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Abstract. A relation on the free monoid is conjugate if each pair of
words in the relation is conjugate, i.e., cyclic shifts of each other. We
show that checking whether a rational relation is conjugate is decidable.
This extended abstract outlines the proof of this fact. A result of indepen-
dent interest is a generalisation of the classical Lyndon-Schützenberger
theorem from word combinatorics that equates conjugacy of a pair of
words pu, vq and the existence of a word z (called a witness) such that
uz “ zv.

A full version of the paper, with details of the proof, can be found on
arXiv [1].
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1 Conjugacy of a Relation

Conjugacy of two elements u and v in a group can be defined as any of the
following equivalent cases:

1. uz “ zv for some z,
2. u “ xy and v “ yx for some x, y.

The conjugacy problem asks if a given pair of elements in a finitely presented
group (typically infinite) is conjugate. It along with the word and isomorphism
problems constitute the classical triad of decision problems on groups identi-
fied by Dehn in 1912 [15]. Dehn’s prescient choice turned out to be instru-
mental not only in mathematics, but also to the theory of semigroups/monoids
and automata in computer science. It turns out that the above conditions are
equivalent for free monoids as well (i.e., when u, v, z, x, y are taken to be words
over some finite alphabet). This is the well-known second theorem of Lyndon-
Schützenberger. But unlike in the case of groups where condition (1) is taken to
be the definition of conjugacy, in the case of monoids condition (2) is taken as
the definition of conjugacy. Hence the statement reads the following way.

‹ Supported by the DST SERB MATRICS grant for the project Deciding closeness of
finite state transducers [MTR/2022/000628]
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Theorem 1 (Proposition 1.3.4 of [14]). A pair of nonempty words pu, vq

is conjugate iff there exists a word z such that uz “ zv. Moreover, z P pxyq˚x
where x and y are such that u “ xy and v “ yx.

The conjugacy problem is solvable in polynomial time over free monoids and
free groups. We consider a generalisation of the problem to a finitely-presented
possibly infinite set of pairs. Let A be a finite alphabet. A relation R Ď A˚ ˆA˚

over the free monoid A˚ is conjugate if each pair pu, vq P R is conjugate. Consider
the following decision version: Given a relation R over A˚, is it conjugate?.
Of particular interest is when R is automata-definable because of motivations
detailed later. First, we recall the class of rational relations. The family of rational
subsets of a monoid M is the smallest class containing H, all singleton subsets
of M and closed under union, product and Kleene closure. A natural way to
present a rational subset of M is as a rational expression: H,m P M are rational
expressions, and if E1, E2 are rational expressions then E1 ¨ E2, E1 ` E2, and
E˚

1 are also rational expressions. A rational relation over A˚ is a rational subset
of the product monoid A˚ ˆ A˚. Coincidentally, rational relations are precisely
those that are defined by nondeterministic finite state transducers.

Example 1. The rational expression E1 “ pϵ, aqpab, baq˚pa, ϵq denotes the set
of pairs tppabqna, apbaqnq | n ě 0u. The expression E2 “ ppa, aaq ` pb, ϵqq˚

represents tpu, vq | v is obtained from u by duplicating a’s and discarding b’su.
The expression E1 is conjugate, and in fact is a subset of identity relation.
However, E2 is not conjugate.

A strong justification for the above problem comes from the theory of word
transducers. Checking a number of properties of word transducers, for instance
sequentiality (can the given transducer be determinised?) or finite sequentiality
(is the given transducer equivalent to a disjoint union of deterministic trans-
ducers?), bounded edit-distance [2] (is the edit-distance between the respective
outputs of the given tranducers bounded?) etc. amounts to checking conjugacy of
the rational relations defined by the strongly connected components of the trans-
ducer and certain specific properties of the underlying acyclic graph of strongly
connected components. Loosely speaking, conjugacy of the relations defined by
the strongly connected components imply that the loops of the transducer are
pumpable. Historically, decidability of these properties were shown by tailor-
made procedures, for instance twinning property of Choffrut for sequentiality
[5], weak twinning for finite sequentiality [7,11,13]. However, there is no general
procedure to decide conjugacy of rational relations.

Our main result is summarised by the following theorem.

