
Generalized Data Automata and Fixpoint Logic ∗

Thomas Colcombet and Amaldev Manuel

LIAFA, Université Paris-Diderot
{thomas.colcombet, amal}@liafa.univ-paris-diderot.fr

Abstract
Data ω-words are ω-words where each position is additionally labelled by a data value from an
infinite alphabet. They can be seen as graphs equipped with two sorts of edges: ‘next position’
and ‘next position with the same data value’. Based on this view, an extension of Data Automata
called Generalized Data Automata (GDA) is introduced. While the decidability of emptiness of
GDA is open, the decidability for a subclass class called Büchi GDA is shown using Multicounter
Automata. Next a natural fixpoint logic is defined on the graphs of data ω-words and it is shown
that the µ-fragment as well as the alternation-free fragment is undecidable. But the fragment
which is defined by limiting the number of alternations between future and past formulas is shown
to be decidable, by first converting the formulas to equivalent alternating Büchi automata and
then to Büchi GDA.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Data words, Data Automata, Decidability, Fixpoint Logic

1 Introduction

Data words are words that can use symbols ranging over an infinite alphabet of ‘data values’.
Data values are meant to be tested for equality only. Hence, one is typically interested in
languages such as ‘no data value appears twice’, or ‘all consecutive data values in the word
are distinct’, etc... We can already see in these examples one specificity of data words, which
is that the exact domain of data values do not matter, and these can be permuted without
affecting the membership to a language.

Data values are particularly interesting in several modelling contexts. In particular, data
values can be understood as identifiers in a database. The exact content of an identifier does
not really matter. What is interesting is to be able to refer easily to the other places in
the database/document where this identifier occurs. Another situation in which the data
abstraction particularly makes sense is when considering the log of a system, say a server [1].
Such a log is a sequence (potentially infinite) of events that are generated by the different
clients. The events produced by the various clients can be interleaved in any manner. Hence,
a standard language theoretic approach does not help in verifying meaningful properties of
such a log. Indeed, if the events of the sequence are anonymous – in the sense that the identity
of the client that has produced it is a lost information – then the interleaving obfuscates
all relevant behaviour of a specific client. Data language, by annotating each action in this
sequence by the unique identifier (the data) representing the client that has produced this
action, gives access to much more precise informations. An interesting way to analyze the
structure of the log is then the ability to navigate in its structure. Typical things that we
would like to be able to express are ‘what is the next event in the log?’, ‘what is the next

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 259454.

© Thomas Colcombet and Amaldev Manuel;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Generalized Data Automata and Fixpoint Logic

event in the log generated by the same user?’, ‘what is the last event that the client has
generated?’, ‘has this client ever generated a given event before? ’, etc...

There are many different formalisms for describing properties of data-words, i.e., for
defining data-languages. They include Data Automata [3], Register Automata [13, 7], Pebble
Automata [17], Class Memory Automata [1], Class Automata [4], Walking Automata [16],
Variable Automata [11], First-Order logic with two variables [3], Monadic Second Order logic
[5], DataLTL [14], Freeze-LTL [7] and Freeze-µ [12], Logic of Repeating Values [6], XPath
[8, 9], Regular expressions [15], Data Monoids [2], among others. As opposed to the case of
the classical theory of regular languages, none of these formalisms can be considered to be
a faithful data-word counterpart of the notion of regular languages. This is due to the fact
that undecidability arises very quickly in this context, and that many formalisms that turn
out to be equivalent for standard words happen to have distinct expressiveness in the case
of data-words (a typical example is — data monoids [2], deterministic register automata
and non-deterministic register-automata [13], that all have different expressiveness). In this
contribution we are more interested in the kind of formalisms following the temporal logic
approach. Temporal logics (LTL, CTL, CTL∗ and the µ-calculus) are formalisms that can
describe properties of graphs (Kripke structures), by using operators that ‘walk’ in the
structure, and can use all the Boolean connectives. This approach is particularly suitable for
instance when one is interested in analysing the log of a system as described above: basic
walking constructs are ‘go to the next event’, ‘go to the next event of the same client’, ‘go
to the previous event’, and ‘go to the previous event of the client’. More complex properties
have also to be expressible such that ‘go to the first event generated by the client’. Such
advanced navigation can be achieved either using dedicated constructs (such as the ‘since’
and ‘until’ modalities of LTL), or using explicit fixpoints as done in µ-calculus. In practice,
the data words consist of a linear order of positions together with an equivalence relation
expressing that to given positions in the word carry the same data values (i.e., a binary
relation that expresses that two events where generated by the same client). The walking
modalities are then ‘next’, ‘previous’ (that we call the global modalities), ‘next in the same
class’, and ‘previous in the same class’ (that we call the class modalities).

Formalisms that describe properties of data-words using temporal logics have been intro-
duced in [7] and [14]. These two incomparable formalisms, namely DataLTL and Freeze-LTL,
are related to two well-studied notions of automata, respectively Data Automata [3] and
Register Automata[13, 7]. The logic in this paper is a notion along the lines of DataLTL.
It is subsumed by Freeze-µ (which is undecidable over data ω-words) and is incomparable
with the logics in [7, 6]. DataLTL is equipped with the four modalities described above, as
well as until and since operators that can be used either with respect to global modalities
or class modalities. Satisfiability of this logic is decidable by reduction to the decidability
of the emptiness of data automata. This work was itself a continuation of another one [3]
in which the satisfiability of first-order with two variables is shown, and Data Automata
are introduced for this purpose. Though this logic is not syntactically a temporal logic, its
behaviour is in fact the one of a temporal logic.

Contribution. Our contributions are two fold. First, we introduce a generalization of Data
Automata, called Generalized Data Automata. While the emptiness problem of GDA is open,
we prove the decidability of a subclass of automata, namely the class of Büchi GDA via
a reduction to Multicounter Automata. Secondly we generalize the notion of DataLTL by
introducing a natural fixpoint logic. It is shown that the µ-fragment, as well as alternation-free
fragment, of this logic is undecidable. For this reason, we restrict our attention to the class

Thomas Colcombet and Amaldev Manuel 3

of formulas in which the alternation between backward and forward modalities is bounded
(this can be syntactically enforced very easily). It is shown that the satisfiability of the
alternation-free fragment of this subclass is decidable by first translating the formula into an
alternating automaton and then by simulating the alternating automaton by a Büchi GDA
using games.

Organization of the paper. In Section 2 we introduce the basics of data ω-words and
languages. In Section 3 we introduce generalized data automata and discuss its closure
properties and subsequently prove the decidability of the emptiness problem for Büchi
GDA. In Section 4 we define µ-calculus on data words and introduce the bounded-reversal
alternation-free fragment. We then introduce alternating parity automata and prove the
simulation theorem, which is followed by the decidability of the bounded reversal alternation-
free fragment. Finally in Section 5 we discuss future work and conclude. Due to space
constraints the proofs have been moved to the appendix.

2 Data ω-words and Data Automata

We begin by recalling the basics of data words and Data Automata. Let Σ be a finite alphabet
of letters and D be an infinite set. The elements of D, often denoted by d1, d2, etc., are called
data values. A data word is a finite sequence of pairs from the product alphabet Σ × D.
Likewise a data ω-word is a sequence of length ω of pairs from Σ×D. A data language is a
set of data words and likewise a data ω-langauge is a set of data ω-words.

We recall some standard notions related to data words. Let w = (a1, d1)(a2, d2) . . . (an, dn)
be a data word. The data values impose a natural equivalence relation ∼ on the positions in
the data word, namely positions i and j are equivalent, i.e. i ∼ j, if di = dj . An equivalence
class of the relation ∼ is called simply a class. The set of all positions in a data word is
partitioned into classes. The global successor and global predecessor of a position i are the
positions i+ 1 and i− 1 respectively (if they exist). For convenience we use g(i) and g−1(i)
to denote the global successor and global predecessor of position i. The class successor
of a position i (if it exists), denoted as c(i), is the the leftmost position after i in its class.
Symmetrically class predecessor of a position i (if it exists), denoted as c−1(i), is the rightmost
position before i in its class. These notions are naturally extended to the case of data ω-words.

To simplify the discussion we assume that all classes in a data ω-word are infinite. This
assumption is similar to the one on infinite trees (that all maximal paths are infinite); by
this assumption global successor and class successor relations become total functions. All
the results presented later hold without this proviso as well.

Next we recall the notion of Data Automaton (DA for short) introduced in [3]. Originally
it is formulated as a composition of two finite state automata. The definition here follows an
equivalent presentation due to [1]. Intuitively it is a finite state machine that reads input pairs
from Σ×D and updates the state as follows. During the run the state after reading the pair
at position i depends on the state at the class predecessor position of i in addition to the state
and input letter at the position i. Formally a Data Automaton A is a tuple (Q,Σ,∆, I, Fc, Fg)
where Q is a finite set of states, Σ is the finite alphabet, ∆ ⊆ Q× (Q ∪ {⊥})×Σ×Q is the
transition relation, I is the set of initial states, Fc is the set of class Büchi states, and Fg is
the set of global Büchi states.

Next we define the run of a Data Automaton. A run ρ ∈ (Q × D)ω of the automaton
A on a data ω-word w = (a1, d1)(a2, d2) . . . is a relabelling of w by the states in Q, i.e.
ρ = (q1, d1)(q2, d2) . . . such that the tuple (q0,⊥, a1, q1) is a transition in ∆ for some q0 ∈ I

4 Generalized Data Automata and Fixpoint Logic

and, for each position i > 1 with a class predecessor, say j, the tuple (qi−1, qj , ai, qi) is
a transition in ∆, otherwise if i > 1 does not have a class predecessor, then the tuple
(qi−1,⊥, ai, qi) is in ∆. The run ρ is accepting if there is a global Büchi state that occurs
infinitely often in the sequence q1q2 . . ., and for every class {i1, i2, . . .} there is a class Büchi
state occurring infinitely often in the sequence qi1qi2 The data ω-word w is accepted if
the automaton A has an accepting run on w. The set of all data ω-words accepted by the
automaton A is called the language of A.

