempty words x',x",y’, y" such that x = 2’2" and y = y'y".

(a) xy = a"yx’
(b) zy = y"zy
(¢) yx =y"zy
(d) yr = 2"y’
(e) my = yx
II. In the special case when u = v, there are two empty cuts (u,€) and (e,u). In both cases,

the equality u = u”u’ cannot hold for any nonempty words v',u” such that u = vw'u”.

Proof. Consider the case when (u,v) is a distinct pair with the unique nonempty cut (z,y).

It suffices to show that if any of the equalities hold, there exists a different nonempty cut of
the primitive pair (u,v) contradicting Proposition 33.

1. In the case of I. (a), the other nonempty cut is (z”,ya’) since (xy,yz) = ("ya’, ya'z").
2. In the case of I. (b), the other nonempty cut is (y”z,y’) since (zy,yz) = (v"zy',y'y"z).

3. When L. (¢) is true, we obtain a different nonempty cut (zy’,y”) because (vy,yz) =
Y4

(zy'y", y"zy’).

4. If 1. (d) holds, the other nonempty cut is (2, z"y) since (zy, yzx) = («’z"y, x"yz').

5. If L. (e) holds, the other nonempty cut is (y, z) since (xy, yx) = (yz,xy) and = # y (since
u # v).

Consider the special case when v = v. If the equality v = u”v' holds, then we obtain
u = u'u” = u"u'. Therefore, v’ and u” commutes. Since v’ and u” are nonempty words, u
is a power of some smaller word using Theorem 23. Hence u is not primitive and it is a

contradiction. <

In the rest of the subsection we discuss a number of consequences of Cut Lemma. The

following proposition conveys that the cut of the primitive root decides the cuts of its power.

» Proposition 54. Let (u,v) is a distinct conjugate primitive pair with the unique cut (z,y).
Any cut of the pair (u™,v™) for n =1 is of the form ((xy)*x, (yz)*y).

Proof. Let (u/,v") = (u™,v") for some n > 1. The lemma is trivially true for n = 1 by the
uniqueness of cut of primitive pairs by Proposition 33.
Consider the case when n > 2. Substituting for u = xy and v = yx in v’ and v/,

n times
’ ,_/H
u:u...u:xy...‘ry
’l}l :v.o.’l]:yxa.oyx
We show that cut in ' will always be at the end of some x and all other cases leads to one
of Cases I. (a) to I. (e) of Cut Lemma.
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Case 1: When the cut is at the end of y

Le., there exists a cut (p, q) for (v/,v") such that p € (zy)*. Then

p q
’ —— —
u:xy.-.xywy-.-l‘y (5)
q p
’ —

Equating the suffixes of v of length |zy| in both side of the Equation (6), we deduce zy = yz,
i.e., u = v. It satisfies Case I. (e) of Cut Lemma. Hence a contradiction.

Case 2: When the cut is strictly within some z or y

We will make a further case analysis: when there is an zy present before the cut, and when
there is an zy present after the cut (since n = 2).
Suppose the cut in u’ is in the i*" zy for i > 1, i.e., there is an xy present before the cut.

1. When the cut is within z, i.e., there exists a cut (p,q) of (v/,v') such that p € (zy)*a’
where 2’ is a nonempty proper prefix of  and z = 2’2" for some word z”. Now,

p )
! 1.0 A/
u:.-.xx yxl‘y--. (7)
q p
/ 10 1.0 " 1.0 /
V=Yyrax o Yyr'x =qp =T Y- r'ryx (8)

As before, equating the suffixes of v’ of length |xy| on both sides of Equation (8), we
obtain
yr = yx/m” _ x”y:z:'

Here 2’ and 2" satisfies Case 1. (d) of Cut Lemma. Hence a contradiction.
2. When the cut is within y, i.e., there exists a cut (p,q) of (v/,v") such that p € (xy)txy’
where 3’ is a nonempty prefix of y and y = y'y” for some word 3”. Then,

q
—————
l 1N

u=-xy'y ey Y (9)

p

o =y yy e =qp=y" zy'y" vy (10)
On both sides of the Equation (10), equating the suffixes of v’ of length |xy|, we get

yr =y'y"e =y zy
that is Case L. (c¢) of Cut Lemma. Hence a contradiction.

The case when there is an zy after the cut is symmetric and leads to Cases I. (a) and I. (b)
of Cut Lemma.

Since we have eliminated all of other scenarios, the only possible cuts of the pair (u’,v")
are of the form ((zy)*z, (yx)*y). “«

Using Proposition 54, we relate the witnesses of a pair and its primitive root.

» Proposition 55. Let (u,v) be a conjugate pair with the primitive root (py, py). The following
are equivalent for a word z.
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1. z is a witness of (u,v).
2. z is a witness of (pu, Pv)-

Proof. From Proposition 37, we get (2) = (1).

Next we prove (1) = (2). From Proposition 29, if (u,v) is conjugate then (py, py) is
conjugate as well. In the case where u = v, it follows that p, = p,. Consequently, any
witness z for the pair (u,v) belongs to the set u* that is a subset of p¥. Thus, z serves as a
witness for the pair (py, p») as well, since p consists of witnesses for (p,, pv).

Consider the case when u # v. It follows that p, # p,. According to Proposition 33, the
pair (pu, pv) has a unique cut, denoted as (z,y). From Proposition 54, all cuts of (u,v) are
of the form ((zy)*x, (yx)*y). From Theorem 28, an inner witness of (u,v) belongs to

((@y)*a(yz)*y)* (zy)*x = (zy)*x
and hence is an inner witness of (py, py). The proof for outer witness is symmetric. <
From the above theorem we get the following corollary for a set of pairs of words.

» Corollary 56. A set of pairs G has a common-witness z if and only if R(G) has a common-
witness z.

Proof. We proved («) in (4) = (3) of Theorem 44. Next we prove the direction (—). Let z
be a common witness of the set G. For any arbitrary pair (u,v) € G, z is a witness of (u,v).
From Proposition 55, z is also a witness for its primitive root. Since each pair in R(G) is
a primitive root of some pair in G, all pairs in R(G) have z as a witness. Therefore, z is a
common witness for R(G). <

Using above corollary, we can extend Lemma 42 for a set of pairs of words (not necessarily
primitive pairs).

» Corollary 57. Let G be a set of pairs of words. The following are equivalent.

1. G has more than one common witness.
2. G has infinitely many common witnesses.
3. All the pairs in G have the same primitive root.

Proof. (2) = (1) is obvious. We show (3) = (1). If each pair in G is a power of a same
primitive root, then R(G) is a singleton set. Lemma 42 implies that R(G) has infinitely many

common witnesses. This implies G has infinitely many common witnesses using Corollary 56.

Now it suffices to show (1) = (2) and (1) = (3). If the set G has two common witnesses,
namely z; and zs, then according to Corollary 56, z; and 29 are also common witnesses of
R(G). Since R(G) has more than one common witness, it follows that R(G) is a singleton set
by Lemma 42. Hence it has infinitely many common witnesses. Additionally, since witnesses
of R(@G) are also witnesses of G (as per Corollary 56), it implies that G itself has infinitely
many common witnesses. <

4.2 Equal Length Lemma

Equal length lemma can be summarised as follows: Let G = {(u1,v1),..., (uk, vk)}, k > 1 be
a set of conjugate primitive pairs of identical length, i.e., |ui| = -+ = |ug|. If G* is conjugate
then either x; = -+ = or y; = -+ = yi where (z;,y;) is a cut of (u;,v;) for 1 < i <k

(Proposition 59).
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» Lemma 58 (Equal Length Lemma). Let (u1,v1), (ug,v2) be two conjugate primitive pairs of
equal length (i.e., |ui| = |uz|) and let (z1,y1) and (x2,y2) be their unique cuts respectively.
Any pair (ul,vl)él (Ug,ﬂg)éz where £y > €1 > 2, is conjugate only if either 1 = xo or Yy = Ys.

Proof. Let (u,v) = (u1,v1)" (ug, v2)?? such that ¢; > 2 and £y » {1 (£ > {1 + 2 suffices).

£y times {5 times
—N— —
U= UL UL UU2 * - - U2UD

V= 7V1""-UV1UV2V2 - VU2V

If (u,v) is conjugate, then they have a cut say (p,q). There are two possibilities for a cut
of (u,v): when the cut in u is within u;“1usy or it is after u; “ us.
In both the cases we show that either 1 = x5, or y; = y2 or both.

Case 1: When the cut in u is within u;us

In this case, the cut in v is within the suffix vélﬂ

since the |u1| = |ug| = |va| and £o > ¢;.
Substituting (u1,v1) and (ug2,ve) with (z1y1,y121) and (z2y2, y2x2),

U =T1Y1 - T1Y1 T2Y2 - T2Y2 = pq
V=Y1T1 - Y1T1 - Y2X2 Y22 -+ =(gp
—

cut region

Since /5 » {1, there exist at least one yoxo before the cut in v. We compare the suffixes of ¢
in both v and v. Since ¢ ends with zsys in u, the cut in v should be at the end of a y5 by
Cases I. (a), I. (b), I. (e) and II. of Cut Lemma.

Hence p can be of the form x5 or (z2y2) " 22 depending upon if the cut in v is within the
last yoxo or not.

U= T1Y1 - T1Y12X2Y2 - - T2Y2 = pPq

’U:ylxl...ylxl..‘y2x2y2 XTo -
~- ~——

q p

Suppose p € (T2y2) T2, then equating the prefixes of p in u and v of length |zoys| = |z1y1|
(Since |ui| = |uz|), we obtain zays = z1y1. Substituting this in w,

U=T1Y1 - T1Y1x1Y1 - T1Y1 = pq
UV =Y121 Y11 Y2T2Y2 L2Y2 - - - T2
—————

q p

Now we compare the prefixes of ¢ in v and v. Since ¢ starts with yy21 in v, from Cases I.
(¢), I. (d), I. (e) and II. of Cut Lemma, the cut in u should be at the end of 1. Therefore,
p e (z1y1)*er in w. AlSOa‘P € ($2y2)+{1”2 in v. Since [z1y1| = |v2y2| and |z1], |[z2] < |z1y1],
we can deduce p = (z1y1)*21 = (2y2)'xy for some i. Hence, x1 = x9. Therefore, it implies
Y1 = Y2 since x1y1 = zoy2 and hence, (u1,v1) and (ug,vs) are identical.

Suppose p = x5 in v. Here, p in u is within the first 21y, since |z1y1| = |x2y2|. Moreover
p = x1 since the only possible cut in u will be at the end of z1 by Cases I. (c), I. (d), I. (e)
and II. of Cut Lemma (comparing the prefixes of ¢ in v and v). Hence x1 = x5.
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Case 2: Cut in u is after u;‘ usy
This case is symmetric. For the sake of completeness we prove it.