Theorem 2. Conjugacy of rational relations is decidable.

The decidability hinges on a couple of crucial definitions. The first is that of
a sumfree expression: a rational expression is sumfree if it does not use sum (i.e.,
`). Formally, they can be defined as a hierarchy. Given a class C of expressions
over the monoid M , the Kleene closure of C, denoted as KC, is the class of
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expressions KC “ C Y tE˚ | E P Cu. Similarly, the monoid closure of C, denoted
asMC, is the class of expressionsMC “ CYtE1 ¨ ¨ ¨Ek | Ei P C, i P t1, . . . , ku, k P

Nu. The family F of sumfree expressions is given by: F0 “ M Y tHu and Fi`1 “

MKFi for each i ě 0, and
F “

ď

iě0

Fi .

The star height of an expression E is the smallest k P N such that E belongs to
Fk.

Over the free monoid A˚, the set of expressions F0 is A˚ Y tHu and KF0

is the set of expressions F0 Y tw˚ | w P A˚u (for convenience we assume that
H is not used in any other expression other than H itself). It is not difficult to
see that MKF0 is the set of expressions KF0 Y tu1v

˚
1 u2v

˚
2 ¨ ¨ ¨ukv

˚
kuk`1 | ui, vi P

A˚, k P Nu.
Every rational expression is effectively equivalent to a sum of sumfree expres-

sions (called sumfree normal form (SNF)), by inductively rewriting the expres-
sion using the identities pa`bq˚ “ pa˚b˚q˚ and pa`bq¨pc`dq “ ac`ad`bc`bd.
This fact is the rational-expression analogue of the factorisation forest theorem
of Simon, a deep result from the theory of finite semigroups [17]. Rewriting a
rational expression in SNF may result in an exponential blow-up, both in the
number of summands and the size of each summand.

Example 2. For the expression E “ pa ` bqn for some n ą 0, it can be shown
that any equivalent expression in SNF will have at least 2n summands. For
E1 “ $pE#q˚ Ď t$,#, a, bu˚, any equivalent SNF expression will have at least
one summand of exponential size, and the expression E ¨ E1 in SNF will have
exponentially many summands of exponential size.

The union operation of rational relations, unlike the product and Kleene
closure, preserves conjugacy, i.e., if R1 and R2 are conjugate, then R1YR2 is also
conjugate. Therefore for proving Theorem 2 it suffices to decide the conjugacy
of a rational relation given by a sumfree expression.

The second crucial definition is the notion of a common witness of a relation,
inherited from Lyndon-Schützenberger’s theorem. A witness of a conjugate pair
pu, vq is a word z such that either uz “ zv (inner witness) or zu “ vz (outer
witness). A word z is a common inner (resp. outer) witness of a relation, if for
every pair pu, vq in the relation, z is an inner witness (resp. outer witness) of
pu, vq. By Theorem 1, if a relation has a common witness then it is conjugate.
However, the converse is easily shown to be false.

We show that a sumfree rational relation is conjugate if and only if it has a
common witness, i.e., either a common inner witness or a common outer witness,
(but not necessarily both). This characterisation of conjugacy is a main contri-
bution of our paper. It is in fact a generalisation of the Lyndon-Schützenberger
theorem characterising conjugacy of two words.

There are two interesting questions regarding common witnesses:

I. Is there a common witness for the relation R?
II. Given a word z, is it a common witness of R?
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Question II proves to be comparatively more tractable, as it can be reduced
to verifying whether the rational relation R1 “ tpuz, zvq | pu, vq P Ru (or,
R1 “ tpzu, vzq | pu, vq P Ru) consists of only identical pairs [16]. In fact, the
decidability of the twinning property of a transducer is connected to Question
II.

Question I, on the other hand, is more difficult a priori as we do not have a
bound on the size of a possible common witness. We provide a decision procedure
for Question I. This is another main contribution of the article. Our characteri-
sation of conjugacy via common witness, together with this procedure, yields an
algorithm for deciding conjugacy.

1.1 Related Work

A problem much related is the Conjugate Post Correspondence problem: given
a finite set of pairs G, does there exist of a pair pu, vq P G˚ such that u and
v are conjugate? This problem is shown to be undecidable by reduction to the
word problem of a special type of semi-Thue systems [10]. In Section 3, we show
that the universal version of this problem — checking if all the pairs in G˚ are
conjugate — is decidable.