3 Generalized Data Automata

In this section we introduce a generalization of Data Automaton. For this purpose we view
a data ω-word as a directed graph with positions as vertices and the global successor and
class successor relations as edges. For convenience we refer to these edges as global and class
edges. Since both global successor and class successor relations are functions any path in this
graph is completely specified by the starting position and a sequence over the alphabet {g, c}
denoting which edge is taken. Formally a path π = e1e2 . . . en ∈ {g, c}∗ from the position i
connects the sequence of vertices i, e1(i), e2(e1(i)), . . . en(. . . e1(i)). Similarly an infinite path
is an ω-sequence over the alphabet {g, c}.

A given run of the Data Automaton is accepted or rejected based on two ω-regular
conditions; one on the global path (composed only of global edges) and one on each class
(composed only of class edges). Next we introduce a generalization of Data Automaton where
an ω-regular condition is checked on all paths.

First we need the following definition. Let w = (a1, d1)(a2, d2) . . . be a data ω-word
and π = e1e2 . . . ∈ {g, c}ω be an infinite path starting from the first position. Let i0 =
1, i1, i2, i3, . . . be the sequence of positions that lie along the path π. The path projection of
the data ω-word w w.r.t. the path π is the ω-word ai0ai1ai2 The marked path projection
of the data ω-word w w.r.t. the path π, denoted as mppw(π) ∈ (Σ× {ε, g, c})ω, is obtained
by annotating the path projection of w w.r.t. π by the path π, that is to say

mppw(π) =
(
ai0
ε

)(
ai1
e1

)(
ai2
e2

)
. . .

Next we introduce the notion of Generalized Data Automaton that has the same transition
structure as that of a Data Automaton but a more general acceptance criterion. A generalized
data automaton A (for short GDA) A is a tuple (Q,Σ,∆, I, L) where Q is the finite set of
states, Σ is the finite alphabet, ∆ ⊆ Q× (Q∪ {⊥})×Σ×Q is the transition relation, and I
is the set of initial states and L ⊆ (Q× {ε, g, c})ω is an ω-regular language.

Given a data ω-word w = (a1, d1)(a2, d2) . . . a run ρ ∈ (Q × D)ω of the automaton A
on w is a relabelling (q1, d1)(q2, d2) . . . of w with states in Q that obeys all the consistency
conditions as in the case of Data Automaton. The only difference is in the criterion of
acceptance. The run ρ is accepting if for all paths π in the data ω-word ρ, the marked path
projection mppρ(π) is in L. The set of all data ω-words on which A has an accepting run is
called the language of A.

The definition of GDA presented above is not concrete, however the acceptance criterion
L can be presented as a Büchi automaton which we recall next. A Büchi automaton B is a
tuple (S,A, T, sin, G) where S is a finite set of states, A is the input alphabet, T ⊆ S×A×S
is the transition relation, sin is the initial state and G is the set of Büchi states. A run r
of the automaton B on an ω-word a1a2 . . . ∈ Aω is a sequence of states s0s1 . . . ∈ Qω such
that s0 = sin and for each i ∈ N the tuple (si−1, ai, si) is a transition in T . The run r is

Thomas Colcombet and Amaldev Manuel 5

accepting if there is a state in G that occurs infinitely often in it. To finitely present the
GDA A it is enough to provide a Büchi automaton over the alphabet Q × {ε, g, c} that
accepts the language L. Next we introduce an important subclass of GDA, namely the class
of Büchi GDA. A Büchi GDA is a special case of GDA where the acceptance criterion L

is an ω-regular language that is furthermore accepted by a deterministic Büchi automaton;
a deterministic Büchi automaton is a Büchi automaton whose transition relation T is a
function, i.e. T : S × A → S. By definition Büchi GDA are subsumed by GDA. Our next
lemma says that for every Data Automata there is an equivalent Bïchi GDA (hence a GDA
as well).

I Lemma 1. For every Data Automaton there is an equivalent Büchi GDA.

In the following we briefly discuss the closure properties of GDA and Büchi GDA. The
class of data languages accepted by Data Automata are closed under union, intersection (but
not under complementation). The class of languages accepted by GDA and Büchi GDA also
exhibit similar closure properties. The union of two GDA (as well as Büchi GDA) accepted
languages is recognized by the disjoint union of the respective (Büchi) GDA. Closure under
Intersection is by usual product construction. (Both GDA and Büchi GDA are not closed
under complementation, this follows from the fact that over finite data words GDA are
equivalent to Data Automata.)

Two additional closure properties that are relevant for GDA (as well as for DA) are
the closure under renaming and closure under composition which we recall now. For a map
h : Σ→ Γ and a data ω-word w over Σ×D, the renaming of w under h, denoted as h(w),
is obtained by replacing each letter a ∈ Σ occurring in w by h(a). For a language L of data
ω-words over Σ × D, the renaming of L under h, in notation h(L), is simply the set of all
renamings h(w) of each word w ∈ L.

Assume A,B,C are letter alphabets. A GDA over the alphabet (A × B) × D can be
thought of as a machine that reads a data ω-word over the alphabet A × D and applying
a labelling of each position by a letter from the set B. In other words the machine can
be thought of as a letter-to-letter transducer. The composition of languages correspond
to the operation of cascading (feeding the output label of one machine into the input of
another) the respective automata. Let L1 and L2 be two data ω-languages over the alphabets
(A × B) × D and (B × C) × D respectively. The composition Comp(L1, L2) of L1 and L2
is the set of data ω-words ((a1, c1), d1), ((a2, c2), d2) . . . over the alphabet (A× C)×D such
that there exists a data ω-word ((a1, b1), d1), ((a2, b2), d2) . . . ∈ (A × B) × D in L1 and
((b1, c1), d1), ((b2, c2), d2) . . . ∈ (B × C) × D in L2. The closure of GDA and Büchi GDA
under renaming and composition is by standard constructions (renaming of transitions and
product construction respectively) as in the case of finite state automata. The following
lemma summarizes the closure properties discussed above.

I Lemma 2. GDA as well as Büchi GDA are closed under union, intersection, renaming
and composition.

3.1 Emptiness of Büchi GDA
The rest of this section is devoted to the emptiness problem of GDA, namely is the language
of a given GDA empty?. We don’t know if the emptiness of GDA is decidable. However, by
extending the decidability proof of emptiness problem of Data Automata it can be shown
that the emptiness problem for Büchi GDA is decidable. As in the case of Data Automata
[3], the emptiness problem of GDA is reduced to the emptiness problem of Multicounter
Automata which is decidable.

6 Generalized Data Automata and Fixpoint Logic

The general idea is as follows. Given a Büchi GDA A we construct a Multicounter
Automaton that guesses a data ω-word w and simulates the automaton A on w and accepts
if and only if A accepts w. Since a data ω-word is an infinite object the Multicounter
Automaton cannot guess the whole word w. Instead it guesses a finite data word fsatisfying
certain conditions that guarantees the existence of a data ω-word in the language of the
automaton A.

Now we proceed with the proof. Fix a Büchi GDA A = (Q,Σ,∆, I, L) and a deterministic
Büchi automaton B = (S,A = Q× {ε, g, c}, T, sin, G) accepting the language L.

Let w = (a1, d1)(a2, d2) . . . be a data ω-word accepted by the automaton A and let
ρ = (q1, d1)(q2, d2) . . . be a successful run of A on w. Therefore for every infinite path π the
ω-word mppρ(π) is accepted by the Büchi automaton B. Let π1 and π2 be two infinite paths.
Their respective marked path projections agree on the common prefix of π1 and π2. Since
the automaton B is deterministic the (unique) runs of B on mppρ(π1) and mppρ(π2) agree
on the common prefix as well. This allows us to represent the runs of the automaton B on
the marked path projections of ρ by a labelling by subsets of S in the following way.

Let π = e1e2 . . . en ∈ {g, c}∗ be a finite path connecting the sequence of positions j0 =
1, j1, . . . , jn = i. The marked path projection of ρ w.r.t. π is the word (qj0 , ε)(qj1 , e1) . . . (qjn

, en)
over the alphabet Q×{ε, g, c}. By P(S) we denote the power set of S. Let S1S2 . . . ∈ (P(S))ω
be such that Si is the set of all states q such that there is a finite path π ∈ {g, c}∗ ending
in position i and the unique partial run of the automaton B on the marked path projec-
tion of π ends in state q. The ω-word S1S2 . . . ∈ (P(S))ω can be seen as the superposition
runs of the automaton B on each of the marked string projections. We call the data word
ζ = ((q1, S1), d1)((q2, S2), d2) . . . ∈ ((Q×P(S))×D)ω the annotated run.

As we mentioned earlier a witness for non-emptiness of the language of the automaton A
is an infinite object. Hence it is not possible to compute the witness algorithmically. Instead
one has to define a finite object that witnesses the non-emptiness. In the case of a Büchi
automaton over infinite words this finite object is a word of the form u · v such that u · vω
is in the language of the automaton. In the case of Büchi GDA, u and v are two finite data
words such that u · v1 · v2 . . . is in the language of the automaton where v, v1, v2, . . . all have
the same string projections and identical classes, in other words v1, v2, . . . are obtained from
v by renaming of data values.

We fix some notation. Let w = (a1, d1) . . . (an, dn) be a finite data word over the alphabet
Σ. A position with no class successor is called a class-maximal position. Similarly a position
with no class predecessor is called a class-minimal position. The class vector of w is vector
C(w) : Σ→ N that maps each letter a in Σ to the number of class-maximal positions labelled
by a.