Substituting (u1,v1) and (ug,v2) with (z1y1,y171) and (r2y2, yaz2),

cut region
—

U =1T1Y1 - T1Y1 - T2Y2 T2Y2 - =Pq

v = yl'rl oo y1$1y2$2 oo y2I2 = qp

Note that there is at least one xoyo before the cut. We compare the suffixes of p in u and

v. Since p ends with yoxs in v, the cut in u should be at the end of z2 by Cases 1. (c), L. (d),
I. (e) and II. of Cut Lemma.

P q
—N
U =2T1Y1 - T1Y1 - T2Y2T2 - Y2

v = ylml . .y1x1y2x2 .o .y2x2 = gp

Hence g is of the form ys or (y2x2)y2 depending upon if the cut in u is within the last
T2Yy2 Or not.

If ¢ € (yaw2)Ty2, then comparing the prefixes of ¢ of length |yswa| = |y121| (Since
|v1| = |v2]) in w and v, we obtain ysxs = y121. Substituting this in v,

P q
—N
U =T1Y1 - T1Y1 - T2Y2T2 - Y2

UV=Y1Z1 " Y1T1Y1T1 Y11 = 4gp

We compare the prefixes of p in u and v. Since p starts with x1y; in u, the cut in v
should be at the end of y; using Cases 1. (a), I. (b), I. (e) and II. of Cut Lemma. Therefore,
q € (y171)Ty1 in v and q € (yow2)Ty2 in u. Hence, as before we can deduce that y; = yo. It
also implies 1 = x5 since y1x1 = Y222 and thus (u1,v1) and (ug,vs) are identical..

If ¢ = yo. The cut in v is within first y;z1. In fact, ¢ = y; since the only possible cut in
u will be at the end of y; by Cases I. (a), I. (b), L. (¢) and II. of Cut Lemma (comparing the
prefixes of p in w and v). Hence y1 = yo. “

Using Equal Length Lemma we characterise the conjugacy of the closure of a set of
conjugate primitive pairs of equal length.

» Proposition 59. Let G be a set of conjugate pairs such that all pairs in R(G) are of equal
length. Let (x;,y;) be the unique cut of the primitive pair (u;,v;) € R(G). If G* is conjugate
then either x1 = xo =--- 0T Y1 =Yoo = ++-.

Proof. Proof is by induction on the number of pairs in R(G).

1. Base Case: When R(G) has only 2 pairs, i.e., R(G) = {(u1,v1), (u2,v2)}. There exist
01,05 such that Iy » I; > 2 and (uy,v1)" (uz, v2)"2 € G* and hence it is conjugate. From
Equal Length Lemma we get either x1 = x5 or y1 = yo.

2. Inductive Case: Let us assume that the statement is true for k equal length pairs in
R(G), ie., R(G) = {(u1,v1),..., (ur,vg)}. By induction hypothesis, G* is conjugate only
ifxy =---=xr0ry; = =1yp. WLOG, assume 1 = --- = x5 . We aim to prove for
k+1 pairs. Let G’ 2 G be such that G’* is conjugate and R(G’) = R(G) U {(us+1,Vk11)}
where (ug4+1,Vk+1) IS a conjugate primitive pair of identical length to that of pairs in
R(G). Let (g41,yr+1) be the cut of (ugy1,vr+1). There exists the set of pairs

{(’Uq‘,’Uz')Ei (Uk+1,’£}k+1)£k+l | b1 >0 >2,1 <1< k} C G/*
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that is conjugate. Therefore, the pairs (u;,v;) and (ug41,vg+1) satisfy either x; = xp4q
or y; = Yx+1 by Equal Length Lemma. There are two cases:

(a) Suppose there exist an 7 such that x; = xg41. Since i € {1,...,k} and 1 = - -+ = xy,
we conclude x1 = -+ = & = T, 1 as required.
(b) Otherwise y; = yg+1 for all i. Then it follows that y1 = -+ = yp = Yr+1-

5 Existence of Common Witness for Kleene Closure

In this section, we prove the direction (1) = (4) of Theorem 44 recalled in the following
lemma.

» Lemma 60. For a set of pairs G, if G* is conjugate then R(G) has a common witness.

We prove the lemma when G is finite by case analysis and then extend it for a countably
infinite set of pairs using a compactness argument.

5.1 For a Finite Set of Pairs
We now prove the common witness theorem for a finite set.

» Lemma 61. Let G be a finite set of k pairs. If G* is conjugate then R(G) as well G has a
common witness.

Proof. When k = 1, G has only one pair (u,v) and by assumption it is conjugate. By
Theorem 28, (u,v) has a witness. From Proposition 55, we obtain that the witnesses of
R(G) = {(pu, pv)} are same as that of (u,v).

Next we assume that & > 1. Let ~ be the equivalence relation on G whereby (u,v) &
(u',v") if py, ~ pu, i.e., the primitive roots of the pairs are conjugates. Assume that ~ has d
equivalence classes. Clearly 1 < d < k. We do a cases analysis on whether d = 1 or otherwise.

If ~ has only one equivalence class, then the primitive roots of all the pairs in G are
conjugates. Consequently, their lengths are identical. Since G* is conjugate and all the pairs
in R(G) have identical lengths, by Proposition 59, R(G) has a common witness.

Now we assume that d > 1. Choose d pairs (uy,v1), (uz,v2),..., (ug,vq) from each
equivalence class. We construct a pair (u,v) € (u1,v1)*(u2,v2)* -+ (ug, vq)* < G* and show
that (u,v) is conjugate only if R(G) has a common witness.

Let m be the least common multiple of |u1, ..., |uq|. Let £;; = |u;|+|u;|— ged(|wil, Ju;|) >
Ofor1<i,j<dandi#j. Let{=max {{;; | 1<1i,j<d,i#j}. Let N be a multiple of
m that is > 2/.

Let (u,v) = (u1,v1)7 (ug, v2)7 - - (ug, vg)’® such that ji,...,jq > 2 and |u)'
each 1 <i<d.

= N for

N N N

N —
u:ul"'uluQ"'uQ...ud...ud

U=U1"'U1v2"'v2"'vd""Ud
Since (u,v) is conjugate, it has a cut, say (p,q). Substituting each pair in (u,v) with

their primitive roots, we get

U= Puy = PurPuz " Puz """ Pug """ Pug = PG
V= Puy " PoiPus " Pua " Pug " Pug = 4P
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Let (x;,y;) be the unique cut of (py,,pw,) for 1 <i < d. Let By, Bo,..., By represent the
blocks in u, and let By, Bj, ..., B/, represent the blocks in v.

The cut in u can be either within the first block By, or the last block By, or anywhere
between the first and the last blocks in u. We do a case analysis on all the possible cuts of
(u,v) and show that there exists a common witness of R(G) in each of the cases.

Case 1: When the cut in u is in the first block B;

We make a further case analysis depending upon if the cut is within the first half or the
second half of the first block.

Suppose the cut in u is within the first half of the block, i.e., p is of length at most N /2.
In this case, since the length of each block are equal, the cut in v is within the second half of
the last block B/, i.e., p is a suffix of v of length at most N /2.

P q
U= Pyy - PuiPus " Puz " Pug """ Pug
U= Poyoree PoiPoy ** Pog " Pog 0 Pog
——
q P

We obtain ¢ = p~'(B1By -+ By) = (B{By---B))p~! .
= Claim 62. The following holds for each 1 < i < d}.

1. B is of the form pg; and B; is of the form ¢;p, and
2. pis of the form (z;y;)™iz; and g; is of the form (y;z;)™iy; for some m; > 0.

Proof. Proof is by induction on i.

1. Base Case: when i = 1. We compare the prefixes of ¢ in u and v. Since |p| < N/2, the
prefix of ¢ in v must begin within the first block B;. Also, there must be at least one
occurrence of the factor p,, = x1y; following the cut. Since ¢ in v starts with p,, = y121,
the cut should be at the end of z; by Cases I. (¢), I. (d), I. (¢) and II. of Cut Lemma.
Hence p = (z1y1)™* 2 for some integer m; = 0. Consequently, the prefix of ¢ in the block
By, denoted as g1, is of the form y; (z1y1)™, for some n; > 0. After matching ¢; in v, we
observe that a factor equal to p appears in the suffix of the block Bj, as shown below.

_/\p a1 g
m -
u=(z191)" 21 Y1 (T1Y1)™ Pug " Puz " Pug " Pua
v =y1(@1y1)"™ (@151)" 1Py P Py Poa = 4P

q1 =p

ni

2. Inductive Case: Assume the claim is true for first ¢ blocks where 1 <7 < k.

pm a1 Pm‘ i nv q”=(q1p--~gi—1pqi)’lq .
w=(z1y1)™ w1 yr(@y)™ - (i) " T Y (TiYi)" Pusir  Puiy  Pua Pug = PO

v=y1(x1y1)" (@1y1)" w1y (@aya)™ (i) " T Posy  Pois  Pog  Pog = AP
—_— —_—

q1 p qi p

ni

Let ¢” denote the remaining suffix of ¢ in u after the i-th block B;. We obtain ¢” =
(q1p- - qi—1pg;)~tq. By comparing the prefixes of ¢” in u and v, we get that the suffix
of the block B; in v, that is equal to p, matches within the first half of the block B; 1
in w since |p| < N/2. Moreover, the matching should end at z;4; by Cases L. (¢), L. (d),

27



28

Deciding Conjugacy of a Rational Relation

I. (e) and II. of Cut Lemma. Hence p = (2;41Yy;+1)™+ 2;41 for some integer m,; 1 = 0.
Consequently, the remaining suffix of the block B;.1, denoted by ¢;11, is of the form
(Yi+1%ig1)™ "+ i1 for some integer n; 1 > 0. After matching ¢;41 in Bj |, we observe
that a factor equal to p appears in the suffix of the block Bj_ ;. Hence, B;j;1 = pgi4+1 and
Bii1 = qis1p.

From the above claim, it follows that ¢ = ¢1pgap - - - pgq and

p = (r1y1)™ 21 = (T2y2) w2 = -+ = (¥qya) " 74

for mq,...,mq = 0. Since above equation holds for any two pairs between the equivalence
classes, from Proposition 39 we obtain p is a common inner witness of R(G).

Next we assume the cut in u is in the second half of B;. We compare the prefixes of ¢
in u and v and deduce that there exist a common factor of length at least N/2 > ¢ > {15
between block B and block By. From Theorem 30, p,, is conjugate to p,,, that is in turn is
conjugate to p,,. From transitivity of conjugacy, p,, is conjugate to p,,, which contradicts
the fact that (u1,v1) and (ug, vs) belong to different equivalence classes. Hence cut in second
half of By is not possible.

