
Definability and Transformations for Cost Logics
and Automatic Structures

Martin Lang1?, Christof Löding1, and Amaldev Manuel2??

1 RWTH Aachen University, Lehrstuhl für Informatik 7, D-52056 Aachen, Germany
2 LIAFA, CNRS & Université Paris Diderot – Paris 7, France

Abstract. We provide new characterizations of the class of regular cost
functions (Colcombet 2009) in terms of first-order logic. This extends
a classical result stating that each regular language can be defined by
a first-order formula over the infinite tree of finite words with a predi-
cate testing words for equal length. Furthermore, we study interpreta-
tions for cost logics and use them to provide different characterizations
of the class of resource automatic structures, a quantitative version of
automatic structures. In particular, we identify a complete resource au-
tomatic structure for first-order interpretations.

1 Introduction

The theory of regular cost functions [5] has emerged in recent years as a gen-
eral theory for extensions of automata and logics that have been studied in the
context of boundedness problems. In these problems, the exact values of the
functions are not of specific interest but rather whether the function is bounded
on specific subsets of the domain. For this reason, two cost functions are con-
sidered to be equivalent if they are bounded on the same subsets of the domain.
It turns out that this coarser view renders decision problems for some classes
of automaton-definable cost functions decidable. The central automaton model
in this setting is the one of B-automata, which associate a value to the input
words using counters that can be incremented or reset by the transitions (the
execution of the transitions, however, does not depend on the counter values).

Together with the development of regular cost functions, several logical for-
malisms appeared. The logics introduced in this area extend normal first- or
monadic second-order logics by special quantitative operators. In this paper, we
are concerned with two such logics, namely cost MSO (CMSO) and cost FO
(CFO). In CMSO (cf. [5]) atomic formulas |X| ≤ N for a set variable X and
a free variable N can be used. The value of a formula is the least value for N
such that the formula becomes true (and infinity otherwise). In CFO (cf. [11])
a quantifier of the form ∀≤Nxϕ(x) can be used, which states that ϕ(x) is true

? Supported by DFG research grant Automatentheoretische Verifikationsprobleme mit
Ressourcenschranken

?? Supported by funding from European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement №259454.

for almost all elements with at most N exceptions. As for CMSO, the value of
the formula is the least value for N such that the formula is true. In order to
ensure monotonicity, the newly introduced operators are only allowed to appear
positively in a formula.

In the classical setting of languages, it is known that the regular languages are
precisely those that are definable in MSO over word structures. This correspon-
dence extends to B-automata and CMSO (cf. [5]). The FO definable languages
correspond to the strict subclass of counter-free or aperiodic regular languages.
There is also an analogue of this theorem in the cost setting, which is formulated
using the temporal logic CLTL instead of CFO (cf. [12]) (the connection between
CLTL and CFO was made in [11]).

However, there is a different way of looking at FO-definability of languages,
as taken in [7]. Instead of considering the words as structures (with the word
positions as elements), one can consider the set of all words as the domain of a
structure. On such a structure one can define languages (subsets of the domain)
by using formulas with one free element variable. If one equips the structure
with successor relations for appending a letter to a word, the prefix relation,
and a predicate for testing whether two words have the same length, then it
turns out that the FO-definable languages are precisely the regular ones. Over a
binary alphabet we refer to this structure as T el

2 . More generally, one can show
that T el

2 is complete for the class of automatic structures in the sense that all
automatic structures can be defined (or interpreted) in T el

2 by FO formulas. An
automatic structure is a structure whose domain and relations can be defined by
finite automata (for accepting relations the automata read all the input words
synchronously in parallel). See [10, 3] for a more detailed introduction.

In this paper we mainly study this notion of definability and the class of
automatic structures in the quantitative setting of regular cost functions. A
notion of automatic structures with costs has already been introduced in [13].
There, the cost is not coming from specific operators in the logic, but is part of
the structure: a tuple of elements is not simply in relation or not, but a value
is associated to the tuple, which could be interpreted as the cost of being in
relation (where the value infinity means that the tuple is not in the relation
at all). This is achieved by using B-automata instead of classical automata in
the definition of automatic structures. In [13] these costs have been considered
as a model for the consumption of resources, and therefore these structures are
called resource automatic structures and FO is referred to as FO with resource
relations (FO+RR). As first main contribution, we define a complete resource
automatic structure cT el

2 as extension of T el
2 and show that basically FO over

cT el
2 has the same expressive power as CFO over T el

2 .

Another way of obtaining a complete automatic structure is to consider fi-
nite sets of natural numbers as the elements of the structure (represented by
finite words using the characteristic vector of the set) with the standard or-
der of natural numbers on singleton sets, and the subset relation between sets.
This structure can easily be defined in weak MSO over the structure (N,Succ)
of the natural numbers with successor relation (in weak monadic second-order

2

logic, set quantification only ranges over finite sets). In this transformation, we
proceed from the structure (N,Succ) to its weak powerset structure (restricted
to finite sets). By definition, WMSO on the original structure corresponds to
FO on the powerset structure. This connection has already been observed in [8]
and has been studied in more detail in [6]. Our second main contribution is a
corresponding result for CWMSO and CFO. Furthermore, we extend the weak
powerset structure by a size predicate for sets, show that this yields a complete
resource automatic structure and establish the correspondence between CWMSO
formulas and FO+RR formulas on this extended weak powerset structure.

The remainder of this paper is structured as follows. In Section 2 we give
basic definitions and results. In Section 3 we characterize the class of regular
cost functions in terms of CFO and FO+RR, thereby also relating these two
logics over the class of resource automatic structures. In Section 4 we show how
to obtain the class of resource automatic structures using CWMSO and establish
a connection between CWMSO and the first-order logics CFO and FO+RR on
the powerset structure. Furthermore, we would like to thank the anonymous
reviewers for their constructive comments that helped us to improve this work.

2 Preliminaries

We start with providing a formal basis for the concepts mentioned before. A cost
function is a function of the form f : A → N ∪ {∞} that maps elements of its
domain to natural numbers or infinity. In order to define the equivalence relation
between cost functions, we first introduce the notion of a correction function. A
correction function α : N∪ {∞} → N∪ {∞} is a monotone mapping that maps
∞ and only ∞ to ∞. Let f, g : A → N ∪ {∞} be two cost functions. We say f
is α-dominated by g and write f �α g if for all a ∈ A : f(a) ≤ α(g(a)). We call
f and g α-equivalent and write f ≈α g if f �α g and g �α f . Additionally, we
may also drop the annotation α to indicate that there exists an α such that the
relation holds. Then, we have f ≈ g iff they are bounded on the same subsets of
the domain. A proof of this fact can be found in [5]. In this work, we often have
the case α(n) = 2n. We use ≈exp as a shorthand notation for ≈α with this α in
order to provide explicit bounds without too much notational overhead.