Next we formally define the notion of the finite witness in the case of Büchi GDA. Let
u, v ∈ (Σ×D)∗ be two finite data words and letw = u·v. Let ρ = ρu·ρv ∈ (∆×D)∗ be a partial
run of the Büchi GDA on the finite data word w (A partial run is a finite prefix/infix/suffix
of some run of the automaton under consideration). Let ζ = ζu · ζv ∈ ((Q × P(S)) × D)∗
be the annotated run of the automaton A on the data word w. (Note that the definition of
annotation extends to finitely data words naturally). We aim at constructing a data ω-word
in the language of the automaton A by repeatedly appending the data word v (with possible
renaming of data values) to the end of w. Therefore the ‘configuration’ of the automata A
and B, namely the states at which the partial runs of both automata end, have to be the same
at the end of the data words u and w. Moreover the number of class-maximal positions in
ζw annotated with a pair (q, S′) ∈ Q×P(S) has to be at least the number of class-maximal
positions in ζu annotated with the same pair for the pumping to work correctly. Finally for

Thomas Colcombet and Amaldev Manuel 7

the acceptance criterion to be satisfied every partial run of the automaton B on the marked
path projection of ρ w.r.t a path starting from a class-maximal position in u and ending in
a class-maximal position in v (including the last position) has to see a Büchi state (in G).
All these conditions are summarized below;

The triple w, ρ, ζ forms a regular witness if the following conditions are met.

i. The state at the end of the partial runs ρu and ρw are the same.
ii. Su = Sw where Su and Sv are annotations at the last positions of ζu and ζw respectively.
iii. Let Cu and Cw be the class vectors of ζu and ζwrespectively. Then,

a. Cu ≤ Cw in the pairwise ordering,
b. for all (q, S′) ∈ Q×P(S), if Cu((q, S′)) = 0 then it is the case that Cw((q, S′)) = 0.
c. Every partial run of the automaton B on the marked path projection of ρ w.r.t a path

starting from a class-maximal position in u and ending in a class-maximal position
in v (including the last position) has to see a Büchi state (in G).

In the subsequent lemmas we prove the necessity and sufficiecy of regular witness for
deciding the nonemptiness. The proof rests on the following two standard lemmas.

I Lemma 3 (Dickson’s lemma). Fix a k ∈ N. Every infinite sequence of vectors v0, v1, . . .

where vi ∈ (N0)k contains an infinite nondecreasing subsequence vi0 ≤ vi1 ≤ . . . where the
ordering ≤ is pairwise.

I Lemma 4 (König’s lemma for words). If A is a finite set and L ⊆ A∗ is infinite then there
exists x ∈ Aω such that x has infinitely many prefixes in L.

I Lemma 5. If the automaton A accepts some data ω-word then there is a regular witness
for the non-emptiness of A.

I Lemma 6. If A has a regular witness for its non-emptiness then A accepts some data
ω-word.

From the two lemmas above we conclude that,

I Proposition 7. A accepts a data ω-word if and only if A has a regular witness for its
non-emptiness.

Using Proposition 7 it is possible to decide if a given GDA has non-empty language. This
is achieved by reduction to Multicounter Automata. A Multicounter Automata is a finite
state machine equipped with a finite set [k] of counters which hold positive integer values.
During each step the machine reads a letter from the input and depending on the letter
just read and the current state it performs a counter action and moves to a new state. The
allowed operations on the counters are increment counter i and decrement counter i, but no
zero tests are allowed. During the execution if a counter holding a zero value is decremented
then the machine halts erroneously. Initially the machine starts in a designated initial state
with all the counters set to value zero. An execution is accepting if the machine terminates
in a state which belongs to a designated set of final states with all counters having value
zero. We will be crucially making use of this final zero test. Non-emptiness of multicounter
automata is decidable which implies by virtue of the following theorem that non-empitness
of Büchi GDA is decidable.

I Theorem 8. Given a Büchi GDA A one can effectively construct a multicounter automaton
which accepts a word if and only if A has a regular witness.

8 Generalized Data Automata and Fixpoint Logic

4 µ-calculus on data ω-words

In this section, we introduce µ-calculus over data words. Let Prop = {p, q, . . .} be a set of
propositional variables. The formulas in the logic are the following. The atomic formulas are,
p ∈ Prop, ¬p, and S,P, firstc, firstg which are zeroary modalities. Also, Xgϕ, Xcϕ, Ygϕ, Ycϕ are
formulas whenever ϕ is a formula, and ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 are formulas whenever ϕ1 and ϕ2
are formulas. Finally, µp.ϕ, νp.ϕ are formulas whenever ϕ is a formula and the variable p
occurs positively in ϕ.

Next we disclose the semantics; as usual, on a given structure each formula denotes the
set of positions where it is true. The modality firstg holds (only) on the first position and
firstc holds exactly on all the first positions of classes. The modality S is true at a position i
if the successor and class successor of i coincide. Similarly P is true at i if the predecessor
and class predecessor of i coincide. The modalities Xgϕ, Xcϕ, Ygϕ, Ycϕ hold if ϕ holds on the
successor, class successor, predecessor and class predecessor positions respectively. Coming to
the fix-point formulas, each formula ϕ(p), where p occurs positively, defines a function from
sets of positions to sets of positions that is furthermore monotone. We define the semantics
of µp.ϕ(p) and νp.ϕ(p) to be the least and greatest fix-points of ϕ(p) that exists due to
Knaster-Tarski theorem. To formally define the semantics we consider a data ω-word as a
Kripke structure w = (ω, `, g, c) where ` : Prop → P(ω) is valuation function giving for each
p ∈ Prop the set of positions where p holds, g is the global successor relation and c is the
class successor relation. For S ∈ P(ω) by w[`(p) := S] we mean w with the new valuation
function `′ that is defined as `′(p) = S and `′(q) = `(q) for all q ∈ Prop, q 6= p. The formal
semantics [[ϕ]]w of a formula ϕ over a data word w is described in Figure 1.

[[p]]w = `(p) [[¬p]]w = ω \ `(p)
[[P]]w = {i | g−1(i) = c−1(i)} [[S]]w = {i | g(i) = c(i)}

[[firstg]]w = {1} [[firstc]]w = {i | @j = c−1(i)}
[[Xgϕ]]w = {i ∈ ω | g(i) ∈ [[ϕ]]w} [[Xcϕ]]w = {i ∈ ω | c(i) ∈ [[ϕ]]w}
[[Ygϕ]]w = {i ∈ ω | g−1(i) ∈ [[ϕ]]w} [[Ycϕ]]w = {i ∈ ω | c−1(i) ∈ [[ϕ]]w}

[[µp.ϕ]]w =
⋂{

S ⊆ ω | [[ϕ]]w[`(p):=S] ⊆ S
}

[[ϕ1 ∧ ϕ2]]w = [[ϕ1]]w ∩ [[ϕ2]]w

[[νp.ϕ]]w =
⋃{

S ⊆ ω | S ⊆ [[ϕ]]w[`(p):=S]

}
[[ϕ1 ∨ ϕ2]]w = [[ϕ1]]w ∪ [[ϕ2]]w

Figure 1 Semantics of µ-calculus on a ω-word w = (ω, `, g, c).

Note that we allow negation only on atomic propositions. However it is possible to negate
a formula in the logic. For this, define the dual modalities X̃g, Ỹg, X̃c, Ỹc of Xg, Yg, Xc, Yc

respectively and such that M̃ϕ = ¬M¬ϕ, where ¬ stands for set complement. Since successor
and class successor relations are total functions it follows that X̃gϕ ≡ Xgϕ, X̃cϕ ≡ Xcϕ.
Similarly since predecessor and classs predecessor relations are partial functions it follows
that Ỹgϕ ≡ firstg ∨ Ygϕ, Ỹcϕ ≡ firstc ∨ Ycϕ. To negate a formula ϕ we take the dual of ϕ; this
means exchanging in the formula ∧ and ∨, µ and ν, p and ¬p, and all the modalities with
their dual.

If ϕ(p1, . . . , pn) is a formula then by ϕ(ψ1, . . . , ψn) we mean the formula obtained by
substituting ψi for each pi in ϕ. As usual the bound variables of ϕ(p1, . . . , pn) may require a
renaming to avoid the capture of the free variables of ψi’s. For a formula ϕ and a position i

Thomas Colcombet and Amaldev Manuel 9

in the word w, we denote by w, i |= ϕ if i ∈ [[ϕ]]w. The notation w |= ϕ abbreviates the case
when i = 1. The data language of a sentence ϕ is the set of data words w such that w |= ϕ,
while the data ω-language of a sentence ϕ is the set of data ω-words w such that w |= ϕ.

Unfortunately, even the fragment of the logic containing only µ-fixpoints itself is unde-
cidable,

I Theorem 9. Satisfiability of the µ-fragment is undecidable.

This also implies the undecidability of the alternation-free fragment (recalled below). One of
the sources of undecidability is the presence of both future and past modalities, or in other
words the two-way-ness of the logic. Therefore we can reclaim decidability of the logic if
we restrict the number of times a formula is allowed to change direction. Next we formally
define this fragment, namely the bounded reversal alternation-free fragment. We first recall
the operation of composition of formulas. Let Ψ be a set of formulas. Define the set Compi(Ψ)
inductively as Comp0(Ψ) = ∅ and

Compi(Ψ) = {ψ(ϕ1, . . . , ϕn) | ψ(p1, . . . , pn) ∈ Ψ, ϕ1, . . . , ϕn ∈ Compi−1(Ψ)}.