Case 2: When the cut in v is in the last block B,

We make a further case analysis depending upon if the cut in w is in the first half or second
half of the last block By. The proof is symmetric to that of the previous case.
Suppose the cut in w is within the suffix of the block By of length N /2.

p q

U= Puy " PurPus " Pus """ Pug ™ """ Puy

V= Py, """ PorPos " Pog " Pug " Pog
—

q p

Consider the pair (u”,v"), where u", v" are the reverses of the words u and v respectively.
Since (u,v) is conjugate with the cut (p,q), from Proposition 34 we obtain that the pair
(u”,v") is also conjugate with cut (¢, p").

r r

q p
L . r
U _pud pudpud,l pud,l pul pul

r s r o r X .
v = pvd, cee p’Uded—l S p’Ud—l e pvl ...... pvl
—

P q"

Since (z;,y;) is the unique cut of (pu,, pu,;), from Proposition 34 and Proposition 22, we
get that the unique cut of (py,., p;.) is (v, z}) for 1 <i < k.

This reduces to Case 1 where the cut in u” is in the first half of the first block. Therefore,
there exist integers mq, mo, ..., my = 0 such that

q" = (Y1) Yy = (ya23)™ys = -+ = (Ygxg)"* Yq -

Since ((yral)™iyl)" = (y;x;)™y; , we obtain

ma

q=(z1)™yr = (Y222)™y2 = - = (Yaza)" " Ya -
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From the above equation, that is valid for any two pairs belonging to the equivalence classes,
we can deduce from Proposition 39 that ¢ is a common outer witness of R(G).

Next assume that the cut in u is in the first half of the last block Byx. We compare
the suffixes of p in u and v and deduce that there exist a common factor of length at least
N/2 > £ > £g_1)q between the block B4_; and the block B). As before, from Theorem 30,
Pu, is conjugate to py,_,, that is in turn conjugate to p,,_,. Since conjugacy is transitive,
this implies that p,, is conjugate to p,, ,, which contradicts the fact that (uq4,vq) and
(ug—1,v4—1) belong to different equivalence classes. Therefore, the cut in first half of By is
not possible.

Case 3: When the cut in u is within the block B; for 1 < j <d

WLOG, assume that the cut in u is within the first half of the block B;. In this case the cut
in v will be within the second half of the block Bg_;41.

p q
u:pul...pul...puj ...... puj ............ pud...pud

v = pvl “e. pvl ......... pvd—j+1 ...... pvd—j+1 cen pud e pud
v

By matching ¢ in u and v, we get p,, and p,; shares a common factor of length at least
N/2 > £ > {;; and hence they are conjugates to each other by Theorem 30. Since p,, is
conjugate to p,,, by transitivity of conjugacy we obtain p,, and p,, are conjugates. This
contradicts the fact that (ui,v1) and (uj,v;) belongs to different equivalence classes. Hence
cut in B; where 1 < j < d is not possible.

Hence, for a finite set of pairs G, G* is conjugate only if R(G) has a common witness.

By Corollary 56, we also conclude that G has a common witness. <

Hence, we proved Lemma 60 for the finite case.

5.2 For an Infinite Set of Pairs

We now extend Lemma 60 from a finite set to an infinite set of pairs.

» Lemma 63 (Compactness Theorem). Let G be an infinite set of pairs. If every finite subset
of G has a common witness, then G has a common witness.

Proof. From Corollary 57, if a set has a witness, it has exactly one common witness or
infinitely many common witnesses. Given that every finite subset of G has a common witness,
there are two possible cases: a finite subset of G with a unique witness exists, or every finite
subset of G has infinitely many witnesses.

1. Assume that there exists a finite subset G of G with exactly one common witness, say
z. We claim that z is a common witness of G as well. By assumption, the finite set
Gy v {(u,v)} has a common witness, for any pair (u,v) € G. Moreover, the witness for
this set must be z; otherwise, it contradicts the uniqueness of the witness of G . This
implies that z is a witness for any pair in G. Hence z is a common witness of G.

2. Next we assume that every finite subset of G has infinitely many common witnesses.

Take any pair (u;,v;) and (u;,v;) from G. The set {(u;, v;), (u;,v;)} is a finite set with
infinitely many witnesses by assumption. Therefore, from Corollary 57, both (u;,v;) and
(uj,v;) have the same primitive root. Since primitive roots are unique by Corollary 24,
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the primitive root of every pair in G is the same. From Proposition 55, the witnesses
of the primitive root is same as that of the witnesses of each pair in G. Hence, G has a
common witness.

<

The proof of Lemma 60 is a straightforward corollary of the Compactness Theorem. If G* is
conjugate, then the closure of every finite subset of G is also conjugate. From Lemma 61,
every finite subset of G has a common witness. Using Compactness Theorem, G has a
common witness. From Corollary 56, we conclude that R(G) has a common witness.

This concludes the proof of Common Witness Theorem (Theorem 44).

6 Existence of Common Witness for Monoid Closure

In this section, we prove the equivalence between conjugacy and the presence of a common
witness in sumfree sets. We begin by proving Proposition 49 for sumfree sets that contain
only one Kleene star. Subsequently, we establish Theorem 50 that extends the result to
general sumfree sets.

6.1 Common Witness of a Singleton Redux

We prove Proposition 49 by showing (1) = (2) = (3) = (1). It is trivial that (3) = (1), i.e.,
if a sumfree set M has a common witness, then M is conjugate.

Now we proceed to prove (1) = (2), namely, if a sumfree set M = («g, 8o)G* (a1, 51) is
conjugate, then there exists a common witness of G U {(ajap, $180)}. We first prove this
direction when G is just a singleton set and later generalise it to any arbitrary set of pairs G.

» Proposition 64. Let (u,v) be a nonempty conjugate pair. If the pair (ag, Bo)(u, v)* (a1, B1),
for some n such that nlu| = |ag| + |a1| + |Bo| + |B1], is conjugate then there exists a common
witness of {(u,v), (c1ao, B10)}-

Proof. Consider the pair (u’,v") = (o, Bo)(u, v)*" (a1, B1). Let (z,y) denote the cut of the
primitive root of the conjugate pair (u,v). Thus, (u,v) can be expressed as a power of
(zy, yx).

We now examine the possible cuts of (u/,v’) in v’ and show that in each case, a common
witness of {(u,v), (a1, 5150)} exists.

Case 1: When the cut in v’ is within g

Le., there exists a cut (p, q) for (v/,v") such that p = «f is a prefix of ap and ay = agag for

some word «f. Substituting (u,v) with powers of (zy, yz),

p q
/_)%

!’ / "

u = oy opTY--TYO

v' = Boyz -y
Comparing prefixes of ¢ in «’ and v’, we obtain three possible cases for fg.

(a) Bo is a proper prefix of «f: After matching By with the prefix of ¢ in v/, we find that the
remaining suffix of o] matches with the prefix of the block yx - - - yz in v’. Since the total
length of the block yx - - - yx is greater than 4|ag|, it follows that af must end within the
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first half of the block. Furthermore, using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma,
it should end after a y since there exists an xy after «f in «'. Thus, we can express ag as

ag = Bo(yz)™y (11)

for some integer m > 0. Continuing to match ¢ in v’ and v/, we obtain

u' = agap Ty - 2(yx) " yon = pg (12)
_
v = Bo(yx)"yay---x P =qp = ap Ty - Z(yx) "yoqog (13)
—_— ——
046’ =

By equating the sets for v’ on both sides of Equation (13), we get
B = (yx)"yonag - (14)
Concatenating Equation (11) and Equation (14), we obtain

(yx)"yarag = B1Bo(yx)™y .

From Theorem 28, we get (yz)™y is a outer witness for (aya0, 5150), and it is also a outer
witness of (u,v) using Proposition 55. Therefore, (yz)™y is a common outer witness of
{(U, ’U), (Ckl()éo, 5160)}

",
The case when [y = ag:

v = ajag Ty Ty = pq (15)
-
v'= fo yr---yrPr=qp=oagTy--xyoag (16)
ag =

Equating v" on both sides of the Equation (16), we get that xy = yx and
fr=arayg (17)

Appending the equation Sy = «f to Equation (17), we get ayag = 180 . Hence
(a1, £150) is conjuagte with e as a witness. Since zy = yx, we can also deduce that
(u,v) is an identical pair with € as a witness. Therefore, € is a common witness of
{(u,v), (10, B1Bo)}-

ag is a proper prefix of fBy: Since the total length of block zy - - - zy is at least 4|5o], it
follows that By must end within the first half of the block of xy. Moreover, it should end
after an = by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma since there is at least one
yx after By in v’. Therefore,

Bo = ag(zy)"z (18)

for some integer m > 0. Continuing with the analysis, we have:

Bo _
—
u' = agag(zy)" T G- gor = pg (19)

Bo

——
—
v = Boyx---ylzy)"xfr = qp = ap(xy) T YT Yoqog (20)
—
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By equating the sets for v’ on both sides of Equation (20), we get
(zy)"xfr = cnag (21)
Concatenating Equation (18) and Equation (21), we obtain

arao(zy)™x = (vy)"zB1fo -

From Theorem 28, we get (zy)™x is an inner witness of («j g, $100), and it is also an
inner witness for (u,v) using Proposition 55. Thus, (zy)™x is a common inner witness of

{(u,v), (10, B150)}-

Case 2: When the cut in v is within the block of (u,v) - (u,v)

A cut (p, q) exists such that p ends within the block of (u,v)’s. There are two cases based on
whether the cut in «’ is within the first half or the second half of the block of (u,v)--- (u,v).

(a) When p ends within the first half of the block of (u,v)’s:

cut region >2n times
’ —— —
u =0y ag Ty rgar = pg
v' = Boyx - yzyz - yzp = qp
We compare the prefixes of ¢ in v’ and v’. Since the length of the remaining half of the
block of zy’s is still greater than 2n|u| > 2|5y|, it follows that By in v" matches within
the block of xy’s in «’' and there is at least one xy occurring after it. Moreover, it ends

after an x by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma, as there is at least one yx
in v’ after 3y. Therefore,

pBo = ao(zy)"® (22)

for some integer m = 0.

PBo _
— e r—/_H
u' = ag(ry)"r Y-y = pg (23)
. PN
v = Boyx--y(zy)"afr = qp = Po Yz - Yaip (24)
—

By equating the sets for v" on both sides of Equation (24), we get

(zy)"zpy = arp = (zy)"zP1fo = c1pBo (Appending S)
= (zy)"xf1Po = arap(zy)™x  (Substituting Equation (22))

Therefore we obtain,
arao(zy)™z = (zy)"zp1Po -

From Theorem 28, (xy)™x is an inner witness of (ajag, 5100), and it is also an inner
witness for (u,v) using Proposition 55. Therefore, (zy)™z is a common inner witness of

{(U, ’U)’ (041040, ﬁlﬁO)}
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(b) When p ends within the second half of the block of (u,v)’s:
>2n times cut region
’ N
U =Y - TYxY - TY 0 = pq
v' = Poyz - ywyz - yxfy = qp
We compare the suffixes of p in v/ and v’. Since the suffix of p within the block xy is still
greater than 2n|u| > 2|81/, it follows that the suffix 8; in v’ matches within the block of
zy’s in «’ and there is at least one xy occurring before it. Moreover, it starts with a y by

Cases I. (¢), I. (d), L. (e) and II. of Cut Lemma since there is at least one yx before f;.
Hence,

Biq = (yx)"yay (25)

for some integer m = 0.