The basic model we consider to define regular cost functions are B-automata.
They can be seen as NFAs extended by a finite set of non-negative integer
counters. These counters support three kinds of operations3. First, the counter
can be incremented (i). Second, the counter can be reset to zero (r) and lastly the
counter can be left unchanged (ε). Each transition assigns one of these operations
to every counter. So, formally, we have:

Definition 1. A B-automaton is a tuple A = (Q,Σ, In, ∆,Fin, Γ). Where the
components Q,Σ, In,Fin are defined as for normal NFAs. The component Γ is a
finite set of counters and ∆ is a subset of Q×Σ ×Q× {i, r, ε}Γ .

3 Please note that we do not consider the check operation originally introduced for
B-automata in order to simplify the notation. This does not change their expressive
power.

3

A run of a B-automaton is defined as usual as a sequence of (connected) transi-
tions. The counter operations are executed along a run. This way, we associate
the value of a run with the maximal occurring counter value. In total, the B-
automaton induces a function that maps every word w to the inf of the values
of all accepting runs on w. We write JAK(w) to refer to this value. We also con-
sider B-automata that read tuples of words synchronously, and thus defining
a cost function over tuples of words. We call these automata (synchronous) B-
transducers. Formally, they can be seen as standard B-automata whose alphabet
consists of tuples of letters, using a padding symbol to extend all words to the
same length (see, e.g., [13] for a detailed definition).

The logics C(W)MSO and CFO extend usual (W)MSO and FO logic by spe-
cial quantitative operators (with the abbreviations as used in the introduction).
These quantitative operators are only allowed to appear positively in formulas
(within an even number of negations). A C(W)MSO formula is built by the
normal MSO quantifiers and connectives. It additionally may have the atomic
operation |X| ≤ N for set variables X (and a special symbol N later interpreted
as some natural number). For a C(W)MSO formula ϕ we write S, n |= ϕ if
the structure S satisfies ϕ as normal (W)MSO formula when we replace all the
|X| ≤ N by a formula which checks that X is at most of size n. Moreover, we
write JϕKS to indicate the infimum over n ∈ N such that S, n |= ϕ. For exam-
ple, the formula ∃X(|X| ≤ N ∧ ∀x(x ∈ X)) counts the number of elements in a
finite structure and evaluates to infinity on infinite structures. A CFO formula
is built by normal FO quantifiers and connectives. It additionally may have the
new quantifier ∀≤Nxψ. Similar to C(W)MSO, we write S, n |= ϕ if S satisfies ϕ
as normal FO formula when we replace all occurrences of ∀≤Nxψ by “ψ is true
for all x with at most n exceptions”. The notation JϕKS is used accordingly. For
example, the formula ∀≤Nx(x 6= x) counts the number of elements in a structure
as the above CMSO formula. We remark that the restriction to appear positively
ensures the monotonicity of the model relation and thereby that the quantita-
tive semantics is well-defined. As a convention, we use upper case letters for set
variables and lower case variables for element variables.

The two structures that are of main interest to us are the infinite binary
tree with equal level predicate (T el

2) and the natural numbers with successor
predicate (N+1). We formally define T el

2 = ({0, 1}∗,�, S0, S1, el). This follows
the idea to identify a node with the word that describes the path leading from
the root to it. The letter 0 indicates that the path in the tree branches to the
left and the letter 1 indicates a branch to the right, respectively. With this view
on the universe, the relation � is the prefix relation on words, the relations S0

and S1 are appending one letter (0 or 1, respectively) and el is the equal length
predicate for a pair of words. The structure N+1 is defined by N+1 = (N,Succ)
where Succ(x, y) holds iff y = x+ 1.

In addition to the cost logics, we also consider the logic First-Order+Resource
Relations (for short FO+RR), which is evaluated over quantitative structures.
A resource- or cost-structure is similar to normal relational structures but the
relations have a quantitative valuation.

4

Definition 2 ([13]). A resource structure S = (S,R1, . . . , Rn) is a tuple con-
sisting of a universe S and relation symbols R1 up to Rn. The relation symbols
are valuated by functions RS

i : Sk → N∪{∞} where k is the arity of the relation
Ri.

The syntax of the logic FO+RR is normal first-order logic without negation.
The semantics of the relations is given by the resource structure, the semantics
of complete formulas is given inductively by:

JRix1 . . . xkiK
S := RS

i (x1, . . . , xki)

Jx = yKS :=

{
0 if x = y

∞ otherwise
Jx 6= yKS :=

{
∞ if x = y

0 otherwise

Jϕ ∧ ψKS := max(JϕKS, JψKS) Jϕ ∨ ψKS := min(JϕKS, JψKS)

J∃xϕ(x)KS := inf
s∈S

Jϕ(s)KS J∀xϕ(x)KS := sup
s∈S

Jϕ(s)KS

Intuitively, the value of a formula is the amount of resources needed to make the
formula true. Interpreting ∞ as false and 0 as true, one obtains the standard
semantics of FO. Therefore, we can interpret classical relations also as resource
relations using the characteristic function operator χ that transforms a relation
R into a function that maps tuples in relation to 0 and all other tuples to ∞.
Moreover, we remark that although negation is not allowed in FO+RR, we
may use negation on relations that are defined as characteristic function of a
normal relation because we can always add the characteristic function of the
complement.

Logical interpretations are a classical tool to represent one relational struc-
ture in another (cf. [9]). The key idea is to use logical formulas with free variables
to define the universe as well as the relations of some structure B in another
structure A. This provides a systematic way to transfer decidability results for
the logic on A to B. One can effectively rewrite questions about formulas on
B to questions about formulas on A by just replacing the relations with their
defining formulas and relativizing quantification to the definition of the new uni-
verse. We extend this basic concept to define resource structures in two ways: We
can either start with a normal relational structure and use a quantitative logic
such as CMSO to define the quantitative relations of a resource structure or we
may start with a resource structure and use FO+RR to define another resource
structure. Moreover, we have to provide an additional formula that describes the
negation of the universe in order to be able to relativize universal formulas.

Definition 3. Let L be a logic with quantitative semantics. A quantitative in-
terpretation I is a tuple (δ, δ, ϕ1, . . . , ϕk) of L formulas. For an interpretation
I and an appropriate structure A = (A,R1, . . . , Rn), we define the resource
structure I(A) = (B,R1, . . . , Rk) where B = {a ∈ A | Jδ(a)KA = 0} and

R
I(A)
i (x̄) = Jϕi(x̄)KA. The formulas δ and δ are only allowed to assume the values

0 and ∞ and have to be inverse in the sense that Jδ(x)KA = ∞⇔ Jδ(x)KA = 0.
Moreover, we say a resource structure S is L-interpretable in A if there is an
interpretation I such that S ∼= I(A).