The set of formulas Comp(Ψ) is defined as Comp(Ψ) =
⋃
i∈N Compi(Ψ). For a formula ψ ∈

Comp(Ψ) we define the Comp-height of ψ in Comp(Ψ) as the least i such that ψ ∈ Compi(Ψ).
For λ ∈ {µ, ν} let Formulas(λ) denote the formulas which uses only the fixpoint oper-

ator λ. Then the aternation-free fragment, denoted as AF, is the set of formulas AF =
Comp (Formulas (µ) ∪ Formulas (ν))); intuitively there does not exist a µ-subformula and a
ν-subformula with intersecting scope in any formula of AF. We call the set of all µ-calculus
formulas which does not use the modalities {Yc, Yg} (resp. {Xc, Xg}) the forward (resp. back-
ward) fragment. Forward (resp. backward) alternation-free fragment, denoted as AFX (resp.
AFY) is the set of all formulas in the alternation-free fragment which are also in the forward
(resp. backward) fragment. The bounded reversal alternation-free fragment of µ-calculus,
denoted as BR, is the set of formulas BR = Comp (AFX ∪AFY) .

Next we prove that the frogment BR is decidable by reducing the satisfiability problem
for BR to the emptiness problem for Büchi GDA. Since both BR and Büchi GDA are closed
under composition it is enough to prove that for every formula in the fragment AFX and AFY

there is a Büchi GDA that labels each position with the set of (sub)formulas true at that
position.

I Lemma 10. Given a formula ϕ in the backward fragment there is a Data Automaton that
labels each position with the set of subformulas of ϕ true at that position.

Next we show that for every formula in the forward alternation-free fragment there is
a Büchi GDA that labels each position with the set of satisfied subformulas. For this, we
recall the notion of alternating parity automaton over graphs (See [10] for a comprehensive
presentation). First we need the basics of two player (namely Adam and Eve) games played on
graphs. An arena A = (V,E) is a set of positions V = VE∪VA partitioned into those of Adam
(VA) and those of Eve (VE) along with a set of moves E ⊆ (VA×VE)∪ (VE×VA) (we assume
that there are no dead-ends in the game). A partial play (v0, v1)(v1, v2) . . . (vk, vk+1) ⊆ E∗ is
a finite sequence of moves performed by the players. The position v0 is the starting position
of the play and vk+1 is the ending position of the play. A strategy for a player Eve (resp.
Adam) σ maps a partial play ending in a position in VE (resp. VA) to a move in E. A play
π = (v0, v1)(v1, v2) . . . ∈ Eω is an ω-sequence of moves. We say π is a play according to
the strategy σ of Eve if on all finite prefixes of π ending in VE she plays according to σ.
A winning condition W ⊆ Eω is a set of plays which are winning for Eve. A game G is a

10 Generalized Data Automata and Fixpoint Logic

triple G = (A = (V,E), v,W) where A is an arena, v ∈ V is the initial position and W is the
winning condition. The strategy σ is a winning strategy for Eve if all the plays according to
σ is winning for Eve. The strategy is positional if for all partial plays ending on the same
vertex the strategy σ agrees on the next move. A parity game is a game whereW is presented
by means of a parity condition Ω : V → {0, . . . , k} for some k ∈ N. Given Ω, the winning
condition W is defined as the union of all plays π = (v0, v1)(v1, v2) . . . such that the maximal
number occurring infinitely often in the sequence Ω(v0),Ω(v1), . . . is even. It is well-known
that parity games are positionally determined. i.e. one of the players has a positional winning
strategy.

Let P be a set of propositional variables. A positive conjunction p1 ∧ p2 . . . ∧ pk, k ≥ 1
over P is identified with the subset {p1, . . . , pk} of P . A DNF formula over P is a disjunction
ϕ1∨ϕ2 . . .∨ϕl, l ≥ 1, where each ϕj is a positive conjunction over P , which is identified with
a subset of powerset of P , namely {ϕ1, . . . , ϕl}. Set of all DNF formulas over P is denoted
by DNF+(P). LetM be the set {S,¬S,P,¬P}. For a given a data ω-word w and a position
i in w the type of i, denoted by tp (i), is the subset ofM satisfied at position i.

An alternating parity automaton on data ω-words A is a tuple (Q,Σ,∆, q0,Ω) where Q
is the finite set of states, Σ is the alphabet, q0 is the initial state, ∆ : Q × Σ × P(M) →
DNF+({Xgp, Xcp | p ∈ Q}) is the transition relation and Ω : Q → {0, . . . , k} is the parity
condition. When Ω is such that all states have parity either 1 or 2 the automaton is called
Büchi.

Fix an automaton A. Given a data ω-word w = (ω, λ, g, c) (for convenience we let the
labelling function λ : ω → Σ map each position to to its label), the acceptance of w by
A is defined, as usual, in terms of a two-player parity game GA,w (sometimes called the
membership game) played between Adam and Eve on the arena with positions V = VE ∪ VA
where VE = Q× ω and VA = co-Dom(∆)× ω. The moves E are the following. On every Eve
position (p, i) she can make a move to an Adam position (ϕ, i) where ϕ is a conjunction over
the set {Xgp, Xcp | p ∈ Q} such that ϕ ∈ ∆(p, λ(i), tp (i))}. On every Adam position (ϕ, i) he
can make a move to an Eve position (p, j) if j is the successor (resp. class successor) of i
and Xgp (resp. Xcp) is in ϕ. Observe that there are no dead-ends in the game. The parity of
the game positions are defined as follows. For all Adam positions the parity is 0 and for all
Eve positions (p, i) the parity is Ω(p). We say the automaton A accepts the data word w if
in the game GA,w the player Eve has a winning strategy from the position (q0, 1).

The following lemma follows from canonical connection between µ-calculus and alternat-
ing parity automata on any fixed class of graphs ([10]).

I Fact 11. For every formula in the forward (resp. alternation-free) fragment there is an
equivalent (which is effectively obtained) alternating parity (resp. Büchi) automaton. Moreover
the states of the automaton are precisely the subformulas of the given formula.

If a data ω-word w is accepted by A then there is a winning strategy for Eve in the
game GA,w which in turn implies that Eve has a positional winning strategy for the game.
A positional strategy for Eve in GA,w is a function σ : ω → (Q → co-Dom(∆)) such
that for all i and for all p ∈ Q, (σ(i))(p) ∈ ∆(p, λ(i), tp (i)). Once a strategy σ for Eve
is fixed the game GA,w can be seen as a game played by a single player (namely Adam)
in the following way. Define GσA,w as the subgame where the moves of Eve are limited to
{(p, i) → ((σ(i))(p), i) | i ∈ ω}. Since the moves of Eve are fixed in the game GσA,w (?)
she wins if and only all the infinite paths in the graph GσA,w are winning. A local strategy
is a partial function f : Q → co-Dom(∆) such that there exist a ∈ Σ, τ ∈ P(M) such
that for all p ∈ Dom(f), f(p) = ∆(p, a, τ). A local strategy f is consistent at position i if
f(p) ∈ ∆(p, λ(i), tp (i)) for all p ∈ Dom(f). Observe that a positional strategy for Eve is

Thomas Colcombet and Amaldev Manuel 11

a sequence of local strategies (fi)i∈ω such that each fi is consistent at position i. Now we
restate (?) in terms of local strategies. Let F be the set of local strategies.

A local strategy annotation of a data ω-word w is a sequence of local strategies (fi)i∈ω
which are consistent at each position i and futhermore satisfy the following conditions. Let
(Di)i∈ω be the sequence of subsets of states Q (called the set of reachable states) such that
the local strategy fi has domain Di.

1. D1 = {q0}.
2. q ∈ DM(i) iff there exists p ∈ Di such that fi(p) = ϕ and Mq ∈ ϕ [When M = Xc (resp.

M = Xg) we use M(i) to denote the successor (resp. class successor) of i]. In this case we
say that there is an edge between (p, i) and (q, M(i)) in the strategy annotation.

A path in the strategy annoation is a sequence (p1, i1) . . . (pn, in) such that each successive
tuples has an edge between them. The local strategy annotation (fi)i∈ω is accepting if for
all infinite paths (starting from (q0, 1)) it is the case that the maximal infinitely occurring
parity is even.

It is straight-forward to see that Eve has a (positional) winning strategy σ in the game
GA,w iff all the paths in the GσA,w are winning iff there is a local strategy annotation in which
all paths are accepting. Thus we get,

I Lemma 12. A data ω-word w is accepted by the automaton A if and only if there exist a
local strategy annotation (fi)i∈ω of w which is accepting.

Next we show the goal of this section namely that for every alternating Büchi automaton
there is an equivalent Büchi GDA. Since we are converting an alternating automata to a
non-deterministic automata (though not of the same kind) it can be seen as an analogue
of the simulation theorem for alternating tree automata. A technicality here is that in the
definition of GDA we dont have access to the type of a position. Therefore the GDA has
to synthesize the type of every position. This is achieved by the following lemma due to
Schwentick and Björklund.

I Lemma 13 ([1]). There is a Data automaton A which reads a data ω-word and outputs
the type of each position.

Now we present the simulation theorem. The proof is using the standard technique. The
GDA guesses a local strategy annotation and verifies that all paths in the annotation are
accepting. The only technicality is that the automaton has to rely on the marked path
projection to verify that the paths are accepting.

I Proposition 14. Given an alternating parity (resp. Buchi) automaton A there is an
equivalent (resp. Buchi) GDA A′.

Finally we prove the main theorem of this section.

I Theorem 15. Satisfiability of bounded-reversal alternation-free µ-calculus is decidable on
data ω-words.

5 Conclusion and future work

In this paper we have introduced a generalization of Data Automata. While the emptiness
problem for GDA is open it is shown that the decidability of emptiness of a subclass, namely
the class of Büchi GDA, is decidable. Next,a natural fixpoint logic on data words is defined
and it is shown that the µ-fragment as well as the alternation-free fragment is undecidable.