_ Biq
/_M/ m \
u' =gy 2 (yx)"yor = pq (26)
. e
v = Bolyz)"yay---xfr=qp=qogly---2 B4 (27)
—

By equating v’ on both sides of the Equation (27), we get

Bo(yx)"y = qag = P1Bo(yx)™y = frgao (Concatenating (51 on the left side)
= [16o(yx)"y = (yx)"yarap (Substituting Equation (25))

Therefore, we obtain

(yx)"yarag = B1fo(yx)™y -
From Theorem 28, we get (yx)™y is an outer witness of (ajap,5150), and it is also

an outer witness for (u,v) using Proposition 55. Therefore, (yz)™y is a common outer
witness of {(u,v), (10, 5150)}-

Case 3: When the cut in «/ is within a;

Le., there exist a cut (p,q) for (uv/,v") such that ¢ = of is a suffix of o; and oy = o f for
some word .

p q
/_/%

u = agry--Tyal o
/
v = foyx -y

This case is symmetric to Case 1, where the cut in v’ is within aq. <

» Corollary 65. If a set M = (a, Bo)(u,v)* (a1, 1) is conjugate then there exist a common
witness of {(u,v), (a1, f100)}-

Proof. Since M is conjugate, as stated in Lemma 14, (u,v) is also conjugate. Furthermore,
the pair (ag, Bo)(u,v)*™(ay, B1) € M is conjugate, where n|u| > 2- (length of the reduz of M ).
From Proposition 64, we conclude that there exists a common witness of {(u, v), (a1 a0, £150)}-

<
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Now we extend the above corollary to an arbitrary set G. First, we prove the following
lemma.

» Lemma 66. Let M = (v, fo)G*(a1,B1) be a conjugate sumfree set. If there exist a pair
(u,v) € G such that the set {(u,v), (a100,6150)} has a unique common witness z, then z is
a common witness of G.

Proof. Let (v/,v') be any pair in G. We show that z is a witness of (u/,v). Consider the
set M’ = (g, Bo)(u, v)*(u',v")*(aq, B1), that is a subset of the set M and thus conjugate.
We show that there exists a pair in M’ such that it is conjugate only if z is a witness of
(u',v"). We divide into two cases depending upon if the primitive roots of (u,v) and (v, v’)
are conjugates to each other, i.e., p, ~ p,/ or not.

Let m be the least common multiple of |u| and |«/|, and let ¢ = |u| + |u/| — ged(u, u') be
the Fine and Wilf index of u and v’. Let C' denote the length of the redux of M. Let n be
the smallest number such that nm > maxz(C,¥). Let (z,y) and (2/,y") be the unique cut of
the primitive roots of (u,v) and (u/,v") respectively.

Case 1: When p, ~ py

We have |zy| = |2'y/| in this case. Since G* is conjugate, there exist [1, [ such that Iy » 1} > 2
and (zy, yz)" (2'y',y'z")"2 is conjugate. From Equal Length Lemma, either = 2’ or y = y/'.
Consider a pair (u,0) € M’ as follows.

2nm 8nm
- — = ]
U=aou---uu - -u o
@:/Bov...vvl...vlﬁl

As M’ is conjugate, (4, ) is conjugate with some cut, say (p,q). We do a case analysis on

the cuts possible and show that z is also a witness of (u’,v"). There are two cases to consider:

when the cut p in u ends within the first 2nm length of the block u’--- ', or after it.
Substituting (u,v) with powers of (zy,yz) and (u’,v") with powers of (2/,y’), we get

9 2nm 6nm
nm A

_— — " AN, I
u=capxy---xyx'y -2’y 2y 2y oy

S

@:ﬁoyaj...yl‘y/x/...y.ﬁyw ...y/x/ﬁl

/

1. When the cut p in @ ends atmost within the first 2nm length of block =’y - - - x'y/.

cut region =>6nm
ﬂ = aoxy PR xyx/y/ PR ‘r,yl x,yl ...... l'/y/ al = pq
/l_} = /Boy"L‘ DY yxylx/ RS y,"L‘,y/"L‘, ...... ylxlﬂl = qp

In this case, the total length of p is less than 5nm. As the total length of the block
consisting of y'2’ is at least 8nm, the cut in v is at most within the suffix of the block
y'x' - y'2’. We compare the suffixes of ¢ in u and v. Since the length of the remaining
block of 'z’ before the cut is still greater than 3nm, we conclude that oy in @ matches

at most within the block y'z"’s in .

v = fBoyx---yxy'x' - y'x'B = qp
—_—

There are 3 possible cases for a1p.
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(a)

a1p is a proper suffix of 5;: We continue comparing the suffixes of ¢, and deduce that
(31 starts within the block of z’y’s, and there is at least one occurrence of z'y’ before
it. Moreover, by Cases I. (c), I. (d), I. (e) and II. of Cut Lemma, we determine that
(31 starts from y’ since there is at least one 'z’ preceding 31 in v. Therefore, we can
express 3, as

B = (y'z")"y aap (28)

for some integer mg > 0. Let w’ = (y'z’)™2y’. Continuing the matching of ¢ in u and
v,

!/ / /

17:/80yx"’yxw/x/."x/ 61 :qp
e el

w' a1 p

On matching further, we get a factor of w’ in v that needs to be matched within the
block of zy’s. There are two cases for w’ depending on whether mo = 0 or not.
Suppose w’ = y'. In this case, w’ in ¥ must match with the suffix of zy in u since
|zy| = |2’y|. Given that there is at least one occurrence of yx before w’ in v, we can
apply Cases L. (c), I. (d), I. (e) and II. of Cut Lemma to conclude that v’ =y = y.
Proceeding with further matchings, we obtain

pBoy = ,_/:_7 /
u = ay T-ooexyx ---x Yoy =pq
ﬁ:ﬂoyx...xy/xl...x/ﬂlqu
7 =

— —

Therefore, we have p = ag(Boy)~!. Substituting it in the Equation (28), we obtain

y'arao = Bifoy - (29)

Since y = ¥/, it follows from Equation (29) that y,y’ is an outer witness of (a1 g, £160)
using Theorem 28. Also, y and y’ are outer witnesses of (u,v) and (u’,v") respectively,
using Proposition 55. Overall, we obtain that y,y’ is a common outer witness of
{(U, U)v (ulv U/)’ (041040, ﬁlﬂO)}

Since z is the unique common witness of {(u,v), (1o, 5150)}, 2 =y =y is a witness

of (u/,v").
Suppose w’ € (y'x’)*y’. By matching w’ in v with the suffix of the block zy- - zy in
u, we obtain zy = 2y’ since |zy| = |2’y’|. It also follows that yz = y'2’ because either

x =2’ or y = 3. Therefore, the primitive roots of (u,v) and (u’,v’) are the same.

Thus, z is also a witness for (u/,v").

The case when a1p = (1: Further matching ¢ in @ and v we get 2’y = y'2’ and
2y = yx. Thus, (u,v) and (v, v’) are identical pairs with € as a common witness. Let’s
consider the sets of u and v:

u=oagry--ayx'y -2’y o =pq

v=Poyx---yxy'a' -y’ B =qp
——

= =a1p
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On further matching, we obtain

p=ao(Bo)”". (30)

Substituting Equation (30) in the equation c;p = f1, we obtain ayay = $15p. Thus, €
is a common witness for {(u,v), (v/,v"), (aac, $150)}. Since z is the unique witness of
(u,v) and (ayag, B180), we conclude that z = e. Therefore, z is a witness of (u/,v").

(1 is proper suffix of a;p: We continue by comparing the suffixes of ¢ in u and v. Since
larp| < C + 5nm < 6nm and the total length of the block of y/a’’s is at least 8nm,

"’s, and there is at least one occurrence of z'y’ before that.

a1 p starts within the y'z
Furthermore, it starts from ' by using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma,

as there exists at least one z’y’ before a; in u. Thus, we get
alp — (x/y/)771,2$//31 (31)

for some integer ms = 0. Let w’' = (2'y')™22’.

!’ /
a:aoxy...xywy ...y a1

U= Poyz--yxy -y wh
———
= arp
On matching further, a factor w’ in @ to be matched within the block of yx’s in v.
There are two cases of w’ depending upon if my = 0 or not.
Let us consider the case when w’ = 2. In this scenario, w’ in 4 must match with
the suffix of yx in v since |zy| = |2'y’|. Given that there is at least one occurrence of
ay before w’ in w, we can apply Cases I. (a), I. (b), I. (e) and II. of Cut Lemma to
conclude that w’ = 2’ = z. By further matching, we obtain:

pBo =’ ~
A e S
w="apzr Yy yga'y -y o
v="PFoy-yxy -y b

— =

’ —

We have p = agzfy . Substituting it in the Equation (31), we obtain
arapr = 2'B1f - (32)

Since z = «/, it follows from Equation (32) that z, 2’ is an inner witness of («y g, 5150)
using Theorem 28. Also, 2 and 2’ are inner witnesses of (u,v) and (u/,v") respectively,
using Proposition 55. Overall, we obtain that z,z’ is a common inner witness of
{(u7 ’U)7 (ulv U/)v (a1a07 5150)}

Since z is the unique common witness of {(u,v), (a1, $150)}, 2 = = 2’ is a witness
of (u,v).

Suppose w’ € (z'y")Tz’. By matching w’ in @ with the suffix of the block yx - - - yz in
v, we obtain yx = y'a’ since |yz| = |y'2’|.
x = a' or y = y'. Therefore, the primitive roots of (u,v) and (u/,v") are the same.

It also follows that xy = z'y’ because either

Thus, z is also a witness for (u',v").

2. When the cut in @ ends after the first 2nm length of the block z'y’ - - - 2’y

=2nm cut region

o

17:/80yx...yxy/x/...y‘ryx ...... y/x/ﬂl
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We compare the suffixes of p in u and v. In v, 81 starts matching within the block of

2'y"’s in u since the length of 8 is at most C, that is less than or equal to nm, and the

length of the block of x’y"’s before the cut is at least 2nm.

u = QoY - - :L‘yx/y/ ...... Ty aq
There are three possible cases for 1¢q, that are symmetric to the three cases for a;p
discussed earlier:

(a) Biq is a proper suffix of a;.
(b) Big=a

(¢) ay is a proper suffix of SBig.