5

In the same way as in the classical case, an algorithm to compute the value of
a formula can be transferred with quantitative L-interpretations. However, the
semantics of the logical connectives ∧, ∨ and the quantifications has to coincide
in FO+RR and L. Since this is the case for FO+RR and cost logics, we obtain:

Proposition 4. Let A be a relational or resource structure, L be a logic of
CMSO,CWMSO,CFO,FO+RR, and I be an L-interpretation for A. Then each
FO+RR formula over I(A) can be transformed into an equivalent L-formula
over A.

Proof. As usual, we replace the occurrences of the I(A) relations by their defin-
ing formulas given in the interpretation and relativize existential quantification
by using δ and universal quantification by using δ. The resulting transformed
L formula is then a formula over A. The equivalence of the semantics follows
from a straight forward induction over the structure of ϕ (using an inductive
definition for the semantics of the logic L). Note that the domain of I(A) is, in
general, a subset of the domain of A. For the equivalence statement we view a
cost function over the domain of I(A) as a cost function of the domain of A that
maps all elements in the difference to ∞. ut

We remark that although the formula δ is needed in an interpretation for tech-
nical reasons, we can omit it in most of the cases relevant to us. If L is one of the
cost logics and the formula δ makes no use of the special quantitative operators,
δ can be obtained by taking the normal negation. This also applies to the case
that L is FO+RR and the formula δ only uses relations that are defined using
the χ operator. For the sake of simplicity, we do not define δ explicitly in such
situations.

3 Quantitative First-Order Logics

In the classical setting, it is known that FO formulas with one free variable over
T el
2 characterize the regular languages:

Theorem 5 ([7]). For every regular language L ⊆ {0, 1}∗ there is an FO for-
mula ϕ(x) with one free variable such that w ∈ L iff T el

2 , w |= ϕ.

We aim to show that this result extends in a very natural way to the setting
of CFO and regular cost functions. Moreover, we relate CFO and FO+RR by
introducing cT el

2 as a variant of T el
2 in form of a resource structure and show

that the expressive power of CFO on T el
2 equals FO+RR on cT el

2 despite their
apparent differences. Hence, both formalisms yield a new characterization of
regular cost functions in terms of first-order like logics. We consider this to be
an example for the robustness of the notion of regular cost functions.

With the quantitative semantics of CFO in mind, each formula with one free
variable defines a function from the universe of the structure to N ∪ {∞}. We
claim that the definable functions are exactly the regular cost functions:

6

Theorem 6. For every regular cost function f : {0, 1}∗ → N ∪ {∞}, there is

a CFO formula ϕ(x) such that f ≈exp JϕKT
el
2 . Moreover, every function JϕKT

el
2

defined by a CFO formula ϕ(x) is a regular cost function.

We do not give a direct proof of this fact here but focus on establishing the
above mentioned connection to resource structures and FO+RR. Theorem 6
follows from the translation between CFO and FO+RR (Propositions 8 and 9)
and the characterization of regular cost functions with FO+RR (Theorem 12).
We start with formally defining cT el

2 . It consists of all the relations present in
T el
2 but now valuated with their characteristic function and one new (truly)

quantitative relation | · |1 that counts the number of ones in a word. Formally,
we define cT el

2 by:

Definition 7. Let cT el
2 = ({0, 1}∗,�, S0, S1, el, | · |1) with |w|cT

el
2

1 counting the
number of letters 1 in w and all the other relations valuated by the characteristic
functions of their valuations in T el

2 .

We observe that one can easily define cT el
2 with CFO formulas in T el

2 , which
means by Proposition 4 that FO+RR over cT el

2 can be translated into CFO over
T el
2 . In combination with Theorem 12 this yields one direction of Theorem 6.

Proposition 8. cT el
2 is CFO-interpretable in T el

2 .

Proof. The universe of cT el
2 is identical to T el

2 . Consequently, we can set δ(x) :=
x = x. The relations �, S0, S1, el directly define their quantitative counterparts
because their quantitative semantics is just the characteristic function. So, it
remains to define | · |1 as a CFO formula over T el

2 :

|w|1 := ∀≤Nx(∃y(S0yx ∨ S1yx) ∧ x � w)→ ∃yS0yx

The idea behind this formula is that all elements x that are a predecessor of w
(except the empty word) have to be 0-successors with at most N exceptions that
are exactly the 1-positions in w. ut

In order to provide the other direction of Theorem 6, we show how to translate
CFO formulas over T el

2 into equivalent FO+RR formulas over cT el
2 .

Proposition 9. For every CFO formula ϕ, there is an FO+RR formula ϕ̃ such

that JϕKT
el
2 ≈exp Jϕ̃KcT

el
2 .

Proof (sketch). We provide an inductive translation from CFO to FO+RR. The
key difficulty here arises from replacing the ∀≤N quantifier with an FO+RR-
expressible equivalent. We do so by approximating the set with the exception
elements in form of one tree element. The path from the root to this tree element
branches to the right in each level such that there are two exception elements
with longest common ancestor in this level. With this idea, we can approximate
the number of exceptions up to one exponential. ut

7

Now that we established the connection between CFO and FO+RR, we show
that FO+RR formulas with one free variable on cT el

2 capture regular cost func-
tions. The translation from FO+RR into B-automata can easily be done with
the concept of resource automatic structures in mind. We recall the definition
from [13] and show that it applies to cT el

2 :

Definition 10. A resource structure S = (S,R1, . . . , Rn) is called resource au-
tomatic if S ⊆ {0, 1}∗ is a regular language and and there are synchronous
B-transducers T1, . . . ,Tn such that RS

i (x̄) := JTiK(x̄).

Proposition 11. cT el
2 is a resource automatic structure.

Proof. It is known that T el
2 is an automatic structure (cf. [3]). By interpreting

the NFAs defining the classical relations as B-automata in which the counters
are not used, we directly obtain automata for the characteristic functions. The
relation | · |1 can be defined by an automaton that just counts the letters 1. ut

With this result in mind we can now characterize regular cost functions in
terms of FO+RR on cT el

2 :

Theorem 12. For every regular cost function f : {0, 1}∗ → N ∪ {∞}, there is

an FO+RR formula ϕ(x) such that f = JϕKcT
el
2 . Moreover, the function JϕKcT

el
2

defined by an FO+RR formula with one free variable is a regular cost function.