12 Generalized Data Automata and Fixpoint Logic

Then, by limiting the number of change of directions of formulas the class of bounded reversal
alternation-free fragment is defined which subsumes other logics such DataLTL and FO2.
It is shown that satisfiability problem for the bounded-reversal alternation-free fragment is
decidable by extending the results for Data automata. In fact the latter result easily extends
to the case of formulas with alternation depth νµ.

Regarding future work, there are two interesting questions; namely the decidability of
the non-emptiness problem for GDA and the satisfiability problem of the forward fragment.
However these two problems are effectively equivalent since given a GDA A (resp. Büchi)
there is an effectively constructed universal parity (resp. Büchi) automaton A′ accepting the
accepting runs of automaton A. It is also interesting to know if DA is strictly included in
(Büchi) GDA.

References
1 H. Björklund and T. Schwentick. On notions of regularity for data languages. Theor.

Comput. Sci., 411(4-5):702–715, 2010.
2 M. Bojańczyk. Data monoids. In STACS, pages 105–116, 2011.
3 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data words. ACM Trans. Comput. Log., 12(4):27, 2011.
4 M. Bojańczyk and S. Lasota. An extension of data automata that captures xpath. In Logic

in Computer Science (LICS), 2010, pages 243–252, July 2010.
5 T. Colcombet, C. Ley, and G. Puppis. On the use of guards for logics with data. In MFCS,

volume 6907 of LNCS, pages 243–255. Springer, 2011.
6 S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter

systems. In Logic in Computer Science (LICS), 2013, pages 33–42, June 2013.
7 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM

Transactions on Computational Logic, 10(3), April 2009.
8 D. Figueira. Alternating register automata on finite data words and trees. Logical Methods

in Computer Science, 8(1), 2012.
9 D. Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic,

13(4), 2012.
10 E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite Games: A

Guide to Current Research. Springer-Verlag New York, Inc., New York, NY, USA, 2002.
11 O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets.

In Language and Automata Theory and Applications, pages 561–572. Springer, 2010.
12 M. Jurdziński and R. Lazic. Alternating automata on data trees and xpath satisfiability.

ACM Trans. Comput. Log., 12(3):19, 2011.
13 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–

363, 1994.
14 A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.

In FSTTCS, volume 8 of LIPIcs, pages 481–492, 2010.
15 L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume 7180, pages

274–288, 2012.
16 A. Manuel, A. Muscholl, and G. Puppis. Walking on data words. In Computer Science

Theory and Applications, volume 7913 of LNCS, pages 64–75. 2013.
17 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite

alphabets. 5(3):403–435, 2004.

Thomas Colcombet and Amaldev Manuel 13

APPENDIX

A Proof of Lemma 1

Proof. Let A = (Q,Σ,∆, I, Fg, Fc) be a given Data Automaton. We observe that given a
data ω-word w, every path of the form gkcω eventually consists of positions from a single
class. We make use of this observation to define a Büchi Generalized Data Automaton
A′ = (Q,Σ,∆, I, L) as follows. Note that the set of states, initial states and transition
relation of the automaton A′ are the same as that of the automaton A. The deterministic
Büchi language L is the set of all ω-words u ∈ (Q× {ε, g, c})ω such that u belongs to one of
the following (disjoint) languages,

(L1) u ∈ (Q × {ε}) · (Q× {g})ω and some state state in Fg appears infinitely often in the
first component of u.

(L2) u = u1 ·u2 where u1 ∈ (Q×{ε}) · (Q× {g})∗ and u2 ∈ (Q×{c})ω such that some state
in Fc appears infinitely often in the first component of u2.

(L3) u ∈ (Q×{ε}) · (Q× {g, c})ω such that both g and c occurs infinitely often in the second
component of u.

Each of (L1), (L2) and (L3) is the limit of a regular language of finite words and hence
they are deterministic Büchi recognizable languages. Since finite union of deterministic Büchi
recognizable languages is a deterministic Büchi recognizable language, we obtain that the
language L is deterministic Büchi recognizable. It remains to show that the automata A
and A′ are equivalent. By virtue of definition every run of A is a run of A′ and vice versa.
Hence it suffices to show that a run ρ is accepting for automaton A′ if and only if it is
accepting for automaton A. The left-to-right direction is easy; assume ρ is an accepting run
of the automaton A. Since the global path in the run ρ belongs to language (L1) and every
path which eventually takes only class edges belongs to language (L2) the run ρ satisfies the
acceptance criterion of the Data Automaton A. Conversely, assume ρ is an accepting run
of the Data Automaton A. If π is a path that is composed eventually of only global edges
(resp. class edges) then the marked path projection of the run ρ w.r.t. π contains infinitely
often a state from Fg (resp. Fc). This takes care of Conditions (L1) and (L2). Otherwise the
marked path projection of π contains infinitely many letters c (denoting class edges) and g
(denoting global edges), in which case Condition (L3) is met. Hence every path in ρ satisfies
one of Conditions (L1) or (L2) or (L3). Hence ρ is an accepting run of the GDA A′. J

B Proof of Lemma 2

Proof. Let A1 = (Q1,Σ,∆1, I1, L1) and A2 = (Q2,Σ,∆2, I2, L2) be two GDA with disjoint
sets of states.

The union of languages L(A1) and L(A2) is accepted by the Generalized Data Automaton
A1 ∪ A2 = (Q1 ∪Q2,Σ,∆1 ∪∆2, I1 ∪ I2, L1 ∪ L2). This claim also holds when A1 and A2
are Büchi GDA, since L1 ∪ L2 is a deterministic Büchi recognizable language when L1 and
L2 are deterministic Büchi recognizable.

Closure under intersection is by usual product construction. Define the product A =
(Q = Q1 ×Q2,Σ,∆, I = I1 × I2, L) where the set of transitions ∆ and acceptance criterion

14 Generalized Data Automata and Fixpoint Logic

L are defined as follows;

((p1, q1), (p2, q2), a, (p3, q3)) ∈ ∆ if (p1, p2, a, p3) ∈ ∆1, (q1, q2, a, q3) ∈ ∆2 ,

L = {((pi, qi), ei)i∈ω ∈ (Q× {ε, g, c})ω | (pi, ei)i∈ω ∈ L1 and (qi, ei)i∈ω ∈ L2} .

The language L is ω-regular (resp. deterministic Büchi recognizable) if L1 and L2 are ω-
regular (resp. deterministic Büchi recognizable). The automaton A has an accepting run on
a data ω-word w iff both automaton A1 and automaton A2 have accepting runs on w. Hence
the automaton A accepts the intersection of the languages L(A1) and L(A2).

Next we consider closure under renaming. Let h : Σ→ Γ be a renaming. The renaming of
A1 under h is the automaton h(A1) = (Q1,Γ,∆′1, I1, L1) where ∆′1 is obtained by replacing
each transition (p1, p2, a, p3) in ∆1 by (p1, p2, h(a), p3). The automaton A1 accepts a data
ω-word (a1, d1)(a2, d2) . . . ∈ (Σ × D)ω iff the automaton h(A1) accepts the data ω-word
(h(a1), d1)(h(a2), d2) . . . ∈ (Γ × D)ω. Hence the automaton h(A1) accepts the language
h(L(A1)). This claim also holds for Büchi GDA since construction leaves the acceptance
criterion L1 unchanged.

Finally we consider the closure under composition. Let A1 = (Q1, A×B,∆1, I1, L1) and
A2 = (Q2, B × C,∆2, I2, L2) be two GDA (resp. deterministic Büchi GDA). Define the cas-
cade comosition ofA1 andA2, in notation Comp(A1,A2), as the automaton (Q = Q1 ×Q2, A× C,∆, I1 × I2, L)
where

((p1, q1), (p2, q2), (a, c), (p3, q3)) ∈ ∆ if ∃b ∈ B s.t. (p1, p2, (a, b), p3) ∈ ∆1,

(q1, q2, (b, c), q3) ∈ ∆2 .

L = {((pi, qi), ei)i∈ω ∈ (Q× {ε, g, c})ω | (pi, ei)i∈ω ∈ L1 and (qi, ei)i∈ω ∈ L2} .

The automaton Comp(A1,A2) accepts the language Comp(L1,L2) andmoreoverComp(A1,A2)
is a Büchi GDA if A1 and A2 are Büchi GDA.

J

C Proof of Lemma 5

Proof. Assume that the automaton A accepts some data ω-word w = (a1, d1)(a2, d2) . . .
and let ρ ∈ (Q × D)ω be an accepting run of A on w and let ζ ∈ ((Q × P(S)) × D)ω be
the annotated run. Let the annotated run ζ be the word ((q1, S1), d1)((q2, S2), d2) By
pigeonhole principle there is an infinite sequence of positions ī = i0, i1, . . . in the annotated
run ζ such that (qi0 , Si0) = (qi1 , Si1) = Conditions (i) and (ii) of regular witness are
satisfied by the prefixes of the data ω-wordw defined by any two positions in ī. LetCi0 , Ci1 , . . .
be the class vectors of the prefixes of the annotates run ζ at positions i0, i1, . . . respectively.
By Dickson’s lemma there exists an infinite subsequence j̄ = j0, j1, . . . of ī such that the class
vectors Cj0 ≤ Cj1 ≤ . . . in the pairwise ordering. Condition (iii.a) of the regular witness is
satisfied by the prefixes of data ω-word w defined by any two positions in j̄. Let x be a pair
in Q×P(B). Either for all positions j ∈ j̄ it is the case that Cj(x) = 0 (in which case we set
the variable J(x) to be the position j0), otherwise there is a position jk ∈ j̄ such that for all
jk ≤ jl ∈ j̄ it holds that Cjl

(x) > 0 (since the vectors are non-decreasing by construction).
In the last case we set the variable J(x) to the position jk. We take J to the maximum over
all positions J(x) where x ∈ Q×P(B). We denote the suffix of j̄ defined by J (containing
only positions after J) by l̄ = l0, l1, Condition (iii.b) of the regular witness is satisfied

Thomas Colcombet and Amaldev Manuel 15

by the prefixes of data ω-word w defined by any two positions in l̄. We take the finite data
word u to be the prefix of the data ω-word defined by position l0.