We conclude that z is a witness of the pair (u/,v’) in all three cases.

Case 2: When p, # py

Consider a pair (u,0) € M’ as follows.

Gnm 6nm
_ — ]
U=aou---uu - -u ag
17:601}""1)1)/"'7),61

Since M’ is conjugate, the pair (u,v) is conjugate with some cut (p,q). To analyze the cuts
and demonstrate that z is also a witness of (u/,v’), we consider three main cases:

The cut p in @ is positioned within the initial 2nm length of the block w-«-u. (When p
is short)

The cut p in u is located within the suffix starting from the last 2nm length of the block
uw'---u'. (When g is short).

The cut p is located between the remaining portion, i.e., the portion following the first
2nm length of the block u’s and before the last 2nm length of the block u’’s.

Substituting (u;,v;) with powers of (x;y;, y;z;) we get,

2m Anmn 4dnm 2nm

- — AN i
uiao‘ry...xyxy...xyxy...xymy...xyal
’l_] = /Boym RS yxyl‘ DRI yzy,m/ DY y/xla:’y,z, DRI y/x//Bl

1. When p is short, i.e., when the cut in « is within first 2nm length of the block wu’s.

. >
cut region =>4dnm =6nm

_ 1,7
u=qory---xygry---xgx'y -2y

In this case, we perform a further analysis based on whether the cut in @ is within aq or
within the block zy - - - xy.

Let’s consider the scenario where the cut p is within «y, i.e., p = o is a prefix of o and
ap = ajaf, for some word off. Next, we compare the prefixes of ¢ in u and v. We can
further divide this analysis into three cases:

Bo is a proper prefix of o).
"
ﬁo = Q.

ag is a proper prefix of .
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In the last case, we also consider the scenario where the cut is within the block xy - - - zy.
We examine these cases and show that z is a witness of (u/,v’) in every situation.

(a) When the cut is within ag and fy is a proper prefix of «f. We continue to match the

prefixes of ¢ in w and v. After matching 5y with the prefix of ¢ in u, we find that the
remaining suffix of af matches with the prefix of the block yx - --yxz in v. Since the
total length of the block yx - - - yx is far greater than |ag| and there exists a xy after
ag in 4, it should end at a y using Cases I. (a), I. (b), I. (e) and II. of Cut Lemma.
Thus, we can express o as

ag = Po(yz)™y (33)

for some integer m > 0. Let w = (yz)™y. Continuing to match ¢ in @ and v, we obtain

— ! I/ N /! /!
u=a0a0w-~-wwwy---xya1
!/ /i
w T TYxT YT Pr
Bo y ya'p

v =
agy -

Furthermore, a factor equal to w in % must be matched with a prefix of the block 3'z"’s
in ©. Given that the length of w is smaller than the length of ayg, i.e., |w| < |ag| < nm,
we can conclude that w matches within the block y'z’’s. By applying Cases 1. (a), I.
(b), I. (e) and II. of Cut Lemma, we determine that w ends at y’ since there is at least
one occurrence of x'y’ following w in @. Let w’ = (y'z’)™2y’ for some my > 0, and it
follows that w = w’. On further matching, we obtain

_— — /o _
U=QqpT - -Twx - - way =pq

<l
I
=
o
S
8
S
g\
8
8
o
I
S

We have,
B =wap . (34)

By substituting p = af and appending the Equation (33) in Equation (34), we
can deduce that w'aiag = f1fow. Since we know that w = w’, it follows that
warag = P1fow and w'ajag = [1Bow’. Therefore, w,w’ is an outer witness of
(a1, B18p) using Theorem 28. Also, w € (yx)*y and w’' € (y'z’')*y’ are outer
witnesses of (u,v) and (u/,v’) respectively, using Proposition 55. Since w = w’, we get
w,w’ is a common outer witness of {(u,v), (v',v"), (@10, 5150)}-

Since we know that z is the unique common witness for {(u,v), (a1a0, 5160)}, z =
w = w' is a witness of (u/,v").

When the cut p is within ag and Sy = ofj: We observe that through further matchings
in g, we obtain zy = yx and z'y’ = y'z’. Consequently, (u,v) and (v',v") form an
identical pair with € as a witness. This scenario is equivalent to the previous case
where w = w' = e.

The remaining cases involve either the cut being within oy and «fj being a proper suffix
of By, or the cut being located within the first 2nm length of the block zy - - - zy. In
both cases, as the length of the remaining half of xy’s is still greater than nm > ||,
we can match the prefixes of ¢ in w and v to determine that 3y ends within the block
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zy’s. Furthermore, using Cases I. (c), I. (d), I. (e) and II. in Cut Lemma, Sy should
end after an x because there exists a yx after 8y in v. Thus, we can express pfy as

pBo = agw (35)

where w = (zy)™ x for some integer m; > 0. On matching further, we obtain

pBo =
_ Ay ,
u="quw'y---yxy Yo
v=PFoy--ywya - y'a'p
——

Note that the maximum length of w is atmost 3nm (that is equal to |p| + |Bo|). Given
that the total length of the block z'y - --z’y’ is at least 6nm, we can conclude that
w matches within the block z'y’s and ends after an 2’. This can be inferred from
Cases I. (¢), I. (d), I. (e) and II. in Cut Lemma, as there exists a y'z’ after w in v. Let
w' = (2'y")™2a’, where my = 0, and we have w = w'.

We have,
w' P = aip . (36)

By substituting p of Equation (35) in the Equation (36), we can deduce that ajaow =
w’B1By. Since we know that w = w’, it follows that ajaqw = wBify and ajagw’ =
w'B1Bp. From Theorem 28, we get w,w’ is an inner witness of (ajap, 8100). Also,
w € (zy)*x and w’ € (2'y')*2’ are inner witnesses of (u,v) and (u/,v’) respectively,
using Proposition 55. Since w = w’, we get w,w’ is a common inner witness of
{(u7 U)v (ul7 U/)v (041040, ﬂlﬂO)}

Since we know that z is the unique common witness of {(u,v), (a1, 8150)}, we can
conclude that z = w = w’ is a witness of (u/,v").

2. When gq is short, i.e., when the cut p in u is positioned within the suffix starting from the
last 2nm length of the block v’ ---u'. This situation is symmetric to the previous case
where p is short, and we can analyze it similarly.

3. Suppose 4 has a long cut on either side, meaning that the cut p is located between the
remaining portion, i.e., the portion following the first 2nm length of the block u’s and
before the last 2nm length of the block u/’s. In this case, the block of xy’s and the block
of z'y"’s have a common factor of length at least nm, that is greater than or equal to £
(the fine and Wilf index of u and ’). According to Theorem 30, it follows that xy and
z'y’ are conjugates.

Hence, the primitive roots of (u,v) and (u/,v") are conjugates, which contradicts our
assumption that p, % p. .

Therefore, z is a witness of any pair in G. Hence, z is a common witness of G. <

» Proposition 67. If a set M = («p, Bo)G* (a1, B1) is conjugate then one of the following is
true:
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1. G has infinitely many witnesses: In this case, each pair in G shares the same primitive
root that has a common witness with (ay g, 5100)-

2. G has a unique common witness z: There exist a pair in G that has a unique common
witness with (a1ao, $15o), that is equal to z. Hence, z is the only common witness of

G u {(1a, B150)}-

Proof. Given that («g, 80)G*(a1, 81) is conjugate, we can deduce that G* is conjugate by
Lemma 14. Furthermore, according to Corollary 45, G* is conjugate if and only if G has a
common witness. Considering Corollary 57, there are two possibilities for G: it either has a
unique common witness or infinitely many common witnesses.

Assume that G has infinitely many common witnesses. From Corollary 57, G is a set of
powers of a primitive root, say (p, p’). The common witnesses of G are the same as that of
the witnesses of (p, p') using Corollary 56. Since M is conjugate, (ao, 80)(p™, p'")* (a1, B1)
is conjugate for some n > 1. From Corollary 65, there exists a common witness of
{(p™, p'™), (c1cxg, B1Bo)}. Furthermore, according to Proposition 55, the witness of (p, p’) is
the same as the witness of (p™, p’"). Therefore, we can conclude that there exists a common
witness of {(p, p'), (a1 g, B150)}, and thus of G U {(a1a0, 5150)}-

Next we assume that G has a unique common witness. We know that each pair in G
has a common witness with (aj g, 8180) using Corollary 65. Moreover, we claim that there
exists a pair (u,v) € G such that (u,v) and («1ap, 815) share a unique common witness.
Suppose not, i.e., every pair in G has infinitely many common witnesses with (a;aq, 51050).
Consequently, each pair in G can be expressed as a power of the primitive root of (g, £100)-
Hence, G itself has infinitely many common witnesses by Corollary 57, a contradiction.

From Lemma 66, we obtain that the unique common witness of (u,v) and (a1ag, 8150)
is a common witness of G. Thus, the unique common witness of G is the common witness of
the set G U {(a100, 8150)}- «

The remaining direction to prove is (2) = (3) in Proposition 49. This direction states
that if there exists a common witness for both G and (ajaq, 815) for a given set M =
(a0, B0)G* (a1, B1), then M has a common witness. It is a straightforward corollary of the
below lemma.

» Lemma 68. Let M = (o, 80)G* (a1, 1) be a sumfree set. If there exists a common witness
z' for G U {(a10, £150)}, then one of the following cases is true:

(a) If 2’ is a unique common inner witness, then M has a unique common witness z =
[ao0?’, Bolr = [a1,2'B1]L. Moreover, if |agz'| = |Bo| or equivalently |ay| < |2/ 81|, then z
is an inner witness, otherwise it is an outer witness.

(b) If 2’ is a unique common outer witness, then M has a unique common witness z =
[ao, Bo2']r = [#'a1, Bi]L. Moreover, if |2'ay| = |B1| or equivalently |ao| < |Boz'|, then z
is an outer witness, otherwise it is an inner witness.

(c) If G U {(anag, B1B0)} have infinitely many common witnesses, then M is a set of powers
of the primitive root of its reduzx. Thus, M has infinitely many witnesses.

Proof. Case (a): When 2’ is a common inner witness of G U {(a10, 3160)}
The following equations hold:

2'B1Bo (37)
Z'v for any pair (u,v) € G* (38)

arap?’

/
uz
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We claim that z = [ap2’, Bo]r = [1, 2/ 81]L 18 a common witness for M. There are two cases
depending upon whether 5y is a suffix of agz’ or vice-versa in Equation (37).