Proof. We first show the second part. Let ϕ(x) be a FO+RR formula with
one free variable. Since cT el

2 is resource automatic, the inductive automaton

translation from [13] provides us with a B-automaton A such that JϕKcT
el
2 ≈α JAK.

For the converse, we encode the run of a B-automaton in cT el
2 . Let A =

(Q,Σ, In, ∆,Fin, Γ) be a B-automaton with |Q| = n and |Γ | = m. The basic
construction follows the classical approach. We simulate the behavior of A on
a word w with a formula ϕ(w) by existentially guessing a run, verifying that
it is accepting and now additionally computing its value. The state sequence is
encoded along the levels in the tree in the following way: For each of the n states,
we guess a position pi on the same level as w. The path to pi branches to the
right in all levels in which the run is currently in the i-th state. Now we only have
to verify that in every level up to |w| exactly one of the paths branches right and
that there are transitions that enable the respective state change given the letter
of w in the corresponding level. We extend this with 2m additional positions on
the level of w to describe the behavior of the counters. For each counter, there is
a position cii that branches right in every level where the transition increments
the respective counter and a position cri that branches right in every level where
the transition resets the counter. We can then calculate the value of a run by
selecting maximal segments of the path given by cii that are not interrupted by
a right-branch of cri . We use the | · |1 relation on these segments to count the
increments. ut

8

A Complete Resource Automatic Structure

The study of complete structures for certain classes of logical structures pro-
vides insight into the whole class of structures by looking at a single structure.
Hence, we are interested in finding a complete structure for resource automatic
structures. This not only provides a characterization of the expressive power of
the formalism but also enables us to better understand the type of quantitative
extension realized by resource automatic structures. First, we formally fix the
notion of completeness:

Definition 13. Let C be a class of resource structures. We call a structure S
complete for C if S ∈ C and for all structures A ∈ C, there is an FO+RR-
interpretation I such that A ∼= I(S).

By Proposition 11, we already know that cT el
2 is a resource automatic struc-

ture. In order to show that it is complete, we have to extend the ideas of Theo-
rem 12 to synchronous B-transducers. Consider an arbitrary resource automatic
structure S. The universe is represented by a regular language. As a conse-
quence, the classical Theorem 5 provides us with a formula δ to encode the
domain. It remains to find formulas that define the relations in cT el

2 . For this
we take the synchronous B-transducer that defines the relation. Since this is
essentially only a B-automaton working over a vector of the original alphabet,
the same approach as in Theorem 12 can be used to obtain the formula ϕ that
defines the relation in cT el

2 . Although this involves some technical difficulties
such as necessary padding when working with synchronous transducers, no new
ideas are required in principle. Altogether, we obtain:

Corollary 14. The structure cT el
2 is complete for resource automatic structures.

This result concisely illustrates the quantitative extension that is provided
by resource automatic structures compared to the standard model. The idea
of characteristic functions provides an embedding that shows that resource au-
tomatic structures extend the classical concept. The quantitative aspect boils
down to a relation that counts the number of letters 1 in the word presentation
of the elements.

4 (Finite)Set Transformations

In the classical setting, it is a well-known fact that (W)MSO formulas over
a structure are equivalent to FO formulas over the (weak) powerset structure
(cf. [2]). We aim at providing a generalization of this fact to the area of cost
logics and resource structures. First, we fix the notation used in this section. Let
A = (A,R1, . . . , Rk) be a relational structure. For a j-ary relation R, let the set
extension of R be given by P (R) := {({x1}, . . . , {xj}) | (x1, . . . , xj) ∈ R}. The
powerset structure of A is P (A) = (P(A),Sing,⊆,P (R1) , . . . ,P (Rk)) where
⊆ is the normal subset relation and Sing is a unary predicate that indicates
singleton sets. Additionally, we also show that there is a correspondence to a

9

canonical resource extension of the powerset structure. The resource powerset
structure of A is cP (A) = (P(A),Sing, size,⊆,P (R1) , . . . ,P (Rk)) where size
is a unary resource relation mapping a set to its size, the other relations are
valuated with the characteristic functions of their valuations in the classical
powerset structure. Analogously, we also consider the weak variant with only
finite subsets of A in the universe. We denote the weak variants by an index w.

Proposition 15. The following correspondence holds for all relational struc-
tures A. For every CMSO formula ϕ, there is a CFO formula ϕ1 (respectively
a FO+RR formula ϕ2) and vice versa such that for all X1, . . . , Xk ⊆ A and all
x1, . . . , x` ∈ A it is the case that

Jϕ(X1, . . . , Xk, x1, . . . , x`)KA ≈exp Jϕ1(X1, . . . , Xk, {x1}, . . . , {x`})KP(A)

Jϕ(X1, . . . , Xk, x1, . . . , x`)KA = Jϕ2(X1, . . . , Xk, {x1}, . . . , {x`})KcP(A).

The same holds for CWMSO and the respective weak powerset structures.

We obtain the previous result by inductively transforming logical formulas in
a way that preserves the semantics up to α. Most of the translations are rela-
tively straightforward encodings of the missing operators. However, transforming
a CFO formula over the powerset structure back into a CMSO formula over the
original structure involves counting the number of “exceptions” in ∀≤Nxϕ(x)
formulas. Since the x are sets of the original structure, we cannot simply existen-
tially quantify the set of exceptions and bound its size. We solve this by instead
bounding the size of sets that contain only elements with a distinct membership
profile w.r.t. the exception sets, i.e., a pair of element z, z′ can be member in
this set iff there is an exception that contains exactly one of z, z′. For these sets,
we recognize that their size approximates the number of exception sets up to an
exponentiation. This can be seen as a refinement of the approximation idea used
in Proposition 2.1 in [1].

The translation from Proposition 15 has the following immediate consequence
for the definable cost functions:

Corollary 16. Let f be a cost function. The following are equivalent:

1. f is definable in (weak) CMSO over a structure A.
2. f is definable in CFO over (weak) P (A).
3. f is definable in FO+RR over (weak) cP (A).

In order to close our study of logical formalisms for regular cost functions, we
connect our results in the area of first-order logics with CWMSO on N+1. For
this we recognize that cT el

2 is almost cPw

(
N

+1
)
. A word from {0, 1} can be seen

as a set over the natural numbers that contains the positions in the word with
letter 1. Nevertheless, we additionally need WMSO-definable coding in order to
distinguish tree elements with trailing zeros. Hence, we obtain that cT el

2 and
cPw

(
N

+1
)

are FO+RR-interpretable in each other. The connection between
the two first-order logics stated in Theorem 17 below was already established in
Proposition 9 and Proposition 8.