It only remains to define the finite data word v. We aim at defining the data word v to
be the infix of w defined by positions l0 (excluding) and a chosen (below) position such that
Condition (iii.c) is satisfied. Choose an arbitrary position 1 ≤ k ≤ l0 which is class maximal
in u such that the annotation at position k is (q, S′) ∈ Q×P(S). Let s be a state in S′ and
π ∈ {g, c}ω be an infinite path starting from position k. We denote by rπ,s the partial run
of the automaton B on the marked path projection of the path π from the state s. Given
a position i, let prefix(rπ,s, i) denote the prefix of the partial run rπ,s up to position i. We
claim that (?) there exist a position N(k) ∈ l̄ such that for any state s in S′ and any infinite
path π ∈ {g, c}ω from position k the prefix prefix(rπ,s, N(k)) contains a Büchi state. Assume
it is not the case. For l ∈ l̄ let Ll be the set of all prefix(rπ,s, l), where π ∈ {g, c}ω and s ∈ S′,
that does not contain a Büchi state . By assumption for each l ∈ l̄ the set Ll is nonempty.
Therefore the set L = ∪l∈l̄Ll is infinite, hence by König’s lemma there is some state s in
S′ and an infinite path π from position k such that the run rπ,s of automaton B on the
marked path projection of π has infinitely many prefixes in L. Therefore the partial run rπ,s
contains no Büchi states. This contradicts the assumption that the run ρ is accepting. Hence
the claim (?) is established. Let N be the maximum of all N(k) ∈ l̄ for all class maximal
positions k in the data word u. We define the data word v to be the infix of the data ω-word
w defined by positions l0 (excluding) and N (including). By construction Condition (iii.c) is
satisfied by the data word u · v.

J

D Proof of Lemma 6

Proof. Let w = u · v be a finite data word, ρ be a partial run of the automaton A on w and
ζ be the corresponding annotated run. Our strategy, as mentioned already, is to construct a
data ω-word inductively by appending a renamed copy (renaming of only data values) of the
data word v to the end of the data word constructed so far. At each stage of the induction
we maintain that there is a partial run of the automaton A on the data word constructed so
far. Moreover each run of the automaton B on the marked path projections of the run of A
sees a Büchi state.

Let wi denote the data word constructed at induction step i. For the base case we take
w0 = w and by definition there is a partial run ρ of A on w and an annotation ζ. For the
inductive step assume the data word wi has been constructed and let ρi be a partial run
of automaton A on wi and let ζi be an annotation. We aim at constructing a data word v′
that is obtained from the data word v by renaming the data values, in other words v and v′
has the same string projection and classes. For each data value d in v that does not appear
in u, in other words a class that is composed of only positions in v, we label the class of
d with a fresh data value (one that does not appear in wi). Next assume there is a class,
labelled by data value d, that contains both positions in u and v. Let k be the minimum
position of this class in the data word v and let k′ be the maximum position of this class
in the data word u. Let (q, S′) ∈ Q×P(S) be the annotation of the position k′. To ensure
consistency we have to choose a class-maximal position in the data word wi that has the
annotation (q, S′). Moreover this choice has to be done so that every class maximal position
is assigned a class successor at some step of the induction (this is due to our assumption
that all classes are infinite). Hence we choose the minimum class-maximal position in wi, let
it be labelled by data value d1. We label every position in the class of d in the data word v′

16 Generalized Data Automata and Fixpoint Logic

with data value d1. We repeat this procedure for every such class that contains positions in
both u and v. This step is possible since it is guaranteed by the definition of regular witness
(Condition (iii.a)). Finally we let the data word wi+1 = wi · v′. The run and the annotation
are extended similarly, i.e. ρi+1 = ρi · ρv′ ζi+1 = ζi · ζv′ where the data words ρv′ and ζv′
are obtained by ρv and ζv by applying the relabelling of data values used to obtain the data
word v′. The run and annotation ρi+1 and ζi+1 is consistent due to the Conditions (i) and
(ii). This concludes the induction step.

This way we define the data ω-word wω, the run ρω and the annotation ζω. To see that
ρω is an accepting run of automaton A on wω it is enough to see that for every path π in
ρω, the marked path projection of π is accepted by the automaton B. The fact that there is
a run of automaton B on such a marked path projection follows from the existence of the
annotation ζω, and the fact that the run is accepting follows from Condition (iii.c). This is
because at every induction step the partial run of automaton B on each path sees a Büchi
state. J

E Proof of Theorem 8

Proof. We construct a Multicounter AutomatonM that guesses and verifies a regular witness
w = u ·v, ρ, ζ for the automaton A. This guessing is done in a symbolic manner, that is to say,
the automaton does not store the data word in its memory but incrementally guesses a data
word and simulates both the automata (A and B) on the guessed data word. The machine
M works in two phases. The first phase ends when the machine M nondeterministically
decides that it has guessed the data word u. Next we describe both the phases in detail.

In the first phase the states of the Multicounter Automaton M are pairs from the set
Q × P(S) and it has two counters (referred to as copy 1 and copy 2) for each element in
the set Q×P(S). During the first phase the machine performs exactly the same operations
on both copies of counters. So we describe only what happens to one of the copies. During
the run the counter (q, S′) ∈ Q × P(S) maintains the number of class maximal positions
i in the prefix guessed so ar that are labelled with the pair (q, S′) by the annotation. The
Multicounter Automaton starts in a state (q0, {sin}) where q0 is an initial state of automaton
A and sin is the initial state of automaton B. During the run let the machine M be in a
state (q1, S1) ∈ Q×P(S). It selects non-deterministically a letter a ∈ Σ and executes one of
the following actions.

The machineM guesses that the next position in the data word u is the first position
of a new class. In this case the next state of the machine is a state (q2, S2) such that
q2 is the state of automaton A and S2 is the end states of runs of automaton B after
reading the current position, in other words there is a transition (q1,⊥, a, q2) in ∆ and
S2 = {s ∈ S | (s1, (q2, g), s) ∈ T, s1 ∈ S1}. To indicate that number of the class-maximal
positions labelled with (q2, s2) has gone up by one, the machineM increases the counter
(q2, S2).
The machine M guesses that the next position in data word u occurrs in an existing
class. In this case the machine selects a counter (q′, S′) and decrements it by one, which
symbolically corresponds to selecting a class maximal position with annotation (q′, S′).
The next state of the machineM machine is a pair (q2, S2) such that q2 is the state of
automaton A (i.e. there is a transition (q1, q

′, a, q2) in ∆) and S2 is the end states of runs
of automaton B after reading the current position. Note that the runs of the automaton
B could take the global as well as the class edge to reach the position. Hence we define

S2 = {s ∈ S | (s1, (q2, g), s) ∈ T, s1 ∈ S1}
⋃
{s ∈ S | (s′, (q2, c), s) ∈ T, s′ ∈ S′} .

Thomas Colcombet and Amaldev Manuel 17

Finally the counter (q2, S2) is incremented by one.

At some point during the run the machine M guesses that the first phase is over and
the machines prepares to enter the second phase in which it guesses the data word v. In the
second phase the states as well as the counters of the machine are of the form Q×P(S)×P(S).
Intuitively the counter (p, S1, S2) counts the number of class-maximal positions i such that
i is labelled with the state p (by the run of A) and the set of states S1 by the annotation
(corresponding to the end states of runs of B) and moreover the subset S2 ⊆ S1 of states is
the end states of runs of automaton B that have not seen a Büchi state (in G) in a position in
the second phase (in the data word v). Similarly if the state of the machineM is (p, S1, S2)
(say on position i) then it means that i is labelled with the state p (by the run of A) and
the set of states S1 by the annotation (corresponding to the end states of runs of B) and
moreover the subset S2 ⊆ S1 of states corresponds to the end states of runs of automaton B
that has not seen a Büchi state (in G) in a position in the data word v.

During the preparation to second phase each counter (q, S1) ∈ Q × P(S) in copy 2 is
copied to the counter (q, S1, S1 \G). This is achieved in the following way. The machineM
nondeterministically decrements the counter (q, S1) and increments the counter (q, S1, S1 \G)
and repeats this operation until the machine M guesses that the counter (q, S1) is zero.
However the machineM cannot check that the counter (q, S1) is zero, instead the counter is
not touched till the run ofM is finished at which point the counter is verified to be zero (by
the zero test at the end of the run). After transferring the values from counters (Q×P(B))
to counters (Q×P(B)×P(B)) the machineM enters phase 2.

After finishing the preparation the machineM moves to the state (q, S1, S1 \G) given
that it finished phase 1 in state (q, S1). At any point during this phase if the machine is
in state (q, S1, S2) it guesses the label a of the next position and one of the following two
scenarios can happen.

It is guessed that the next position is the beginning of a new class. In this case, the next
state is of the form (q′, S′1, S′2) where (q,⊥, a, q′) is a transition ∆ and the set of states
S′1 = {s′ ∈ S | (s, (q′, g), s′) ∈ T, s ∈ S1} and S′2 = S′1 \ G. Subsequently the counter
(q′, S′1, S′2) is incremented.
On the other hand if the the next position is guessed to be in an existing class a counter
(p,R1, R2) is chosen nondeterministically and is decremented. The next state of the
machine M is a triple (q′, S′1, S′2) such that (q, p, a, q′) is a transition in ∆, the set of
states

S′1 = {s′ ∈ S | (s, (q′, g), s′) ∈ T, s ∈ S1}
⋃
{s′ ∈ S | (r, (q′, c), s′) ∈ T, r ∈ R1} ,

and S′2 = S′1 \G. As before the counter (q′, S′1, S′2) is incremented.