A generalisation of Lyndon-Schützenberger’s theorem to infinite sets, though
with no comparison to ours, is considered in [4][12], where solutions to the lan-
guage equation XZ “ ZY , where X,Y, Z are sets of words, are given for special
cases. The general solution is still open.

2 Conjugacy of Sumfree Expressions

We now proceed to solve the conjugacy problem for sumfree expressions. We use
pairs of lowercase Greek letters pα, βq with suitable modifications to denote pairs
of words over A˚ ˆ A˚. Clearly H and pϵ, ϵq are conjugates. For an expression
of the form pα, βq, it is straightforward to check conjugacy. Thus, the conjugacy
problem is decidable for the class of expressions F0.

To show the decidability of the conjugacy problem for the whole family F ,
it suffices to show that if the problem is decidable for Fi, i ě 0, then it is also
decidable for KFi and Fi`1 “ MKFi. Then by induction on i, the decidability
extends to the whole family F .

Assume that conjugacy is decidable for Fi. Assume that E P Fi. Since
LpEq Ď LpE˚q, if the expression E˚ is conjugate then necessarily E is conjugate.
Because conjugacy is decidable for Fi, we can check this necessary condition.
Therefore, to show the decidability of conjugacy for KFi, it suffices to show the
decidability of the following question.

Question 1 (Conjugacy of Kleene Closures). Given a conjugate sumfree expres-
sion E, is E˚ conjugate?

Next, assume that the conjugacy is decidable for KFi. Let

E “ pα0, β0qE˚
1 pα1, β1q ¨ ¨ ¨E˚

k pαk, βkq
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Fig. 1. v as infix of uu.

be an expression in MKFi where E˚
1 , . . . , E

˚
k are from KFi. Analogous to the

case of Kleene closures, E is conjugate only if E˚
1 , . . . , E

˚
k are conjugate, as the

next lemma shows.

Lemma 1. If the expression E “ pα0, β0qF˚pα1, β1q is conjugate, then F˚ is
conjugate.

Proof. If F˚ contains only the empty pair, then it is conjugate. Otherwise, as-
sume that pu, vq is a nonempty pair in LpF˚q. Therefore, puℓ, vℓq for each ℓ ě 0
is also in LpF˚q. We can safely assume that |u| “ |v|, otherwise each iteration
will increase the difference in length between uℓ and vℓ, leading to nonconjugacy
of E.

Let k “ |α0| ` |β0| ` |α1| ` |β1|. Consider the pair pα0, β0qpuℓ, vℓqpα1, β1q

where ℓ is some value much larger than k, say 2k. Since ℓ is much larger than
k and pα0u

ℓα1, β0v
ℓβ1q is conjugate, there exist large factors of uℓ and vℓ that

match as shown in Figure 1. Since |u| “ |v|, we can infer that u is a factor of vv,
and v is a factor of uu.

Since v is an infix of uu, the following holds as shown in Figure 1. There
exist words x, y, p, and q such that v “ xy and u “ px “ yq. Since |u| “ |v|,
the length of p and the length of y are the same, which implies p “ y (since
u “ px “ yqq. Therefore, u “ yx. Hence u and v are conjugate words. Since the
pair pu, vq was arbitrary, F˚ is conjugate.

We can generalise the above lemma to the general form of sumfree expres-
sions.

Corollary 1. If the expression E “ pα0, β0qE˚
1 pα1, β1q ¨ ¨ ¨E˚

k pαk, βkq is conju-
gate, then each of E˚

1 , E
˚
2 , . . . , E

˚
k is conjugate.

Since the conjugacy of KFi is decidable, we can check whether E˚
1 , . . . , E

˚
k

are conjugate expressions. Thus, to show the decidability of MKFi, it suffices
to show the decidability of the following question.

Question 2 (Conjugacy of Monoid Closures). Given conjugate sumfree expres-
sions E˚

1 , . . . , E
˚
k , is the expression E “ pα0, β0qE˚

1 pα1, β1q ¨ ¨ ¨E˚
k pαk, βkq conju-

gate?

