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Abstract. In the theory of automata over infinite alphabets, a central
difficulty is that of finding a suitable compromise between expressiveness
and algorithmic complexity. We propose an automaton model where we
count the multiplicity of data values on an input word. This is partic-
ularly useful when such languages represent behaviour of systems with
unboundedly many processes, where system states carry such counts as
summaries. A typical recognizable language is: “every process does at
most k actions labelled a”. We show that emptiness is elementarily de-
cidable, by reduction to the covering problem on Petri nets.

1 Summary

Consider a system of concurrently running sequential processes. When there is
no a priori bound on the number of processes, though at any point of time
only finitely many are active, the necessity of the system to distinguish one
process from another involves potentially unbounded data. Typically, system
states carry summary information about processes that are known to be active,
and hence the set of system configurations is infinite. Such systems arise in
the study of web services, communication protocols and software systems with
recursive concurrent threads of execution.

Infinite state systems are not unfamiliar in theory of computation; a rich body
of results exists on counter systems, pushdown systems and Petri nets. Most
reachability properties of such infinite state systems are either undecidable or
have such high complexity that algorithmic verification is impractical. On the
other hand, if we restrict ourselves to only finite state systems, we can reason
only about systems where the set of processes is fixed and known a priori, and
we do not (as yet) have clear abstractions that allow us to transfer the results of
such reasoning to systems of unbounded processes. Hence there is a clear need for
formal models that work with unbounded systems but yet restrict expressiveness
to allow decidable verification.

Notice that interesting properties of such systems do not involve process names
(or identifiers) explicitly. A specification that restricts attention only to processes
P1, P2 and P3 can be implemented by a finite state system. On the other hand,
consider a specification such as: “at least k processes get to perform an a ac-
tion”: this necessitates remembering potentially unboundedly many values, thus
leading to infinite state systems.
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This paper is situated in such a context and while we have no definitive an-
swers, we consider ”state summaries” that allow elementary decidability. The
model we use is that of finite automata over infinite alphabets and we use coun-
ters to record the intended ”summaries”. The main result is that emptiness if
Expspace-complete for such a class of automata. Unfortunately, the automata
are not closed under complementation, and even the word problem is intractable,
suggesting that we have more work to be done to further restrict expressiveness.

The study of automaton mechanisms over infinite alphabets has gained in-
terest in recent years, especially from the viewpoint of database theory. In this
approach, data values are modelled using a countably infinite domain, and struc-
tures are finite words labelled by this infinite alphabet. Typically the alphabet
is presented as a product (Σ×D), where Σ is finite and D is countable. For our
purposes, we can think of D as process names and Σ as the finite set of events
they participate in, or conditions that hold.

The study of languages over infinite alphabets were initiated in [ABB80] and
[Ott85], where the approach was to define the notion of regularity for lan-
guages over infinite alphabets in terms of morphisms to languages over finite
alphabets. There are many automaton mechanisms for studying word languages
over infinite alphabets: register automata ([KF94]), pebble automata ([NSV01],
[NSV04]), data automata ([BMS+06]), nested words ([AM06]), class memory
automata ([BS07]) and automata on Gauss words ([LPS09]), with different ex-
pressive power and complexity. Logic based approaches include monadic second
order logics ([Bou02], [Bac03]), two variable first order logics ([BMS+06]) and
temporal logics with special “freeze” quantifiers ([DL06]) or predicate abstrac-
tion ([LP05], [LP09]). Algebraic approaches involve quasi-regular expressions
([KT06]), or register monoid mechanisms ([BPT01]). All these involve interest-
ing tradeoffs between expressiveness and complexity of decision procedures. A
unifying framework placing all these models in perspective is as yet awaited (see
[Seg06] for an excellent survey).

While register automata have polynomial complexity, they are effectively finite
state; data automata are more expressive, but emptiness is not known to be
elementary. What we present here is a restriction of class memory automata:
these automata that can not only test for existence of data values, but can also
count the multiplicity of occurrences of data values, subject to constraints on
such counts. However, these counters are monotone, and hence the constraints
are limited in expressive power: we can compare counts against constants, but not
much more. We show that such a model of Class counting automata (CCA)
is interesting, for several reasons; specifically, we get elementary decidability. We
see this as “populating the landscape” of classes of data languages, in the sense
of [BS07].

From the viewpoint of reasoning about unbounded systems of processes, it
is unclear what exactly is the expressiveness needed. For instance, consider the
specification: “No two successive positions carry the same data value”; this is
naturally implemented using a register mechanism. But this is a “hard” global
scheduling constraint: after any process event is scheduled, the succeeding event
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must necessarily be from a different process; it is hardly clear that such a con-
straint is important for loosely coupled systems of processes. This indicates that
while we do want to specify combinations of global and local properties, we need
to nonetheless allow for sufficient flexibility.