At the end of phase two the machineM enters a final verification phase. In this phase the
machine decrements simultaneously counters (q, S1) from copy 1 and the counter (q, S1, ∅).
This is repeated until it is guessed that one of them is zero. This is repeated for all pairs of
counters (q, S1) from copy 1 and (q, S1, ∅). Finally the automaton accepts if the state is of
the form (q, S1, ∅) where (q, S1) is the state reached at the end of phase 1 and all counters
are empty. J

F Proof of Theorem 17

First we discuss how to implement the standard temporal operators in the logic. The formula
ϕ Ug ψ holds if ψ holds in the future, and ϕ holds in between. This can be implemented as

18 Generalized Data Automata and Fixpoint Logic

µx.ψ ∨ (ϕ ∧ Xgx) The formula ϕ Uc ψ = µx.ψ ∨ (ϕ ∧ Xcx) is similar, but for the fact that it
refers only to the class of the current position. The formula Fgϕ abbreviates > Ug ϕ, and its
dual is Ggϕ = ¬Fg¬ϕ. The constructs Sg, Sc, Pg, Pc, Hg and Hc, are defined analogously, using
past modalities, and correspond respectively to Ug, Uc, Fg, Fc, Gg and Gc.

Consider a data word that uses, say, letters a, b, c, and such that the relation ∼ between
positions is a bijection between a-labeled positions and b-labeled positions. It is easy to write
a µ-calculus formula that checks this property. However, this is not yet sufficient for our
purpose. We need the following lemma.

I Lemma 16. The exists a formula in the µ-fragment that checks over finite data words the
property that ∼ is an increasing bijection between a-labeled positions and b-labeled positions.

Proof. For the sake of explanations, let us consider a data word u, and let A (resp. B) be
the set of a-labeled (resp. b-labeled) positions in u. Let R be ∼ restricted to A×B. We have
to provide a formula that holds if R is a monotonic bijection between A and B. It is easy to
write a formula of the µ-fragment that holds if and only if R is a bijection between A and
B. We assume this is the case from now.

Consider now the binary relation S ⊆ A2 such that x S z if x R x′ < y′ R−1 y < z. An
element x ∈ A such that xS x is called a small witness. Note first that the the existence of a
small witness means that there exists x > y and x′ < y′ such that x R x′ and y R y′. Hence,
there exists a small witness if and only if R is not increasing. Unfortunately, we are not able
to directly detect the existence of a small witness using a µ-formula. Instead, we will search
for ‘big witnesses’. A big witness is a sequence x1, x2, . . . of elements of A such that

x1 S x2 S . . .

We claim (?) that there exists a small witness if and only if there exists a big witness.
Of course, if there is a small witness, there is a big one. Assume now that there exists a big
witness x1, . . . Since the xi’s range over a finite domain, there exists i such that xi+1 ≤ xi.
Thus, xi S xi+1 ≤ xi and hence xi S xi. we have found a small witness.

One easily verifies now that the µ-formula

Fgνx.a ∧ FcPc(b ∧ XgFg(b ∧ FcPc(a ∧ XgFgx))))

expresses the existence of a big witness. Thus the non-existence of a big witness, hence of
a small witness, hence the non increasing nature of R is definable by a µ-formula. A priori,
this formula is a formula that uses both µ- and ν-fixpoints since the modalities Fc and Fg are
in fact syntactic sugar for formulas of the µ-fragment. However, it is easy to check that, over
finite data words, Fg(ϕ) is equivalent to νx.ϕ∧Xgx (the difference between least and greatest
fixpoint does not exist when the fixpoints are reached within a finite number of steps). Thus,
the above formula can be expressed in the ν-fragment, and hence its complement in the
µ-fragment. J

Using this lemma we reduce the Post’s correspondence problem to the satisfiability
problem of the logic giving us,

I Theorem 17. Satisfiability of the µ-fragment over finite data words is undecidable.

Proof. The proof is by reduction from the Post’s Correspondence Problem (PCP). An
instance I of PCP is a finite set of tuples I = {(u1, v1), . . . , (uk, vk) | uj , vj ∈ Σ+}. A
solution to I is a sequence i0 . . . in ∈ [k]+ such that ui0 . . . uin = vi0 . . . vin . It is well known
that the problem of determining if an instance of the PCP has a solution is undecidable.

Thomas Colcombet and Amaldev Manuel 19

Given an instance I of the PCP, we construct a formula in the µ-fragment that is satisfiable
if and only if I has a solution. For this, we encode the solution of I as a data word u over the
alphabet Σ] {a, b} (where a, b are assumed not present in Σ). Intuitively, u is ui0 . . . uin in
which are inserted letters a and b letters in order to describe the decomposition in ui0 , . . . , uin
(using a’s) and in vi0 , . . . , vin (using b’s). The data values are required to induce an increasing
bijection between a-labeled and b-labeled positions in order to be able to check the correctness
of the solution. Formally, a data word u encodes the solution i0 . . . in to I if:

the word has length at least 4, starts with letters ab and ends with ab, and
∼ induces an increasing bijection between a-labeled positions and b-labeled positions. Let
x0 < · · · < xn be the a-labeled positions and y0 < · · · < yn be the b-labeled positions.
Then for all ` = 1 . . . n, the word obtained as the string projection of u restricted to the
positions in (x`, x`+1) (resp. (y`, y`+1))to which b-letters (resp. a-letters) are removed is
ui` (resp. vi`).

It is easy, from a solution to construct a data word that encodes it.
Hence, in order to guess a solution to I, it is sufficient to guess a data word over the

alphabet Σ ∪ {a, b} such that (†):

the word has length at least 4, starts with letters ab and ends with ab, and
∼ induces an increasing bijection between a-labeled positions and b-labeled positions,
and there is at least one occurrence of a;
for all occurrences x of an a-letter, but the last one, there exists i ∈ [k] such that:

the string projection of u starting at position x belongs to Ki = {w : wb ∈ auia(Σ ∪
a)∗} where wb is the word w with letter b removed, and
the string projection of u starting at position R(x) belongs to Li = {w : wa ∈
bvib(Σ ∪ b)∗} where wa is the word w with letter a removed.

Quite naturally, if a data word encodes a solution to I then it satisfies (†). Conversely, if a
data word satisfies (†), then there exists a solution to I that it encodes.

Thus, it is sufficient for us to write a formula of the µ-fragment for (†), which is easy
using Lemma 16 for the second item, and the fact that the languages Ki and Li are regular,
thus definable by a formula of the µ-fragment. J

The above theorem extends to ω-words.

I Corollary 18. Satisfiability of the µ-fragment over data ω-words is undecidable.

Proof. Consider a formula ϕ of the µ-fragment, our goal is to construct a formula ϕ] such
that ϕ is satisfiable over data words if and only if ϕ] is satisfiable over ω-data words. In
combination with Theorem 17, this proves the statement.

The formula ϕ] (for] a new fresh symbol) defines the data ω-words w such that:

w contains at least one occurrence of the letter],
the data ω-word w restricted to the positions that are to the left of all]-occurrences
satisfy ϕ.

Of course, if we can write such a formula, then it is satisfiable over data ω-words if and
only if ϕ is satisfiable over data words. It is also clear that the first item is definable in the
µ-fragment. Thus, we just have to turn ϕ into a formula that is sensitive only to the part of
the word left of all]’s. This is exactly the classical technique of relativization. Remark first
that the property ‘being at the left of all]’ is definable in the µ-fragment. Let ψ be such a
formula. In our case, relativizing ϕ to ψ consists in replacing syntactically every subformula

20 Generalized Data Automata and Fixpoint Logic

of the form M(γ) for some modality M ∈ {Xc, Xg, Yc, Yg} by M(γ ∧ ψ), lastg by Xg] and lastc

by lastc ∨ Xc Sg]. The result is a formulas that holds over a word if and only if ϕ holds on
the input restricted to its longest]-free prefix. J

G Proof of Lemma 10

First we need the following lemma.

I Lemma 19. Let ϕ(x, ȳ) be a formula such that the only unary modalities it uses are Yg, Yc

and furthermore any free occurrence of x appears in the scope of at least k nested modalities.
Then for any data word (resp. data ω-word) w and valuation S1, . . . , Sl of ȳ = y1, . . . , yl, and
S of x, and for all i < k,

w[`(ȳ) := S̄, `(x) = S], i |= ϕ

⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ϕ .

Proof. Without loss of generality assume that x is not a bound variable in ϕ(x, ȳ) (other-
wise rename the occurrences of x). We proceed by an induction on the pair (k, i) ordered
lexicographically (for all i ≥ k the claim holds trivially); For the base case when k = 1, the
claim is vacuously true. For the inductive step assume the claim is true for pairs (k′, i′) where
k′ < k or, k′ = k and i′ < i. Let ϕ(x, ȳ) be a formula in which x appears with in the scope
of k + 1 nested modalities. We do an induction on the structure of the formula. Let ϕ(x, ȳ)
is of the form Mψ(x, ȳ) where M ∈ {Yg, Yc}. We do a case analysis on M. Assume M is Yg (the
case when M is Yc being analogous) then

w[`(ȳ) := S̄, `(x) = S], i |= Mψ(x, ȳ)
⇔ w[`(ȳ) := S̄, `(x) = S], i− 1 |= ψ(x, ȳ) (By defn. of Yg)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i− 1 |= ψ(x, ȳ) (i < k ⇒ i− 1 < k − 1, hence by IH)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= Mψ(x, ȳ)

The boolean cases are straightforward. Next assume ϕ(x, ȳ) is of the form θyi.ψ(x, ȳ) (θ ∈
{µ, ν}). We have to show that

w[`(ȳ) := S̄, `(x) = S], i |= θyi.ψ(x, ȳ)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= θyi.ψ(x, ȳ) .