We show that Question 1 and Question 2 can be effectively answered. The
idea is to use the notion of common witness that we mentioned in the beginning.

We present two common witness theorems that address the above questions:
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1. Let G be an arbitrary set of conjugate pairs. The set G˚ is conjugate if and
only if G has a common witness (Theorem 3).

2. Let G˚
1 , . . . , G

˚
k , k ą 0, be arbitrary sets of conjugate pairs. The set

pα0, β0qG˚
1 pα1, β1q ¨ ¨ ¨G˚

kpαk, βkq,

called a sumfree set, is conjugate if and only if it has a common witness
(Theorem 4).

Remark 1. Note that the assumption of conjugacy of the sets G,G˚
1 , . . . , G

˚
k is

not necessary. However, if they are not conjugate then the corresponding sets
will neither have a common witness nor be conjugate, and the statements will
be vacuously true.

Item 2 is a generalisation of Item 1, and its proof relies on Item 1. Both
theorems are generalisations of the Lyndon-Schützenberger theorem.

In both the theorems above, the common witness for the bigger expression
can be computed in polynomial time from those of the subexpressions. When
G,G˚

1 , . . . , G
˚
k are rational sumfree expressions of pairs, the above theorems are

effective, that is a common witness, if it exists, is computable in polynomial time
in the length of the expression (Section 4). Hence, we have the decidability result
— Theorem 2.

3 Common Witness Theorems

In this section, it is shown that an infinite set of pairs generated by a sumfree
set is conjugate if and only if a word is witnessing its conjugacy.

3.1 Common Witness and its Characterisations

A word u is primitive if it cannot be expressed as a power of any strictly smaller
word. For example, aba is primitive, but abab is not. A word ρ is called a primitive
root of a word u if u “ ρn for n ě 1 and ρ is a primitive word. Every word u
has a unique primitive root, denoted by ρu ([14], Proposition 1.3.1). We lift the
notion of primitive root to a pair and a relation as follows: Rpu, vq “ pρu, ρvq,
and RpGq “ tRpu, vq | pu, vq P Gu. For instance, if G “ tpabab, babaq, pbb, abbqu,
then RpGq “ tpab, baq, pb, abbqu.

Recall from Theorem 1 that a pair of words pu, vq is conjugate, then there
exists a word z such that uz “ zv where u “ xy, v “ yx and z P pxyq˚x.
By symmetry of conjugacy, there also exists a word z1 such that z1u “ vz1

where z1 P pyxq˚y. We call z (resp. z1) in the above characterisation as an
inner witness (resp. outer witness) of the pair pu, vq (since z is appended to
the inner ends). Given a conjugate pair pu, vq, the set of all inner witnesses of
pu, vq is tz | uz “ zvu “ Ytpx,yq|u“xy,v“yxupxyq˚x. Similarly, the set of all outer
witnesses of pu, vq is tz | zu “ vzu “ Ytpx,yq|u“xy,v“yxupyxq˚y. For example, the
pair paba, baaq has inner witnesses pabaq˚a and outer witnesses pbaaq˚ba.
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There is a connection between a conjugate pair and its primitive root. It is
known that if a pair pu, vq is conjugate, then their primitive root pρu, ρvq is also
conjugate. Moreover, pu, vq “ pρu, ρvqn for some n ě 1 (Lemma 1 of [6]). In fact,
their witnesses are the same.

Proposition 1. A word z is an inner (resp. outer) witness of a conjugate pair
pu, vq iff z is an inner (resp. outer) witness of the primitive root pρu, ρvq.

We generalise the notion of a witness of a pair to a set of pairs.

Definition 1 (Common Witness). A word is a common inner witness of a
set of pairs P if it is an inner witness of each pair in P . Similarly, a word is a
common outer witness of P if it is an outer witness of each pair in P .

A set of pairs has a common witness if it has either a common inner witness
or a common outer witness.

The structure of a common witness of a set of pairs is obtained from Theorem 1.

Proposition 2. Let P be a set of pairs of words. The following are equivalent.

1. z is a common inner witness of P .
2. z P

Ş

pu,vqPP

Ť

tpx,yq|u“xy,v“yxupxyq˚x.