10

(N,+1)/CWMSO

cost-automatic structures/FO+RR

T el
2 /CFO cT el

2 /FO+RR

A/CMSO P (A) /CFO

cP (A) /FO+RR

Fig. 1. Cost Logics Correspondences Overview

Theorem 17. Logical formulas can be transformed in a semantics preserving
way among CFO on T el

2 , FO+RR on cT el
2 and CWMSO on N+1.

The interpretations to transform cT el
2 in cPw

(
N

+1
)

and vice versa in the
proof of the previous theorem also yield the following result as immediate con-
sequence.

Corollary 18. cPw

(
N

+1
)

is a complete resource automatic structure.

As an example application of Theorem 17, we settle the open question of
the last section in [13]. Based on the results known at that time, it was unclear
whether the full bounded reachability problem for pushdown systems with B-
counters can be encoded in form of a CWMSO formula on T2. The problem
asks, given a pushdown system with counter operations as in B-automata, and
two regular sets A,B of pushdown configurations, whether there is a uniform
upper bound k ∈ N such that it is possible to reach from all elements in A some
element in B with a configuration sequence whose counter values are bounded
by k. In [13] it was already established that the problem can be encoded in
FO+RR over the configuration graph, which is a resource automatic structure.
With Corollary 14 and Theorem 17 we obtain that the problem is expressible in
CWMSO over N+1. Hence, it is also expressible in CWMSO over T2 since N+1

is CWMSO definable in T2. However, the argument here uses general properties
of resource automatic structures and does not provide the insight of the direct
formulation in CWMSO over T2 given in [13] for the special case of a single
counter.

5 Conclusion

In this work we established connections among the different logics that arose
around regular cost functions. Figure 1 provides an overview of the obtained re-
sults. We showed that the two quantitative first-order logics CFO and FO+RR
are essentially equally expressive on the infinite binary tree with equal level predi-
cate despite their rather different mechanisms for defining costs. Their expressive

11

power on the tree could be summarized on an intuitive level by first-order queries
plus the ability to count elements satisfying first-order properties. Furthermore,
both formalisms provide another characterization for regular cost functions. The
extension of this result to cost functions over tuples of words provided the insight
that cT el

2 is a complete structure for the class of resource automatic structures.
These results nicely extend the classical results for regular languages and auto-
matic structures, and can be seen as another sign that the notion of regular cost
functions is a good quantitative generalization of regular languages.

In the second part, we showed extensions of the classical results that allow to
exchange between MSO logic and FO logic over the power set structure. These
results enabled particular transformations among CFO on T el

2 , FO+RR on cT el
2

and CWMSO on N+1.
We are currently working on continuing this research in two directions. First,

we want to extend the ideas of resource automatic structures towards resource
tree automatic structures. This could lead to new decision methods for quantita-
tive WMSO logics over the infinite tree. Second, we try to connect our results to
the world of (W)MSO with the unbounding quantifier (for short (W)MSO+U)
as introduced by Miko laj Bojańczyk in [4].

References

1. Bárány, V., Kaiser, L., Rabinovich, A.: Expressing Cardinality Quantifiers in
Monadic Second-Order Logic over Trees. Fundamenta Informaticae 100, 1–18
(2010)

2. Blumensath, A., Colcombet, T., Löding, C.: Logical theories and compatible op-
erations. In: Logic and Automata. pp. 73–106 (2008)

3. Blumensath, A., Grädel, E.: Automatic structures. In: Logic in Computer Science,
2000. Proceedings. 15th Annual IEEE Symposium on. pp. 51–62. IEEE (2000)

4. Bojanczyk, M.: A bounding quantifier. In: CSL. pp. 41–55. LNCS, Springer (2004)
5. Colcombet, T.: Regular cost functions over words. Online Manuscript (2009)
6. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Logical

Methods in Computer Science 3(2) (2007)
7. Eilenberg, S., Elgot, C.C., Shepherdson, J.C.: Sets recognized by n-tape automata.

J. Algebra 13, 447–464 (1969)
8. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second

(first) order theory of (generalized) successor. Journal of Symbolic Logic 31(2),
169–181 (1966)

9. Grädel, E.: Finite Model Theory and Descriptive Complexity. In: Finite Model
Theory and Its Applications, pp. 125–230. Springer (2007)

10. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Logic and
Computational Complexity, LNCS, vol. 960, pp. 367–392. Springer (1995)

11. Kuperberg, D.: Study of classes of regular cost functions. Ph.D. thesis, LIAFA
Paris (December 2012)

12. Kuperberg, D.: Linear temporal logic for regular cost functions. In: STACS. LIPIcs,
vol. 9, pp. 627–636. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

13. Lang, M., Löding, C.: Modeling and verification of infinite systems with resources.
Logical Methods in Computer Science 9(4) (2013)

12

This appendix contains detailed proofs for the theorems.

A Proofs of Section 3

Proof (of Proposition 9). We provide an inductive translation over the structure
of the formula. The only relevant case is the ∀≤N operator. All other quantifiers
and connectives can be translated directly. The translation uses the idea of the
longest common ancestor. For two nodes n1, n2 ∈ {0, 1}∗ in the tree, we define
the longest common ancestor lca(n1, n2) to be the longest node n (in terms of
word length) such that n � n1 and n � n2. Moreover, we define a formula
ϕlca(z, x, y) to test if z is the lca of x and y by

ϕlca(z, x, y) := z � x ∧ z � y ∧ ∀z′(z 6= z′ ∧ z � z′)→ ¬(z′ � x ∧ z′ � y)

Now consider a formula ψ(ā) = ∀≤Nxϕ(ā, x). Let ϕ̃ be the inductively given
translation of ϕ. We define the translation (see below for a description of the
idea, the definition of ϕ1at can be found in the Proof of Theorem 12):

ψ̃(ā) := ∃e|e|1 ∧ ∀x∀y [(∃pϕlca(p, x, y) ∧ ϕ1at(e, p)) ∨ ϕ̃(ā, x) ∨ ϕ̃(ā, y)]

The idea of this construction is as follows: Using the means of FO+RR on cT el
2 ,

we need to count the number of “exceptions” of the ∀≤N operator. Since cost
functions are only compared up to equivalence, this counting needs not to be
exact. However, we need to ensure that the two values are related by some
correction function (in this particular case the function is 2n). For this purpose,
we count the number of levels in cT el

2 with a certain property. This number
counting the levels, is defined by the element e: it counts each level on which
the path to e goes to the right (captured by |e|1). As a first approximation,
consider the levels in the tree on which at least one exception occurs. However,
this approximation fails if there are many exceptions on few levels. For this
reason, we also count the levels on which the lca of two exceptions is located.