(a) When fy is a suffix of apz’ or equivalently, when «; is a prefix of 2/8;. We get z =
o' Byt = a;'2'B; . We show that z is a common inner witness for M.
For any (u,v) € G*,

opuanz = aguz B (Substituting ayz = 2/'3)
= p2'vB1 (2 is an inner witness of (u,v))
= 2Bov 1 (Substituting agz’ = z3)

(b) When a2’ is a suffix of 8y or equivalently 2’ is a prefix of a;. We get z = Bo(pz’) "t =

(2'$1) ;. We show that z is a common outer witness for M.
For any (u,v) € G*,

zogue = zaguz Brz (Substituting a; = 2’31 2)
= zap2'vP1z (2 is an inner witness of (u,v))
= Bovfiz (Substituting zagz’ = Bo)

Case (b): When 2’ is a common outer witness of G and (a1, 5150)

Therefore, the following equations hold:

2/0410[0 = /31502/ (39)
Z'u=wvz" for any pair (u,v) € G* (40)

We claim that z = [«ag, B0z’ |r = [¢'a1, B1] 1 is a witness for M. There are two cases depending
upon if g is a suffix of Byz’ or vice-versa in Equation (39).

(a) When ay is a suffix of 392" or equivalently, (3 is a prefix of z'a;. We get z = oz'ag ' =

B2’ a;. We show that z is a common outer witness for M.
For any (u,v) € G*,

zaguay = oz uay (Substituting zag = Bo2’)
= Bovz'on (2 is an outer witness of (u,v))
= PovPrz (Substituting 2'a; = 312)

(b) If Bpz’ is a suffix of a or equivalently, 2’c; is a prefix of 3. Therefore, z = ag(Bp2’) "t =
(z’a1)71B; . We show that z is a common inner witness for M.
For any (u,v) € G*,

opuonz = 2P uon z (Substituting ag = 26p2")
= zBpvz a1z (2 is an outer witness of (u,v))
= 2P0 (Substituting 2'a;z = 3)

Therefore, if there exists a common witness 2’ for G and (aj0, $150), there also exists a
common witness z for M.

> Claim 69. If 2’ is a unique common witness for G U {(a1aq, $180)} then z is the unique
common witness of M.

41
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Proof. Since G U {(a10,5150)} have a unique witness z’, as stated in the second item
of Proposition 67, there exists a pair (u,v) in G that has a unique common witness with
(a1, B150), that is equal to 2’

Let z,, be any common witness for M. Thus, z,, is a common witness for the pair
P = (o, Bo)(u,v)*"(aq, B1) € M, where n is the smallest number such that n|u| > max{2 -
length of the reduz, z,,}. According to Proposition 64, for any cut in P, there exists a
common witness for {(u,v), (@10, 5150)}. Since {(u,v), (a1ag, 5150)} have a unique witness
z, there is only one unique cut for P, as any other cut would lead to a new common witness.
Therefore, z,, = z. <

Case (c): When G U {(a1a0,5180)} has infinitely many witnesses

According to Corollary 57, it is a set of powers of the same primitive root, let us say (p, p’).
Therefore, G* (a1, £1)(ap, Bo) is a set of powers of (p,p’) and is conjugate. Since M is a
cyclic shift of G*(aq, 81)(ag, Bo) and is also conjugate, it is a set of powers of a primitive
root, let us say (pm, pl,), that is a cyclic shift of (p, p’). Moreover, a;y (resp. $1) is an inner
(resp. outer) witness of (p, pm) (resp. (p/, pl,)). We observe that (pp,, pl,) is the primitive
root of the redux of M. Hence, M is a set of powers of the primitive root of its redux. «

6.2 Common Witness of a Sumfree Set
We prove (1) = (2),(3) = (1) and (2) <= (3) in Theorem 50. (3) = (1) is obvious. We
show (2) <= (3) first.

» Lemma 70. Given a sumfree set M = (ag, £0)G1™ (a1, 81)G2™ - Gp*(agk, Br). The fol-
lowing are equivalent.

1. z is a common witness of M.
2. z is a common witness of each of its singleton reduz.

Proof. Let M; be the singleton redux of M keeping only the Kleene star G}, i.e., M; =
(Oéo HRIR 6 77 PN ﬂo cee 61_1)GT(O¢Z s ak,,@i s 5k) for i € {1, ey ]{3} The pI‘OOf of (1) = (2) is
trivial.

We prove (2) = (1). Assume z is a common inner witness of each M;’s. For each i, let z;
denote the common witness of G; U {(«; - agag -+ - @;i—1,Bi - BrBo - Pi—1)}. There are 3
possible cases for z;.

(a) z; is a unique common inner witness. Therefore, for any pair (u;,v;) € GF,

Ui 25 = Z2;V; (41)
Qi apag 12 = 2B BrBo - Bit (42)
z=ag - a;—12;(Bo- - Bi,l)_l = (a;--- ak)_lzi/é’i -+ B (By Lemma 68 (a)) (43)

(b) z; is a unique common outer witness. Therefore, for any pair (u;,v;) € G,

ZiU; = Vizg (44)
Zio - opag iy = Bi Brfo - Bic1zi (45)
Z=0Qp""" Oéi_l(ﬁo R ﬂi_lzi)*l = (ZiOé,' R Ozk>71ﬁi ce Bk (By Lemma 68 (b)) (46)

(¢) When G; U {(a; - -agao - ai—1, 8- BrBo - - - Bi—1)} has infinitely many witnesses, by
Corollary 57, it is a set of powers of the same primitive root say (p;,p;). Therefore
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z; belongs to witnesses of (p;, p;). From Lemma 68 (c), the set M; reduces to a set
of powers of the primitive root of the redux («g---ag,Bo - Bk), say (p,p'). Note that
a; -+ (resp. ag -+ «;—1) is an inner (resp. outer) witness of (p;, p). Similarly 3; - - - B
(resp. Bo - - Bi—1) is an inner (resp. outer) witness of (p}, p’).

We show that z is a common inner witness of M, i.e., for any arbitrary pair (u;,v;) € G§
(possibly empty), we prove apuiauss -« ap_1uregz = zBov1B1v2fs - Br—1vkBk. The
proof is by induction on the number of singleton reduxes, 0 < i < k.

Base Case:

When ¢ = 0, it is vacuously true since z is a witness of the redux.

Inductive Case:

Assume for induction that it is true for the first ¢ — 1 singleton reduxes, i.e.,
QUL U2« U1 Qi1+ -~ 2 = 2Pov1S1vafa - vi—1Bica - B -
We prove it for the first ¢ singleton reduxes, i.e., we show

QOUIOURQD * + * Uj— 1 OG—1 U - - - Oz = ZPBov1 B1v2f2 - - - Vi—1Bi—1viBi - -+ Br -

There are 3 possible cases for the common witness z; of G;u{(«; - - agag - - i—1,Bi - BeBo -+ Bi—1)}-

1. When z; is a unique common inner witness. From Equation (43), z = (a; - - ag) 2B - B

QoUL A * * - Ui —1 OG- 1 UG - - U 2
= QQUI0q - - Uj— 1041 U205 - - - B
= 0QUIOY "+ Ui— 10412035 - -+ P

(Subs. 2)
(
= QU1 - Ui 1010 a2 (B - ﬁk)_lvzﬂi ~+Br (Subs. z)
(
(

Ui 2 = Zﬂ]i)

= 2B0v1B1 Vi1 Bic1Bi -+ Bi(Bi -+ Br) " viBi -+ Bu
= zBov1B1 - - vi—1Bi—1viBi -+ Pr

Inductive Hypothesis)
Simplifying)

2. When z; is a unique outer witness. By Equation (46), z = (z;; - ag) "2 B; - -+ Br-

QUL+ U1 QUG Q1 ~* * QU2

= QUL+ Ui O U1 - o (20 o) T By B (Subs. 2)
Simplifying)
U; = Zi_l’UiZi)
Subs. z; 1)

Inductive Hypothesis)

= apuiy - Ui 0wz L Bi e By

= Ui - U112 0B B

= QoU1Qq U1 Q1 O+ g2 (B - ﬂk)*lvlﬂi o B
= zBov1Br - vic1 Bic1Bi -+ Br(Bi- - Br) " il - Br
= 2Bov1B1 - - Vi1 Bi—1viBi - -+ Pr

~~ Y~ /N

Simplifying)

3. When z; is a witness of the primitive root (p;, p}) of G;u{(; - - g -~ i1, Bi -+ Befo -+ Bi—1)}
(The case where G; U {(c; - - agag - - i—1,B; - BrBo - - - Bi—1)} have infinitely many wit-
nesses). Here (u;,v;) is some m'™ power of (p;, pi). Since z is a witness of a singleton
redux, it is also a witness of the redux (ag - ag, 5o - k), and hence a witness of its
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primitive root (p,p’). We also know that a;---«y is an inner witness of (p;, p) and
B; -+ By is an inner witness of (pf, p).

QUL ~ - Uj—1 Q-1 U QG Qg1 - - - O 2
— m
= QU1 * -+ Ui—lai—l(pi) (710 7NN IR 07774
m
= QoU1Q Ui Q1011 - o (p) " 2 ;- ap is an iw. of (p;, p))

/

= QU1 " Ui 10101 kz(p)™ 2 is a witness of (p,p’))

= qouiy - U101 o z(Bi - Br) TtuiBi - B Subs. v; = (p;)™)
= 2Bov1B1 - vic1Bic1Bi - Be(Bi -+ Br)  viBi - Bu Inductive Hypothesis)

(
(
( (
= QoU1Qq - Ui—10G—10G Qg - akz(ﬂz Br) (P )" B Br (Bi-- - B is an i.w. of (p}, p'))
( (
(
= 2Bov1B1 - Vi1 Pi—1viBi - P (

Simplifying)
Thus z is a common witness of M. <

We prove (1) = (2) in Theorem 50 in the case when a sumfree set contains only two
Kleene stars. Later we extend it to an arbitrary number of Kleene stars.

» Lemma 71. Let M = (ag, Bo)G¥ (o, 51)Ga (a2, B2). If M is conjugate then there exists a
common witness z such that z is a common witness for each of its singleton reduzxes.

Proof. Consider the singleton redux of M denoted as M; and M;. We have M; =
(OZO,,BO)GT(OQCYQ,,BLBQ) and M2 = ((10()&1,6061) (O[Q,/BQ) Since M is conjugate, it fol-
lows that M; and Ms are also conjugate. According to Proposition 49, both M; and Ms has
a common witness.

If both M7 and M have infinitely many common witnesses, we can conclude, based on
the third item in Lemma 68, that both M; and M, are sets of powers of the primitive root
of the redux of M. Thus, any witness for the primitive root of the redux is also a witness for
both M; and Ms using Proposition 55. Therefore, it holds true that when both M; and M
have infinitely many common witnesses.

Let us consider the scenario where exactly one of M; and M, has a unique witness.
Without loss of generality, let us assume that M; has a unique witness, while Ms has
infinitely many witnesses. According to Lemma 68, we can conclude that M is a set of
powers of the primitive root of the redux. Consequently, the witnesses of M, are the same as
the witnesses of the primitive root of the redux. Since the unique witness, say z, for M is
also a witness for the redux, we can apply Proposition 55 to conclude that z is also a witness
for the primitive root of the redux. Therefore, z is also a witness for Ms.