The statement for common outer witness is analogous.

Example 3. Consider the set P “ tpab, baq, pabab, babaqu. The pair pab, baq has
a unique cut pa, bq, and the pair pabab, babaq has two cuts: pa, babq and paba, bq.
The word a is a common inner witness of P since a belongs to both pabq˚a and
pababq˚a (using the first cut). Similarly, aba is also a common inner witness of P
since aba belongs to both pabq˚a and pababq˚aba (using the second cut). Notice
that aba is not in the intersection of pabq˚a and pababq˚a.

Proposition 1 connecting witness of a conjugate pair and its root can be lifted
to a set of conjugate pairs and its root as follows.

Proposition 3. The common witnesses of a set of conjugate pairs G and its
root RpGq are the same, i.e., a word z is a common inner (resp. outer) witness
of G iff z is a common inner (resp. outer) witness of RpGq.

When a set is not conjugate, clearly it has no common witness. However, even
when a set is conjugate, it may have both common inner and outer witnesses, or
only common inner witness, or only common outer witness, or neither of them
as shown below.

Example 4. Consider the set P “ tpab, baq, pac, caqqu. The pair pab, baq has inner
witnesses pabq˚a and outer witnesses pbaq˚b. Similarly, the pair pac, caq has inner
witnesses pacq˚a and outer witnesses pcaq˚c. According to Proposition 2, the set
P has a unique common inner witness a “ pabq˚aX pacq˚a, but it does not have
any common outer witness since pbaq˚b X pcaq˚c “ H.
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The set tpab, baq, pabab, babaqu has both common inner witnesses pabq˚a “

pabq˚a X ppababq˚aba Y pababq˚aq as well as common outer witnesses pbaq˚b “

pbaq˚b X ppbabaq˚b Y pbabaq˚babq .
However, the set tpab, baq, pba, abqu has no common witnesses since pabq˚aX

pbaq˚b “ H.

Proposition 4. Let G be a set of pairs of words. The following are equivalent.

1. G has more than one common witness.
2. G has infinitely many common witnesses.
3. G has infinitely many common inner witnesses.
4. G has infinitely many common outer witnesses.
5. All the pairs in G have the same primitive root.

Therefore, a set of pairs can have no common witness, a unique common
witness, or infinitely many common witnesses.

3.2 Common Witness Theorem for Kleene Closure

We generalise the notion in Theorem 1 to an infinite set of pairs closed under
concatenation. The question we ask is: “Given an arbitrary set of pairs G, is G˚

conjugate?”
If G˚ has a common witness, then each pair in G˚ has a witness and thus,

G˚ is conjugate. We prove the converse, namely, if G˚ is conjugate, then it has
a common witness. The below theorem characterises the conjugacy of a freely
generated set of pairs of words.

Theorem 3 (Common Witness Theorem for Kleene Closure). Let G
be an arbitrary set of conjugate pairs of words. The following are equivalent.

1. G˚ is conjugate.
2. G˚ has a common witness z.
3. G has a common witness z.
4. RpGq has a common witness z.

Proof (sketch). We prove p4q ñ p3q ñ p2q ñ p1q ñ p4q.

p4q ñ p3q Follows from Proposition 3.
p3q ñ p2q WLOG assume that z is a common inner witness of the set G. Hence

@pu, vq P G, uz “ zv. Let pu1, v1q be any arbitrary element from G˚, i.e.,
pu1, v1q “ pu1 ¨ ¨ ¨un, v1 ¨ ¨ ¨ vnq for some n ě 1 and pui, viq P G for 1 ď i ď n.
By induction on n, we equate u1z “ zv1 as follows. Thus, z is a common
inner witness of G˚.

u1z “ u1 ¨ ¨ ¨un´1unz

“ u1 ¨ ¨ ¨un´1zvn (Since unz “ zvn)

“ zv1 ¨ ¨ ¨ vn´1vn (Inductive Hypothesis)

“ zv1
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p2q ñ p1q Follows from Theorem 1.
p1q ñ p4q The proof idea is to first prove when G is finite by case analysis

and then extend it for a countably infinite set of pairs using a compactness
argument — If every finite subset of an infinite set of pairs G has a common
witness, then G has a common witness.