In the following, we show that this translation yields JϕKT
el
2 ≈α Jϕ̃KcT

el
2

for α(n) = 2n. The only interesting part is the inductive step for the case
ψ(ā) = ∀≤Nxϕ(ā, x). The other cases follow directly from the identical inductive

semantics in both logics. We start with JψKT
el
2 �α Jψ̃KcT

el
2 . Let Jψ(ā)KT

el
2 ≤ n.

Then, we have T el
2 , n |= ∀≤Nxϕ(ā, x). By definition of the operator ∀≤N , there

is a set Z with |Z| ≤ n such that ∀x 6∈ Z we have T el
2 , n |= ϕ(ā, x). Let Zt be

the set of the lcas of all pairs of points in Z. Clearly, |Zt| ≤ |Z|2 ≤ n2. Since
Zt is finite, we can find an element e ∈ {0, 1}∗ that branches to the right in all
levels in which Zt contains an element. Formally, |e| = maxt∈Zt

|t| and e(i) = 1

iff ∃t ∈ Zt with |t| = i. For this e, we have J|e|1KcT
el
2 ≤ |Zt| ≤ n2 ≤ 2n. Now,

let x and y be arbitrary elements of the tree. We distinguish two cases. First, at
least one of x, y is not in Z (w.l.o.g. let x 6∈ Z). Then, we have T el

2 , n |= ϕ(ā, x)

and thus by induction hypothesis Jϕ̃(ā, x)KcT
el
2 ≤ 2n. Consequently

J(∃pϕlca(p, x, y) ∧ ϕ1at(e, p)) ∨ ϕ̃(ā, x) ∨ ϕ̃(ā, y)KcT
el
2 ≤ 2n

13

because the semantics of ∨ is min and ϕ̃(ā, x) is one of the disjuncts.

In the second case, we have x, y ∈ Z. However, by choice of e, we have that e is
right-branching at the level of lca(x, y). Consequently, we have J(∃pϕlca(p, x, y)∧
ϕ1at(e, p))KcT

el
2 = 0. Thus also

J(∃pϕlca(p, x, y) ∧ ϕ1at(e, p)) ∨ ϕ̃(ā, x) ∨ ϕ̃(ā, y)KcT
el
2 = 0 ≤ 2n

So we have seen that the first part of the translated formula ψ̃ is bounded by
2n and the second part is also bounded by 2n by all possible choices of x, y.

Altogether, we obtain Jψ̃(ā)KcT
el
2 ≤ 2n, which concludes this direction of the

proof.

Now, we prove the other direction. So, let Jψ̃(ā)KcT
el
2 ≤ n. We claim that

T el
2 , 2

n |= ∀≤Nxϕ(ā, x). That directly implies Jψ(ā)KT
el
2 ≤ 2n. Since the semantics

is over a discrete domain with lower bound, there is an element e that assumes
the infimum (from the semantics of the existential quantifier) and witnesses

that ψ̃ is bounded by n. Fix such an e. We first notice that J|e|1KcT
el
2 ≤ n.

Moreover, the second part of ψ̃ yields that for every pair of elements x, y, we

have either Jϕ̃(ā, x)KcT
el
2 ≤ n or Jϕ̃(ā, y)KcT

el
2 ≤ n or e is 1-branching in the level of

lca(x, y). For all elements x with Jϕ̃(ā, x)KcT
el
2 ≤ n, we obtain from the induction

hypothesis that T el
2 , 2

n |= ϕ(ā, x) (‡). So, it suffices to show that there are at

most 2n elements x such that Jϕ̃(ā, x)KcT
el
2 > n. Let Z be the set of these x. Now,

we consider the subtree T Zlca that is induced by the elements {lca(x, y) | x, y ∈ Z},
i.e., has these elements as universe and the descendant relation � inherited from
cT el

2 .

First, we recognize that Z ⊆ T Zlca and show that T Zlca has branching degree
2. The major reason for this is that the T Zlca is closed under taking lca, i.e., the
lca of two lca elements is again in T Zlca because it can be written as lca of the
original elements in Z. For a detailed formal argument consider the following:
Assume T Zlca has a node n with at least 3 direct descendants n1, n2, n3. Since
cT el

2 has only branching degree 2, there are at least two of n1, n2, n3 in either
the left of the right subtree induced by n (we write n0↓ and n1↓ for the two
subtrees). W.l.o.g. let n1, n2 be in n0↓. By the definition of T Zlca, there are nodes
n11, n

2
1, n

1
2, n

2
2 ∈ Z such that n1 = lca(n11, n

2
1) and n2 = lca(n12, n

2
2). Moreover, not

both of n12 and n22 can be in the subtree n1↓. Otherwise n1 � lca(n12, n
2
2) = n2.

W.l.o.g. let n12 be not in the subtree n1↓. Then, we have n0 � n11 and n0 � n12
and thus also n0 � lca(n12, n

1
2). However, since n12 is not in the subtree n1 ↓

and lca(n12, n
1
2) ∈ T Zlca, we have in total n ≺ n0 � lca(n11, n

1
2) ≺ n1. This is a

contradiction to the assumption that n1 is a direct child of n in T Zlca. Hence, T Zlca
has branching degree 2.

By construction, e is right-branching in all levels with a lca of elements from

Z. Consequently, the tree T Zlca has at most J|e|1KcT
el
2 ≤ n levels. Hence, we obtain

that |T Zlca| ≤ 2J|e|1KcT
el
2 ≤ 2n and thus |Z| ≤ |T Zlca| ≤ 2n by Z ⊆ T Zlca. This

proves T el
2 , 2

n |= ∀≤Nxϕ(ā, x) since (‡) for all x 6∈ Z and |Z| ≤ 2n. Altogether,

Jψ(ā)KT
el
2 ≤ 2n. ut

14

Proof (of Theorem 12). More detailed explanation:
Formally, we construct the formula in the following way. Let Q = {1, . . . , n},

Γ = {1, . . . ,m}. We first define some helper formulas. Note that we use ε as a
constant as it is definable.