If both M7 and M5 have a unique witness. From Lemma 68, G; has a unique common
witness z; with (ajasag, 8152/50). Moreover, From Proposition 67, there exist a pair (u1,v1) €
G such that it has a unique common witness with (ajasag, 818200) equal to z;. Similarly,
there exists a pair (us,vs) € Go that has a unique common witness with (asagaq, 825051),
that is same as the unique witness of G5 say zs.

Consider the set M’ = (ao, Bo)(u1,v1)* (a1, f1)(u2, v2)* (a2, f2), which is a subset of the
sumfree set M and therefore M’ is conjugate.

We construct a pair in M’ and do a case analysis on its cuts. Our objective is to show that
a nontrivial relation exists between 21, z3, and the redux for all possible cuts. By equating
this relation, we can establish that the unique witnesses of M7 and M are identical.

Let m be the least common multiple of |u;| and |us|, and let C' be the length of the
redux. We choose n as the smallest number such that nm > C. Let (z1,y1) and (22, y2) is
the unique cut of the primitive root of (u1,v1) and (ug, ve) respectively.
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Consider a pair (u/,v") € M’ as follows.

2nm 8nm

/ — —
U =0)UL - -UL LU+ Ug Qg

Ulzﬂovl'“vlﬁl'UZ'“'UZﬂz

Since M’ is conjugate, (u',v’) is conjugate with some cut denoted as (p,q). We do a case
analysis based on the cuts possible and show that M; and Ms share the same unique witness.
There are two cases to consider: when the cut in v’ occurs at most within the initial 2nm
length of the block of xoys - - - kY2, or after it.

Substituting (u;, v;) with powers of (z;y;,y;2;) we get,

2nm 2nm 6nm
U = QoT1Y1 - T1Y1 &1 T2Y2 * + - T2Y2 T2Y2 " * - T2Y2 (2

V' = Boy1x1 - Y121 51Y2Ta - - YaXaYa Lo - - Yaka P

Case 1: When the cut p in v’ ends at most within the first 2nm length of block
Z2Yy2 - T2Y2

cut region =6nm
/
U = qoT1Y1 - T1Y1Q1T2Y2 -~ - T2Y2 T2y -+~ -+ ToY2 (2
/
v = BoyiTr - y1T1B1YaTe - YoXaYaZo v e Y22 B2

In this case, the total length of p is less than 5nm. As the total length of the block consisting
of yax5 is at least 8nm, the cut in v’ is at most within the suffix of the block yoxs - - - y22.
We compare the suffixes of ¢ in v’ and v'. Since the length of the remaining block of ysxo
before the cut is still greater than 3nm, we conclude that ay in v’ matches at most within
the yax5’s in v/,

V' = Boyizy iz fryema Y2232
—

There are 3 possible cases for asp.

(a) agp is a proper suffix of 2. We continue comparing the suffixes of ¢, and deduce that
B2 starts within the block of zoys’s, and there is at least one occurrence of xoy2 before
it. Moreover, by Cases 1. (c), I. (d), I. (e) and II. of Cut Lemma, we determine that
B2 starts from g9 since there is at least one yoxo preceding 2 in v'. Therefore, we can
express 2 as (yaz2)™2y2ciap, where mo is an integer greater than or equal to 0. Let
wy = (Y2x2)™2y. Continuing the matching of ¢ in v’ and v’,

’ —
U = Qor1Y1 - T1Y101 T2 - - Ta W2l = Pq

v = Boyixr 1w frwe ze - xe  fa = qp

= w2 02p

On matching further, we deduce p = agz1y;---T1y100 (Boyrixy - - y1z1frwe) L. By
substituting it in the equation weaop = B2, we obtain

waapT1Y1 - - T1y1o = Bafoyixyr - y1T1frws .
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We deduce wy is an outer witness for (asag, B200)(z1y1,y121) - - (X1y1, y121) (1, B1)
using Theorem 28. Furthermore, wy is the unique outer witness for this set, as (u,v1)
and (ajasaq, B182080) share a unique common witness z;. By applying Lemma 68, we
can equate wsy accordingly. There are two cases to consider based on whether z; is a
unique common inner or outer witness.

a. When z; is a unique inner witness of (u1,v1) and (a1 azaq, 518200).

wy = Pafo(azanz1) " = (2181) v . (47)

We obtain weasagay = B28081ws by solving Equation (47). Since wy € (yaza)*ya2, wo
is a common outer witness of (z2,y2) and (aaagar, B28061). Since z, is the unique
common witness of (ug,v2) and (agapas, f20051), we get way = z9, which implies that
Zo is the unique common outer witness.

From Proposition 49, the unique witness of M is [agz1, So]r and the unique witness
of My is [Bof122, apar]r. We show that they are equal as follows.

[Bof122, aoc1]r = [Bof122, apz1P122]r  (Since 218122 = aq in Equation (47))
= [Bo, @021 R ([uw,vw]r = [u,v]r for any word w,u and v)
= [ao21, Bolr ([u,v]g = [v,u]g for any word u and v)

Thus the witness of M; and M, are the same.
b. When z; is a unique outer witness of (u1,v;) and (a1asag, 815280).

wy = Bafoz1(aag) ™t = Btz . (48)

We get waasagay = Ba28pf1we by solving Equation (48). Since wsy € (yaz2)*ya, wo
is a common outer witness of (z3,y2) and (asagar, B25061). Since z, is the unique
common witness of (ug,vs) and (asapay, B250/31), we get wg = z9, which implies z5 is
the unique common outer witness.

From Proposition 49, the unique witness of M; is [B1 82, z1a1 2], and the unique
witness of My is [B2, z0a2] .. We show that they are equal as follows.

[B1B2, 211021, = [B1 B2, Brz2a2]r  (Since 211 = 122 in Equation (48))

= [f2, 22021 ([wu, wv]r, = [u,v]r for any word w,u and v)

Thus the witness of M; and My are the same.

(b) asop = Po. In this case by further matchings in g we get xoys = yoxo. Thus us = v9 and
hence (ug,v2) is an identical cycle with € as witness. It is the same as the above case
where wy = €.

(¢) When S5 is proper suffix of asp. 3 is proper suffix of a;p. We continue by comparing
the suffixes of ¢ in w’ and v’. Since |agp| < C' + 5nm < 6nm and the total length of the
block of yoxs’s is at least 8nm, agp starts within the yoxs’s, and there is at least one
occurrence of zoys before that. Furthermore, it starts from x5 by using Cases L. (a), I.
(b), I. (e) and II. of Cut Lemma, as there exists at least one zays before as in w’. Thus,
we can write aop = (z2y2) 22282, where mg = 0. Let wo = (x2y2)™2x2

’ /__/\__\
U = Qol1yY1 - T1Y101w2 Yz - - - Y2 Q2
v = Boyrxy - Y111 y2 - Y2 wafs
"

= Qz2p
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On matching further, we deduce p = aor1y1 - T1y1a1we(Boyixy -+~ y12161) L. By
substituting it in the equation asp = (r2y2)™2x282, we obtain

QoaT1Y1 -+ L1y we = weB2Boyi1 - Y121 frws .

We deduce wq is an inner witness for (agag, 82080)(x1y1, y121) - - - (x1y1, y121) (1, B1)
using Theorem 28. Furthermore, wy is the unique inner witness for this set, as (u1,v)
and (ajasag, B16208) share a unique common witness z;. By applying Lemma 68, we
can equate wy accordingly. There are two cases to consider based on whether z; is a
unique common inner or outer witness.

a. When z; is a unique inner witness of (u1,v1) and (aasag, 516200).

wy = 21 (B280) " = (1) Tz fhr (49)

We deduce asapaiws = wafafof1 by solving Equation (49). Since wq € (x2y2)*xa,
ws is & common inner witness of (z2,y2) and (aacpaq, B28001). Since z5 is the unique
common witness of (ug,vs) and (asapar, B25051), we get we = 2o, which implies 25 is
the unique common inner witness.

From Proposition 49, the unique witness of M is [agz1, So]r and the unique witness
of My is [ 22, Bof1]r. We show that they are equal as follows.

[avoaiz2, Bofi]r = [wz1 81, BoPi]r  (Since ajzz = 2151 in Equation (49))

= [ao21, Bolr ([uw,vw]g = [u,v]R for any word w,u and v)

Thus the witness of M; and Ms are the same.
b. When z; is a unique outer witness of (u1,v1) and (ajasaq, 5152050)-

wy = s (Bafoz) Tt = (z101) " 1 (50)

We obtain asagaiws = waf20081 by solving Equation (50). Since wg € (x2y2)* 2, wo
is a common inner witness of (x2,y2) and (asapas, B258061). Since 2o is the unique
common witness of (ug,vs) and (asapay, B25061), we get we = 2o, which implies 25 is
the unique common inner witness.

From Proposition 49, the unique witness of M is [f102,z112]r, and the unique
witness of Ms is [aw, 2002]r,. We show that they are equal as follows.

[B1P2, z1a10e]L = [z1012202, z1onaz]r  (Since z1agze = B1 in Equation (50))

= [2232, 2] ([wu, wv]r, = [u,v]r for any word w,u and v)

= [ag, 22021 ([w,v]r, = [v,u]r for any word u and v)

Thus the witness of M7 and My are the same.

Case 2: When the cut in v’ ends after the first 2nm length of the block z2ys - - - 22y»

=2nm cut region
! Is
U = qoT1Y1 - T1Y1Q1 T2Y2 -~ - T2Y2 X2y -+ - ToY2Cx2

v = Boy1T1 -+ - Y121 L1Y2X2 - - - YoLoYaXg - - -+ - - Y2232
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We compare the suffixes of p in v/ and v’. In v/, B2 starts matching within the block of
Zoys9's in v’ since the length of (5 is at most C, which is less than or equal to nm, and the
length of the block of xoys’s before the cut is at least 2nm.

B2q

’ —
U = QpT1Y1 - T1Y1x1x2Yy2 -+ - T2Y2(x2

There are three possible cases for fB2q, which are symmetric to the three cases for asp
discussed earlier:

(a) Paq is a proper suffix of as.

(b) Bag = as.
(¢) ag is a proper suffix of SBag.

» Theorem 72. If M is conjugate, then a common witness exists for the set of singleton
reduxes of M.

Proof. Let M consist of k singleton reduxes where k > 1. Suppose all singleton redux has
infinitely many common witnesses. From the third item of Lemma 68, each singleton redux
is a set of powers of the primitive root of the redux. Hence, any witness for the primitive
root of the redux is a witness for any singleton redux of M. Therefore, a common witness
exists for the set of singleton reduxes of M.