As a corollary, we get that E˚ is conjugate iff E is conjugate for any rational
expression of pairs E. Below is an instance of the common witness theorem for
a set of pairs that is not rational.

Example 5. Let G “ tpabp, bpaq | p is a prime numberu. The set G has a com-
mon inner witness a P

Ş

pPN, p is a primepabpq˚a. It is also easy to verify that G˚

is conjugate and a is a common inner witness of G˚.

3.3 Common Witness Theorem for Monoid Closure

Next, we give the common witness theorem for monoid closures, i.e., sumfree
sets of the form pα0, β0qG1

˚
pα1, β1qG2

˚
¨ ¨ ¨ pαk´1, βk´1qGk

˚
pαk, βkq, k ą 0 where

G˚
1 , G

˚
2 , . . . , G

˚
k are arbitrary sets of conjugate pairs. It is shown that such a set

is conjugate if and only if it has a common witness. Note that this does not
generalise to arbitrary sets of pairs, in particular, rational sets using sum.

Example 6. pab, baq˚ ` pba, abq˚ is an infinite conjugate set with no common
witness.

Definition 2 (Redux, Singleton Redux). Let M be the sumfree set

pα0, β0qG1
˚

pα1, β1qG2
˚

¨ ¨ ¨ pαk´1, βk´1qGk
˚

pαk, βkq .

The redux of M is the pair pα0α1 ¨ ¨ ¨αk, β0β1 ¨ ¨ ¨βkq obtained by substituting
each G˚

i by the empty pair pϵ, ϵq. A singleton redux of M is a set obtained by
substituting all but one of the G˚

i ’s by the empty pair pϵ, ϵq. They are of the form
pα0 ¨ ¨ ¨αi´1, β0 ¨ ¨ ¨βi´1qGi

˚
pαi ¨ ¨ ¨αk, βi ¨ ¨ ¨βkq where 1 ď i ď k.

Example 7. Consider the set M “ pa, aqpbaa, abaq˚pb, aqpaab, baaq˚pa, bq. The
redux of M is paba, aabq, and its singleton reduxes are pa, aqpbaa, abaq˚pba, abq

and pab, aaqpaab, baaq˚pa, bq.

If a sumfree set has a common witness, it is conjugate. We prove the converse,
i.e., if a sumfree set is conjugate, then it has a common witness which is in the
intersection of the common witnesses of the singleton reduxes of the set. Towards
this, we need the following definition.

Definition 3 (Prefix Delay and Suffix Delay). If u and v are words such
that one of them is a prefix (resp. suffix) of another, we define the prefix delay
(resp. suffix delay), denoted as ru, vsL (resp. ru, vsR) between u and v as

ru, vsL “

#

u´1v if u is a prefix of v

v´1u if v is a prefix of u
ru, vsR “

#

vu´1 if u is a suffix of v

uv´1 if v is a suffix of u
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Following is the common witness theorem for a sumfree set with only one
Kleene star, i.e., M “ pα0, β0qG˚pα1, β1q. In short, it states that such a set
is conjugate if and only if it has a common witness that is determined by the
common witnesses of G Y tpα1α0, β1β0qu.

Proposition 5. Let M “ pα0, β0qG˚pα1, β1q be a sumfree set with nonempty
redux. The following are equivalent.

1. M is conjugate.

2. There exists a common witness of G Y tpα1α0, β1β0qu.

3. M has a common witness. Furthermore,

(a) If the set G Y tpα1α0, β1β0qu has a unique common inner witness, say
z1, then M has a unique common witness z “ rα0z

1, β0sR “ rα1, z
1β1sL.

Moreover, if |α0z
1| ě |β0| or equivalently |α1| ď |z1β1|, then z is a com-

mon inner witness, otherwise it is a common outer witness.

(b) If the set G Y tpα1α0, β1β0qu has a unique common outer witness, say
z1, then M has a unique common witness z “ rα0, β0z

1sR “ rz1α1, β1sL.
Moreover, if |z1α1| ě |β1| or equivalently |α0| ď |β0z

1|, then z is a com-
mon outer witness, otherwise it is a common inner witness.