ϕbetween(x, u, v) := u � x ∧ x � v
ϕlvl−between(x, u, v) := ∃zϕbetween(z, u, v) ∧ el(z, x)

ϕS1(x) := ∃yS1(y, x)

ϕS0(x) := ∃yS0(y, x)

ϕat(x, y, l) := x � y ∧ el(x, l)

ϕ0at(x, l) := ∃zϕat(z, y, l) ∧ ϕS0(z)

ϕ1at(x, l) := ∃zϕat(z, y, l) ∧ ϕS1(z)

x �1 y := x � y ∧ ∃zel(z, y) ∧ ∀u((ε � u ∧ u � x)→ ϕ0at(z, u))

(u 6= x ∧ x � u ∧ u � y)→ (ϕ1at(z, u)↔ ϕ1at(y, u)) ∧ |z|1
ϕ0between(x, u, v) := ∀z(u � z ∧ z � v)→ ϕ0at(x, z)

ϕpart(x1, . . . , xk, w) := ∀yϕbetween(y, ε, w)→[
(

k∨
i=1

(ϕ1at(xi, y)) ∧ ¬(
∧
i 6=j

ϕ1at(xi, y) ∧ ϕ1at(xj , y)
]

ϕcval(c
i, cr, w) := ∀u∀v(u � v ∧ v � ci ∧ ϕ0between(cr, u, v))→ u �1 v

Moreover, we define a family of formulas to that can verify whether a certain
transition δ = (i, k, j, f) is applied on a certain level l. As a parameter this
formula gets all positions pi for the states, all counter positions cii , c

r
i and the

input word w.

ψδ(l) := ∃l′(S0(l′, l) ∨ S1(l′, l)) ∧ ϕ1at(pi, l
′) ∧ ϕ1at(pj , l) ∧ ϕkat(w, l)

∧

 m∧
r=1

f(r)6=r

ϕ0at(c
r
r)

 ∧
 m∧

r=1
f(r)=r

ϕ1at(c
i
r)



Additionally, we need a bootstraping variant for the first level that does not
check that the previous state is correct.

ψ̂δ(l) := ∧ϕ1at(pj , l) ∧ ϕkat(w, l)

∧

 m∧
r=1

f(r) 6=r

ϕ0at(c
r
r)

 ∧
 m∧

r=1
f(r)=r

ϕ1at(c
i
r)



15

We remark here that it suffices to ensure that the run has no resets at positions
where there are no resets possible and that it has increments whenever the tran-
sition dictates an increment. The other implications can be neglected because
the existential guessing of the parameters in order to obtain the smallest result.

We now define as a last intermediate step a run checker formula that checks
if a guessed run is valid and accepting. It also gets all the parameters mentioned
above.

Θ := ∃l∃l′S0(ε, l) ∧ S0(l, l′) ∧
∨

δ=(i,j,j,f)∈∆
i∈In

ψ̂δ(l)

∧

(
∀zϕlvl−between(z, l′, w)→

∨
δ∈∆

ψδ(z)

)

∧

(∨
i∈Fin

ϕ1at(pi, w)

)
The total formula ϕ(w) is then obtained by:

ϕ(w) := ∃p1 . . . ∃pn∃ci1∃cr1 . . . ∃cim∃crm

(
n∧
i=1

el(pi, w)

)
∧

(
m∧
i=1

el(cii , w) ∧ el(cri , w)

)
∧ ϕpart(p1, . . . , pn, w)

∧Θ

∧

(
m∧
i=1

ϕcval(c
i
i , c

r
i , w)

)

Note that only the last line of the formula makes real use of the quantitative
predicate �1. The upper lines guess a run and would return the value 0 if the run
is valid and ∞ otherwise. Consequently, taking the max with the counter values
induced by this run results in ∞ for invalid runs and in the maximal counter
value over all counters (as desired) in the case of valid runs. ut

B Proofs of Section 4

Proof (of Proposition 15). As a preparation for the proof we first establish a
technical result that allows us to approximate the number of sets by the size of
another set. For this, let F be a set of sets. We will show that |F | ≈α |XF | for
α(n) := 2n and a set XF ⊆

⋃
F . Let XF be a maximal set that satisfies the

following property:

(∀X ∈ F∃x ∈ Xx ∈ XF) ∧ (∀x ∈ XF∀y ∈ XFx 6= y → ∃Z ∈ Fx ∈ Z ↔ y 6∈ Z)

We call such an XF a witness set for F . The idea behind the set XF is that
it contains elements from all sets but all elements have pairwise different mem-
bership vectors with respect to the sets in F . W.l.o.g. let |F | <∞. The case of

16

|F | = ∞ follows from considering an increasing chain of finite subsets from F .
Formally, let F = {F1, . . . Fn}. A membership vector vx for some x ∈ XF is a
|F | dimensional vector over {0, 1} such that vxi = 1 iff x ∈ Fi, i.e., the vector
indicates in which sets from F the element x is. We claim (?) that |F | ≈α |XF |.

First, we show that |XF | ≤ 2|F |. By definition of XF , all elements in XF have
pairwise different membership vectors. However, there are only 2|F | different
membership vectors of dimension |F |.

Now, we show that |F | ≤ 2|XF |. For this, we define the equivalence relation
∼F on elements of Fi by x ∼F y if vx = vy. Now, we consider the factors of the

sets in F w.r.t. ∼F : F�∼F := {F1�∼F , . . . , Fn�∼F } and claim that |F | = |F�∼F |.
Clearly |F | ≥ |F�∼F |, so assume |F | 	 |F�∼F |. Then there are i 6= j such that
Fi�∼F = Fj�∼F although Fi 6= Fj . So there is an element f in the symmetric

difference of Fi and Fj . W.l.o.g. f ∈ Fi, f 6∈ Fj . Consequently, we have vfi = 1

but vfj = 0. Since for all x ∈ Fj we have vxj = 1, we have that there is no x′ ∈ Fj
such that x′ ∼F f . Thus, we obtain a contradiction because [f]∼F

6∈ Fj�∼F and

[f]∼F
∈ Fi�∼F . Moreover, we notice that XF is a set of representative for all ∼F

classes (because we require that the set is maximal with the given condition).

We identify the classes with elements from XF and obtain that Fi�∼F ⊆ XF or
Fi�∼F ∈ P (XF). In total:

|F | = |F�∼F | ≤ 2|XF |

Next using the above result we prove the proposition. Observe that in C(W)MSO
one can define the predicates Sing(X) and X ⊆ Y which hold if X is singleton
and X is a subset of Y respectively. We identify these predicates by their respec-
tive definitions in the logic. Assume we are given a CFO formula ϕ(x1, . . . , xj)
over the powerset structure P (A). In ϕ(x1, . . . , xj) we replace each first order
variable x in ϕ by a second order variable X, each formula Sing(x) by Sing(X),
each x ⊆ y by X ⊆ Y to obtain the formula ψ(X1, . . . , Xj). For a subformula
∀≤NXφ(X) of ψ(X1, . . . , Xj) on A let n the least number such that there are
at most n subsets of A for which Jφ(X)KP(A) > n. With this definition of the
semantics of ψ, it is clear that Jϕ(x1, . . . , xj)KP(A) = Jψ(X1, . . . , Xj)KA. Hence,
it suffices to show that for every formula ∀≤NXφ(X) there is a cost-equivalent
C(W)MSO formula. Let ζ = ∀Xφ (|Xφ| ≤ N ∨ ζ ′(Xφ)) where