By induction hypothesis (on the structure of the formula)

w[`(ȳ) := S̄, `(x) = S], i |= ψ(x, ȳ)
⇔ w[`(ȳ) := S̄, `(x) = ∅], i |= ψ(x, ȳ) .

Hence Si is a pre-fixpoint (resp. post-fixpoint) of ψ(x, ȳ) on w[`(ȳ) := S̄, `(x) = S] if and
only if it is a pre-fixpoint (resp. post-fixpoint) of ψ(x, ȳ) on w[`(ȳ) := S̄, `(x) = ∅]. Hence
the claim is proved by Knaster-Tarski theorem. This concludes the induction. J

Next we prove that every formula in the backward fragment is equivalent to a nu-formula.
This is done in two steps. The first step is to transform the formula in BR to an equivalent
one that is furthermore guarded. This is achieved by the following lemma.

Thomas Colcombet and Amaldev Manuel 21

I Lemma 20. Every formula is equivalent to a formula which is furthermore guarded.

Proof. Proof is by induction on the structure of the formula. The atomic, boolean and modal
cases are straightforward. The non-trivial case is when the formula is of the form λx.ϕ(x).
Assume λx.ϕ(x) is unguarded and ϕ(x) is guarded. We can furthermore assume that all
unguarded occurrences of x is outside of any subformula θy.ψ(x, y) of ϕ(x), otherwise in ϕ(x)
we substitute for θy.ψ(x, y) the equivalent formula ψ(x, θy.ψ(x, y)) which yields the desired
form. Next we write ϕ(x) is conjunctive normal form to obtain a formula of the form

λx.(x ∨ α(x)) ∧ β(x),

where α(x) and β(x) are guarded. It is left to the reader to check that

µx.(x ∨ α(x)) ∧ β(x) ≡ µx.α(x) ∧ β(x) ,

and
νx.(x ∨ α(x)) ∧ β(x) ≡ νx.β(x) .

J

Thanks to the previous lemma it is enough to consider only guarded formulas,

I Theorem 21. Every guarded formula in the backward fragment is has a unique fixpoint.

Proof. Observe that by induction on the structure of the formula it is enough to verify
that for every guarded formula ψ = µx.ϕ(x, ȳ) and for every data ω-word w and valuation
S1, . . . , Sk (all of them subsets of [n]) of ȳ = y1, . . . , yk,

[[νx.ϕ(x, ȳ)]]w′ ⊆ [[µx.ϕ(x, ȳ)]]w′

where w′ = w[`(y1) := S1, . . . , `(yk) := Sk], since the other inclusion follows from the fact
that the least fixpoint is always included in the greatest fixpoint. This reduces to showing
that

w′, i |= νx.ϕ(x, ȳ)⇒ w′, i |= µx.ϕ(x, ȳ)

This is exhibited by the following calculation,

w′, i |= νx.ϕ(x, ȳ)⇔ w′, i |= ϕ(νx.ϕ(x, ȳ), ȳ) (By fixpoint iteration)
⇔ w′, i |= ϕn+1(νx.ϕ(x, ȳ), ȳ)
⇒ w′, i |= ϕn+1(⊥, ȳ) (By Lemma 19)
⇒ w′, i |= µx.ϕ(x, ȳ) (By Knaster-Tarski theorem)

J

We represent unique fixpoints using the symbol θ. Due to the above theorem it is enough
to consider formulas in which every fixpoint subformula is of the form θx.ϕ(x). Now we can
prove our theorem,

I Theorem 22. For every formula ϕ in the ν-fragment there is an effectively constructed
Data ω-automaton Aϕ such that Aϕ labels each position with the set of subformulas of ϕ
true at that position.

Proof. We need the following definitions. Let Prop(ϕ) be the set of all propositional variables
used in ϕ, and let Sub(ϕ) be the set of all subformulas of ϕ.

22 Generalized Data Automata and Fixpoint Logic

I Definition 23. The closure CL (ϕ) of ϕ is the smallest set such that,

1. Prop(ϕ) ∪ {ϕ,S,P, firstc, firstg} and their negations belong to CL(ϕ),
2. If ψ ∈ CL(ϕ) then ¬ψ (negation is pushed to the literals) belongs to CL(ϕ),
3. If ϕ1 ∧ ϕ2 ∈ CL(ϕ) or ϕ1 ∨ ϕ2 ∈ CL(ϕ) then ϕ1 ∈ CL(ϕ) and ϕ2 ∈ CL(ϕ),
4. If one of Ycϕ1, Ygϕ1 is in CL(ϕ), then ϕ1 ∈ CL(ϕ),
5. If θx.ϕ1(x) ∈ CL(ϕ) then ϕ1(θx.ϕ1(x)) ∈ CL(ϕ).

I Definition 24. An atom A is a subset of CL(ϕ) that satisfies the following properties:

1. For all ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A,
2. For all ϕ1 ∨ ϕ2 ∈ CL(ϕ), ϕ1 ∨ ϕ2 ∈ A iff ϕ1 ∈ A or ϕ2 ∈ A,
3. For all θx.ϕ1(x) ∈ CL(ϕ), θx.ϕ1(x) ∈ A iff ϕ1(θx.ϕ1(x)) ∈ A.

Now we describe how the Data Automaton Aϕ works on a given data ω-word w. The
states of the automaton are precisely the atoms. To ensure that the labelling by atoms is
correct the automaton has to verify the following consistency conditions,

(i) firstg ∈ Ai iff i is the first position, firstc ∈ Ai iff i is the first position of a class,
(ii) p ∈ Ai iff the label at position i is p,
(iii) let tp (i) = (p, s) then S ∈ Ai iff the marking s = S, similarly, P ∈ Ai iff the marking

p is P,
(iv) Ygϕ1 ∈ Ai iff ϕ1 ∈ Ag−1(i),
(v) A1 contains ϕ.
(vi) Ycϕ1 ∈ Ai iff ϕ1 ∈ Ac−1(i).

These consistency conditions can be checked easily by the Data Automaton. Now for
correctness the labelling of every position by the set of subformulas true at that position
is a valid run of the automaton. For the other direction it can be proved inductively that
a formula belongs to an atom at position i iff it is true at position i. In particular the set
of positions that contain a formula θx.ϕ(x) is a fixpoint of ϕ(x). Since ϕ(x) has a unique
fixpoint the completeness follows. J

H Proof of Proposition 14

Proof. Given an alternating parity automaton A we construct a GDA A′ whose set of
states Q is precisely the set of local strategies and given an input data ω-word w a run of
A′ labels every position with a local strategy (fi)i∈ω such that Condition (1) and (2) in
the definition of local strategy annotation is satisfied. Note that this is possible since the
conditions are local (to verify the automaton only needs the states at the global predecessor
and class predecessor). The only complication here is the unary modalities S and P. But
from the Lemma 13 we know that there is a Data Automaton labelling every position with
the correct modality. Since Büchi GDA subsume Data automata (Lemma 1) are closed under
composition (Lemma 2) we conclude that this can be done. To verify that the local strategy
annotation is accepting the automaton A′ has to check that for all infinite paths in the
annoation it is the case that the maximal infinitely occurring parity is even. Hence it remains
to show that the automaton A′ can verify this property. We define the acceptance language
L of A′ to be the set of all ω-words

f1
ε

f2
s1

f3
s2

. . .

Thomas Colcombet and Amaldev Manuel 23

over the alphabet F × {g, c} such that all sequence of states

p0 = q0, p1 3 f1(p0, s1), p2 3 f2(p1, s2), . . .

sees a maximal infinitely occurring even priority. To see that L is ω-regular, notice that there
is a nondeterministic Büchi automaton which will guess a path by guessing a state pi in each
fi and verifies that the guessed path sees a maximal infinitely occurring odd priority. The
complement automaton will then verify that all paths see a maximal even priority infinitely
often. It is straightforward to see that all paths in the strategy annotation (fi)i∈ω on w has
a maximal recurring even priority iff the strategy annotation is accepting iff for all paths π
in the run of A′ on w the marked path projection of π is in L.

In the special case when A is an alternating Büchi automaton, we show that L is in
particular a deterministic Büchi language. We construct a deterministic Büchi automaton
B recognizing L using the break-point construction. The states of B are of the form (E,F)
where E,F ⊆ Q, and while reading an ω-word the set E stores the end states of all the paths
leading upto the current position and F ⊆ E stores the end states of paths which has not
seen a Büchi state in Q since the last break-point. The Büchi states of B are all pairs where
F is empty. On reaching a state (E,F) where F is empty (called a break-point) at the next
position F is again set to be E. This way B makes sure that all paths see a Büchi state in
Q infinitely often.

J

I Proof of Theorem 15

Proof. Given a formula ϕ in the fragment we claim that there is a Büchi GDA A such that
ϕ is satisfiable if and only if the language of A is nonempty. Since Büchi GDA are closed
under composition (Lemma 2) it is enough to verify the base cases; which is when ϕ belongs
to the forward fragment or the backward fragment. In both cases we know that there is an
equivalent Büchi GDA by Lemma 10 and Proposition 14. Since non-emptiness of Büchi GDA
is decidable by Theorem 8 the theorem follows. J

	Introduction
	Data -words and Data Automata
	Generalized Data Automata
	Emptiness of Büchi GDA

	-calculus on data -words
	Conclusion and future work
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 8
	Proof of Theorem 17
	Proof of Lemma 10
	Proof of Proposition 14
	 Proof of Theorem 15