(c) If GYtpα1α0, β1β0qu has infinitely many common witnesses, then M is a
subset of powers of the primitive root of its redux. Thus, M has infinitely
many common witnesses.

Example 8. Let M “ pα0, β0qG˚pα1, β1q be a sumfree set with one Kleene star
where

pα0, β0q “ pab, bq, G “ tpbab, abbqu , pα1, β1q “ pb, abq.

The redux of M is pα0α1, β0β1q “ pabb, babq. The set G Y tpα1α0, β1β0qu “

tpbab, abbquYtpbab, abbqu “ tpbab, abbqu and, hence it has infinitely many common
witnesses. By Proposition 5 3c, M is a subset of powers of the primitive root
of the redux, i.e., M “ pabb, babq`. Therefore, M has infinitely many witnesses,
the same as those of pabb, babq.

A singleton redux of a sumfree set is nothing but a sumfree set with only one
Kleene star. Given any sumfree set M , if M is conjugate, each of its singleton
reduxes is conjugate. From Proposition 5, a singleton redux of M has a common
witness. Further, we prove that M has a common witness that is the common
witness of each of its singleton reduxes. The below theorem characterises the
conjugacy of a general sumfree set.

Theorem 4 (Common Witness Theorem for Monoid Closure). Let M
be a sumfree set. The following are equivalent.

1. M is conjugate.

2. Each of the singleton reduxes of M has a common witness z.

3. M has a common witness z.
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Example 9. Let M “ pα0, β0qG˚
1 pα1, β1qG˚

2 pα2, β2q be a sumfree set with two
Kleene star where pα0, β0q “ pb, aq, G1 “ tpac, caqu , pα1, β1q “ pab, bq, G2 “

tpbab, babqu , pα2, β2q “ pϵ, bq. The redux of M is pα0α1α2, β0β1β2q “ pbab, abbq.
The set M has two singleton reduxes,

M1 “ pα0, β0qG˚
1 pα1α2, β1β2q “ pb, aqpac, caq

˚
pab, bbq, and

M2 “ pα0α1, β0β1qG˚
2 pα2, β2q “ pbab, abqpbab, babq

˚
pϵ, bq.

The set G1Ytpα1α2α0, β1β2β0qu “ tpac, caq, pabb, bbaqu has a unique common
inner witness, say z1 “ a “ pacq˚aXpabbq˚a and no common outer witness since
pcaq˚c X pbbaq˚bb “ H. By Proposition 5 3a, the unique common inner witness
of the singleton redux M1 is rα0z1, β0sR “ rba, asR “ b.

The set G2 Y tpα2α0α1, β2β0β1qu “ tpbab, babqu has infinitely many common
witnesses. Thus, the singleton redux M2 is a subset of powers of the primitive
root of the redux using Proposition 5 3c, i.e., M2 “ pbab, abbq`. Thus M2 has
infinitely many common inner witnesses pbabq˚b and common outer witnesses
pabbq˚ab.

By Theorem 4, M has a unique common inner witness b X pbabq˚b “ b, that
equals to the intersection of the common inner witness of its singleton reduxes
M1 and M2.

4 Computing Witness of a Sumfree Expression

In this section, we give a decision procedure to compute the common witness of
a sumfree expression, if it exists. The set of common witnesses (abbreviated as
the witness set) of a sumfree expression is either empty, singleton, or infinite.
Whenever there are infinitely many common witnesses for an expression, the
witnesses are the same as those of its primitive root (Proposition 4). In that
case, we compute the primitive root as their finite representation.

The following proposition shows that there is a bound to the size of the unique
common witness of two conjugate pairs if it exists, which aids in computing the
common witness of two pairs in polynomial time.

Proposition 6. If two conjugate pairs pu1, v1q and pu2, v2q have a unique com-
mon witness z, then |z| ď 2 ¨ maxp|u1|, |u2|q.

The witness set of a sumfree expression is equal to the intersection of witness
sets of each of its singleton reduxes. So first, we compute the witness set of a
singleton redux.

Lemma 2. Let M “ pα0, β0qE˚pα1, β1q be a sumfree expression. Given the wit-
ness set of E, we can compute the witness set of M in time Oppm ` nq2q where
m is the size of the expression M , and n is the size of the witness of E.