ζ ′(Xφ) := ∃x ∈ Xφ∃y ∈ Xφ ∀X φ(X) ∨ (x 6= y ∧ (x ∈ X ↔ y ∈ X))

The formula says the following: if A satisfies ζ with value N , then for any set
X either X is of size at most N , or X is not a witness set for the family F =
{A′ ⊆ A | A, N 6|= φ(A′)}. The second disjunct is stated in terms of the presence
of two elements x and y in X such that they have the same membership vector
for the elements in F . Next we prove that ∀≤NXφ(X) and ζ are cost equivalent.
Assume A, n |= ∀≤NXφ(X). We claim that JζKA ≤ α(n). To see this, take Fαφ
to be the family Fαφ = {A′ ⊆ A | A, α(n) 6|= φ(A′)}. A set Y ⊆ A satisfies ζ ′ iff
there exist two elements in Y which have the same membership vector for Fαφ

17

iff Y does not have a superset which is a witness. Consequently, ζ ′ has value 0
for all sets Y that are not extensible to a witness set and ∞ otherwise. So, JζKA
is determined by |Y | ≤ N for the case that Y is extensible to a witness set for
F . These sets are bounded by the size of witness sets for Fαφ which is by (?)
bounded by α(n).

Conversely, let now A, n |= ζ, then for all sets X ⊆ A it is the case that either
X is of size at most n or X is not a witness set for Fφ = {A′ ⊆ A | A, n 6|= φ(A′)}
with the same ideas as in the previous direction. Continuing, we deduce that all
witness sets for Fφ are of size at most n. This implies that Fφ itself is of size at
most α(n) (by claim (?)). Hence, A, α(n) |= ∀≤NX φ(X).

Note that φ(X) appears positively in the formula ζ. Therefore, we can induc-
tively replace each quantification of the form ∀≤NXφ(X) in ψ(X1, . . . , Xj) with
an equivalent formula ζ to obtain a formula in C(W)MSO. Call it ψ1(X1, . . . , Xj).
A structural induction on the formulas shows that

Jψ(X1, . . . , Xj)KA ≈α Jψ1(X1, . . . , Xj)KA

This proves the direction from CFO to C(W)MSO.
Next we treat the other direction, that is, from a C(W)MSO formula over

structure to a CFO formula over the (weak) powerset structure. Let A′ be the
structure A′ = (A,Sing,⊆,P (R1) , . . . ,P (Rk)) where Sing and ⊆ are predi-
cates on subsets of A. Formulas over A′ which uses only second order vari-
ables are said to be in normal form. Observe that for every C(W)MSO formula
ϕ(X1, . . . , Xj , y1, . . . , yk) there is an equivalent formula ϕ′(X1, . . . , Xj , Y1, . . . , Yk)
in normal form (and vice versa) such that for all sets X1 . . . , Xj ⊆ A and ele-
ments y1, . . . , yk ∈ A,

Jϕ(X1, . . . , Xj , y1, . . . , yk)KA = Jϕ′(X1, . . . , Xi, {y1}, . . . , {yk})KA
′
.

Let ϕ′(X1, . . . , Xj) be a formula in normal form and ϕ1(x1, . . . , xj) is obtained
from ϕ′ by replacing every second order variable by a first order variable. Then

Jϕ′(X1, . . . , Xj)KA
′

= Jϕ1(x1, . . . , xj)KP(A)

It remains to eliminate all predicates of the form ψ(x) = |x| ≤ N from ϕ1. For
every ψ(x) in ϕ1 we substitute ψ1(x) = ∀≤Ny y 6⊆ x. First of all observe that
since ψ(x) occurs positively in ϕ1 after substitution ψ1(x) occurs positively as
well. Next observe that A′, n |= ψ(x) iff A′, α(n) |= ψ1(x). This concludes the
claim.

To prove the second correspondence with the cost poweset structure, we need
to translate a C(W)MSO formula ϕ over A to an FO+RR formula over cP (A).
For this, it suffices to transform the predicate |x| ≤ N into the predicate size(x).
Similarly every FO+RR formula is translated to back a C(W)MSO formula by
replacing each size(x) to |x| ≤ N . ut

Proof (of Theorem 17). We first notice that it suffices to connect FO+RR on
cT el

2 with CWMSO on N+1 since the equivalence of FO+RR on cT el
2 with CFO

18

on T el
2 was already shown in Proposition 9. First, we use Proposition 15 to

translate CWMSO formulas on N+1 into FO+RR on cPw

(
N

+1
)
. In a second

step we show that cPw

(
N

+1
)

and cT el
2 are mutually FO+RR-interpretable in

each other. For both directions we use our definition of T2 where nodes are
strings from {0, 1}∗. Additionally, finite subsets of N can also be represented
in form of strings from ε + {0, 1}∗1 based on the idea that position i in the
string is 1 iff i is in the set. First, we interpret cP

(
N

+1
)

in cT el
2 . We define

δ(x) such that it is true for all nodes from ε+ {0, 1}∗1. We represent Sing(x) by
∃yS1yx ∧ ∀z(z � x)→ (z = ε ∨ ∃z′S0z

′z) and Size(x) by ε �1 x. Moreover, one
can encode Succ(x, y) by Sing(x) ∧ ∃p∃x′S1px ∧ S0px

′ ∧ S1x
′y.

For the converse direction we encode every node t from T2 by the set rep-
resented by the string t1. Accordingly, we define δ(X) to select all non-empty
sets. From literature it is known that the transitive closure of Succ is defin-
able in WMSO. We use this fact and write X ≤ Y as a shorthand for this.
Moreover, we use ϕmax(X,Y) = X ⊆ Y ∧ Sing(X) ∧ ∀X ′(Sing(X ′) ∧ X ′ 6=
X ∧ X ≤ X ′) → ¬(X ′ ⊆ Y). With this we first define the prefix relation by
X � Y := ∃X ′∃Y ′ϕmax(X ′, X) ∧ ϕmax(Y ′, Y) ∧ X ′ ≤ Y ′ ∧ ∀Z(Sing(Z) ∧ Z ⊆
X ∧ Z 6= X ′) → Z ⊆ Y . In a very similar way, we realize the counting pre-
fix relation: X �1 Y := X � Y ∧ ∃X ′∃Y ′ϕmax(X ′, X) ∧ ϕmax(Y ′, Y) ∧ X ′ ≤
Y ′∧∃S Size(S)∧∀Z(Sing(Z)∧X ′ ≤ Z∧Z 6= Y ′∧Z ≤ Y ′∧Z ⊆ Y)→ Z ⊆ S ut

19