Suppose there are ¢ singleton reduxes with unique witnesses zy,, zn,, - - ., 2n,, Where
1<l<k.
We claim that z,, = 2z,, = -+ = 2z,,. For any two positions i, j € {n,...,ne}, since the

subset of M obtained by keeping the Kleene star at positions ¢ and j is conjuagte, according
to Lemma 71, z; = z;.

Thus, all the unique witnesses of the ¢ singleton reduxes are the same, and let it be z.
Since z is also a witness for the redux, as stated in Proposition 55, it is a witness for the
primitive root of the redux. Therefore, z is also a witness for all singleton reduxes with
infinitely many witnesses, as they are sets of powers of the primitive root of the redux. Hence,
z is a common witness of each singleton reduxes of M. <

7 Computing Witness of a Sumfree Expression

In this section, we give a decision procedure to compute the common witness of a sumfree
expression, if it exists. A sumfree expression can have no common witness, a unique
common witness, or infinitely many common witnesses. Thus, the set of common witnesses
(abbreviated as the witness set) is either empty, singleton, or infinite. Whenever there are
infinitely many common witnesses for an expression, the witnesses are the same as those of
its primitive root (Corollary 57). In that case we compute the primitive root as their finite
representation.

The witness set of a sumfree expression is equal to the intersection of witness sets of
each of its singleton reduxes. So first, we show how to compute the witness set of a sumfree
expression with only one Kleene star, in effect the witness set of a singleton redux. Using
this procedure, we show how to compute the witness set of a general sumfree expression.

First we bound the size of the unique common witness of two conjugate primitive pairs,
if it exists.
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» Proposition 73. If two conjugate primitive pairs (u1,v1) and (uz,ve) have a unique common
witness z, then |z| < 2 - max(Juy|, |us]).

Proof. Let z be a common inner witness. Therefore, z = (z1y1)™ 21 = (x2y2)™2x2 for some
ny,ng = 0 where (z;,y;) is the unique cut of pair (u,;,v;) for i € {1,2}. We claim either
ny or ng is less than 2. Suppose not, i.e., n; > 2 and ny > 2. Thus u{ and u§ share
a common prefix of length at least |uj| + |ua|. From Corollary 27, they have the same
primitive root. It implies that z1y; = z2ys since u; and uy are primitive words. Since
(x1y1)™" @1 = (T2y2)"2 X2, X1y1 = x2y2 and |z1], |z2| < |z1y1|, we obtain n; = ng, and hence,
x1 = 3. This implies y; = y and hence, y121 = yoz2. Both (uy,v1) and (ug,v9) are the
same word; thus, they have infinitely many common witnesses, that is a contradiction. Hence
2] < 2 mas{jur, |us]}

The case for common outer witness is symmetric. <

The above proposition holds true for any two conjugate pairs (not necessarily primitive) by
Corollary 56.

The following proposition gives a decision procedure to compute the witness set of two
conjugate primitive pairs.

» Proposition 74. The witness set of two conjugate primitive pairs of words is computable in
quadradic time.

Proof. Let G = {(u1,v1), (u2,v2)} be a set of two primitive conjugate pairs and let (z;,y;)
be the cut of (u;,v;) for i € {1,2}. These cuts can be computed in quadratic time w.r.t. the
length of uy, us by finding the smallest i € {0,. .., |u|}, such that Ishift,(u) = v.

According to Lemma 42, one of the following possibilities holds true for G: it has no
common witness, a unique common witness, or infinitely many common witnesses. The
following algorithm outlines the computation of the witness set of G:

1. Check if the primitive pairs are identical, i.e., verify if u; = ug and v; = vg. If yes, then G
has infinitely many common witnesses by Lemma 42. The witness is finitely represented
by the primitive pair (u1,v1). This step takes linear time w.r.t. the length of the primitive
pairs.

2. If the pairs are not identical, then check if G has a unique common witness using
Proposition 73 as follows: WLOG assume that |u;| > |uz|. According to Proposition 73,
if a unique common witness exists for G, its length is at most 2 - max(|uq|, |uz|) = 2 |uy].
Thus, it suffices to check whether (z1y1)* and (z2y2)* share equal prefixes of length |z ]|
or |x1y1x1|, that also end in 5. If it is satisfied, then G has a unique common witness.
This step can be performed in linear time w.r.t. the length of the primitive pairs.

3. If none of the above holds, then G has no common witness.

The overall complexity of the algorithm is quadratic w.r.t the length of the primitive pairs. <
» Corollary 75. The witness set of two conjugate pairs can be computed in quadratic time.

Proof. We can compute the primitive roots of the conjugate pairs in quadratic time by
Proposition 25. From Corollary 56 (or, 3 <= 4 in Theorem 44), the common witnesses of
a set of pairs are the same as that of its primitive root. Hence, using Proposition 74, we can
compute the witness set of the conjugate pairs. <

Now we proceed to compute the common witness of a sumfree expression with only one
Kleene star.
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» Lemma 76. Let M = (ap, Bo)E* (a1, 1) be a sumfree expression. Given the witness set
of E, we can compute the witness set of M in time O((m + n)?) where m is the size of the
expression M, and n is the size of the witness of E.

Proof. From Proposition 49, M has a common witness iff £ U {(a10, $150)} has a common
witness. The common witness of M is computed from the common witness of E and
(1o, B150)-

The idea is to check if a common witness exists for E'u{(ayag, 5150)} using Proposition 67.
If it exists, using that we compute the common witness for M. There are two possibilities
for common witnesses of E:

1. F has a unique common inner (resp. outer) witness z. By Item 2 of Proposition 67,
it suffices to check if z is a common inner (resp. outer) witness of (ajag, 815p). This
can be checked in O(m + n) time using Theorem 28. If so, z is the common wit-
ness of E U {(ayap, $100)}. Now compute the common witness of M using Proposi-
tion 49(a) (resp. Proposition 49(b)). This can be computed in O(m +n) time. Otherwise,
E v {(a10,180)} has no common witness and hence, M has no common witness by
Proposition 49.

2. F has infinitely many common witnesses. In this case, the witnesses of F are the same as
that of its primitive root, say (p, p’). From Item 1 of Proposition 67, it suffices to check if
(p,p') and (ayap, B1580) has a common witness. For this, first check if the primitive root
of (v, B180) is equal to (p, p'). This step takes time O(m? + n). We have two cases:

(a) If (a1, 5180) have same primitive root as that of F, then E and (a1, 8150) have
infinitely many common witnesses by Corollary 57. In this case, M is a set of powers
of the primitive root of the redux by Proposition 49(c). Thus M has infinitely many
witnesses. Compute the primitive root of its redux using Proposition 25. This step
takes O(m?) time.

(b) Otherwise, compute the unique common witness of (p, p') and (ajaq, 8150) if it exists
using Corollary 75. If so, we are back to Case 1; else M has no common witness. This
step takes O((m + n)?) time.

<

Using the above algorithm, we compute the common witness of a general sumfree
expression as follows.

» Lemma 77. Let M be a sumfree expression. Given the witness set of each Kleene star in
M, we can compute the witness set of M in time O(m - (m + n)?) where m is the size of the
expression and n is the mazximum size among the given witnesses.

Proof. From Theorem 50, the witness set of M is the intersection of the witness sets of its
singleton reduxes. The algorithm is as follows.

1. Check if the redux of M is conjugate using Proposition 31 (in time m?). If yes, then
compute the primitive root of the redux, say (pm, pl,), using Proposition 25 (in time m?).
Otherwise, M has no common witness.

2. Check if each singleton redux of M has a common witness and compute it using Lemma 76.
This step takes O(m - (m + n)?). If there is a singleton redux with no common witness,
then M has no common witness by Theorem 50.

(a) If all the singleton reduxes have infinitely many witnesses, then M is a set of powers of
the primitive root of the redux (pm,, pl,) by Proposition 49(c). Thus M has infinitely
many common witnesses.
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(b) If there exists a singleton redux with a unique common witness, say z, then for all
other singleton reduxes of M with a unique witness 2/, check if z = 2’ (for all other

singleton reduxes z is already a witness by virtue of being a witness of the redux of M).

If so, z is the unique common witness of M, otherwise M has no common witness.

Computation of the Witness Set: Given a sumfree expression M, we compute its witness
set bottom-up. We start from the innermost Kleene star. It is a pair of words (u,v). First,
we check if (u,v) is conjugate using Proposition 31. If yes, then there are infinitely many
common witnesses for (u,v)*, namely the witnesses of its primitive root, otherwise M has
no witness. This step can be done in a time polynomial in the length of (u,v). Now we
recursively use Lemma 77 to compute the common witness of the expression under the Kleene
star in each level. If there is no common witness for any level of Kleene star expression, then
M is not conjugate.

To find out the complexity of the decision procedure, it suffices to estimate the maximum
length of a witness involved in the computation.

Length of the Witness of a Sumfree Expression: We claim that if a sumfree expression
M is conjugate, then there exists a witness of length linear in size of M.

If M has infinitely many witnesses, from Corollary 57, M is a set of powers of a primitive
root. Therefore, there exists a witness of length that is less than that of the length of the
primitive root.

Next suppose M has a unique common witness. In that case, there exists a subexpression
E¥ such that

E} has a unique common witness,
and all Kleene star appearing in E; has infinitely many witnesses. Therefore, all of them
have a common witness at most |F;|.

Therefore, there is a singleton redux M; of E}* that has a unique witness z;. The size of z; is
linear in M; and the size of the witnesses of subexpressions of F;. Both are upper bounded
by size of M. Furthermore, the common witnesses for all subsequent levels is unique (if it
exists) and its length is bounded by |M|.

Complexity of the Algorithm: Since the size of the common witness of M is linear in | M|,
by Lemma 77, the overall complexity of computing a common witness of a sumfree expression
is O(h - m?) where h is the star height of M and m is the length of the expression.

8 Conclusion

It is shown that the conjugacy problem of a rational relation is decidable. The decidability
rests on the theorem that a sumfree expression of pairs is conjugate if and only if there exists
a word that witnesses the conjugacy of all the pairs that belong to the expression.
Computing a witness of a given sumfree expression, if one exists, can be done in polynomial
time. However, converting a rational expression into a sum of sumfree expressions may result

in an exponential blowup. Thus, the algorithm presented in the paper is of exponential time.

It remains to find the precise complexity of this problem.
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It is natural to look at the conjugacy problem of more general classes, for instance

functions definable by a deterministic two-way transducers (regular functions [12]), or by
two-way pebble automata (polyregular functions [4]).

Another line of work is to look at applications of our result. We were motivated to

study the conjugacy problem while studying approximate comparisons between two rational
transducers. In this setting, if we had a black box for solving the conjugacy of rational
relations, we have an algorithm for comparing them approximately. This is one of our

immediate future work.
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