Proof (sketch). If the redux of M is the empty word, then the witness set of
M is equal to the witness set of E by Theorem 3. Now if M has a nonempty
redux, M has a common witness iff E Y tpα1α0, β1β0qu has a common witness
by Proposition 5. If it exists, the common witness of M can be computed from
the common witness of E Y tpα1α0, β1β0qu using Proposition 5 3a, 3b, 3c.
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Using the above algorithm, we compute the common witness of a general
sumfree expression.

Lemma 3. Let M be a sumfree expression. Given the witness set of each Kleene
star in M , we can compute the witness set of M in time Opm ¨ pm ` nq2q where
m is the size of the expression and n is the maximum size among the given
witnesses.

Proof (sketch). From Theorem 4, the witness set of M is the intersection of the
witness sets of its singleton reduxes. The idea is that we compute the witness set
of each singleton reduxes, if it exists, using Lemma 2. Assume M has a nonempty
redux. If all the singleton reduxes have infinitely many witnesses, then M is a
subset of powers of the primitive root of the redux of M by Proposition 53c and
thus, M has infinitely many common witnesses. If there exists a singleton redux
with a unique common witness, say z, then for all other singleton reduxes of M
with a unique witness z1, check if z “ z1 (for all other singleton reduxes z is
already a witness by virtue of being a witness of the redux of M). If so, z is the
unique common witness of M ; otherwise, M has no common witness. The case
where M has an empty redux is similar.

Computation of the Witness Set: Given a sumfree expression M , we compute
its witness set bottom-up. We start from the innermost Kleene star. It is a
pair of words pu, vq. First, we check if pu, vq is conjugate. If yes, then there
are infinitely many common witnesses for pu, vq˚, namely the witnesses of its
primitive root, otherwise M has no witness. This step can be done in a time
polynomial in the length of pu, vq. Now, we recursively use Lemma 3 to compute
the common witness of the expression under the Kleene star in each level. If
there is no common witness for any level of Kleene star expression, then M is
not conjugate. To find out the complexity of the decision procedure, it suffices
to estimate the maximum length of a witness involved in the computation.

Length of the Witness of a Sumfree Expression: We claim that if a sumfree
expression M is conjugate, then there exists a witness of length linear in size of
M . If M has infinitely many witnesses, M is a set of powers of a primitive root
by Proposition 4. Thus, there exists a witness of length less than that of the
length of the primitive root. Next, suppose M has a unique common witness. In
that case, there exists a subexpression E˚

i such that E˚
i has a unique common

witness, and all Kleene stars appearing in Ei have infinitely many witnesses.
Thus, all of them have a common witness of length at most |Ei|. Therefore,
there is a singleton redux Mi of E˚

i that has a unique witness zi. The size of
zi is linear in Mi and the size of the witnesses of subexpressions of Ei. Both
are upper bounded by the size of M . Furthermore, the common witnesses for all
subsequent levels are unique (if they exist), and their length is bounded by |M |.

Complexity of the Algorithm: Since the size of the common witness of M is linear
in |M |, by Lemma 3, the overall complexity of computing a common witness of
a sumfree expression is Oph ¨ m3q where h is the star height of M and m is the
length of the expression.
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5 Conclusion

The current decision procedure proceeds through the analysis of rational ex-
pressions. In its essence, it is analogous to the boundedness checking of distance
automata using factorisation trees [8], though explicit use of factorisation trees
are avoided using sumfree rational expressions instead. An obvious question is
the existence of an automata-theoretic proof. Factorisation forests remain the
primary tool to settle boundedness questions on automata and by that standard
the proof approach taken in this paper is natural and quite possibly the most
intuitive.

Computing a witness of a given sumfree expression, if one exists, can be done
in polynomial time. However, converting a rational expression into a sum of
sumfree expressions may result in an exponential blow-up. Thus, the algorithm
presented in the paper is of exponential time. It remains to find the precise
complexity of this problem.

It is natural to look at the conjugacy problem of more general classes, for
instance functions definable by a deterministic two-way transducers (regular
functions [9]), or by two-way pebble automata (polyregular functions [3]). The
corresponding problem over free groups is another interesting problem.
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