2 Class Counting Automata

Let k > 0; we use [k] to denote the set {1, 2, . . . k}. When we say [k]0, we mean
the set {0} ∪ [k]. By N we mean the set of natural numbers {0, 1, . . .}. When
f : A → B, (a, b) ∈ (A × B), by f ⊕ (a, b), we mean the function f ′ : A → B,
where f ′(a′) = f(a′) for all a′ ∈ A, a′ �= a, and f ′(a) = b.

Customarily, the infinite alphabet is split into two parts: it is of the form
Σ ×D, where Σ is a finite set, and D is a countably infinite set. Usually, Σ is
called the letter alphabet and D is called the data alphabet. Elements of D are
referred to as data values. We use letters a, b etc to denote elements of Σ and
use d, d′ to denote elements of D.

A data word w is an element of (Σ ×D)∗. A collection of data words L ⊆
(Σ ×D)∗ is called a data language. In this article, by default, we refer to data
words simply as words and data languages as languages. As usual, by |w| we
denote the length of w.

Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word. The string projection of
w, denoted as str(w) = a1a2 . . . an, the projection of w to its Σ components. Let
i ∈ [n] = |w|. The data class of di in w is the set {j ∈ [n] | di = dj}. A subset of
[n] is called a data class of w if it is the data class of some di, i ∈ [n]. Note that
the set of data classes of w form a partition of [|w|].

The automaton we present below includes a bag of infinitely many monotone
counters, one for each possible data value. When it encounters a letter - data
pair, say (a, d), the multiplicity of d is checked against a given constraint, and
accordingly updated, the transition causing a change of state, as well as possible
updates for other data as well. We can think of the bag as a hash table, with
elements of D as keys, and counters as hash values. Transitions depend only on
hash values (subject to constraints) and not keys.

A constraint is a pair c = (op, e), where op ∈ {<,=, �=, >} and e ∈ N. When
v ∈ N, we say v |= c if v op e holds. Let C denote the set of all constraints.
Define a bag to be a finite set h ⊆ (D × N) such that whenever (d, n1) ∈ h and
(d, n2) ∈ h, we have: n1 = n2. Thus h defines a partial function from D to N

which is defined on a finite subset of D. By convention, we implicitly extend it
to a total function on D by considering h to represent the set h′ = h ∪ {(d, 0) |
there is no n ∈ N such that (d, n) ∈ h}. Hence we (ab)use the notation h(d) = n
for a bag h. Let B denote the set of bags. Note that the notation h⊕ (d, n) now
stands for the bag h′ = (h− ({d} × N)) ∪ {(d, n)}.

Below, let Inst = {↑+, ↓} stand for the set of instructions: ↑+ tells the au-
tomaton to increment the counter, whereas ↓ asks for a reset. Note that the
instruction (↑+, 0) says that we do not wish to make any update, and (↑+, 1)
causes a unit increment; we use the notation [0] and [+1] for these instructions
below.
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Definition 1. A class counting automaton, abbreviated as CCA, is a tuple
CCA = (Q,Δ, I, F ), where Q is a finite set of states, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states. The transition relation is given by:
Δ ⊆ (Q×Σ × C × Inst× U ×Q), where C is a finite subset of C and U is a
finite subset of N.

Let A be a CCA. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.
The initial configuration of A is given by (q0, h0), where h0 is the empty bag;
that is, ∀d ∈ D, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence
γ = (q0, h0)(q1, h1) . . . (qn, hn) such that q0 ∈ I and for all i, 0 ≤ i < n, there
exists a transition ti = (q, a, c, π,m, q′) ∈ Δ such that q = qi, q′ = qi+1, a = ai+1

and:

– hi(di+1) |= c.
– hi+1 is given by:

hi+1 =
{
hi ⊕ (di+1,m

′) if π =↑+,m′ = hi(di+1) +m
hi ⊕ (di+1,m) if π =↓

γ is an accepting run above if qn ∈ F . The language accepted by A is given by
L(A) = {w ∈ (Σ × D)∗ | A has an accepting run on w}. L ⊆ ((Σ × D))∗ is said
to be recognizable if there exists a CCA A such that L = L(A). Note that the
counters are either incremented or reset to fixed values.

We first observe that CCA runs have some useful properties. To see this, con-
sider a bag h and d1, d2 ∈ D, d1 �= d2 such that at a confguration (q, h), we have
two transitions enabled on inputs (a1, d1) and (a2, d2) leading to configurations
(q1, h1) and (q2, h2) respectively. Notice that for any condition c, if h(d2) |= c
then so also h1(d2) |= c. Similarly, for any condition c′, if h(d1) |= c′ then so
also h2(d1) |= c′. Thus when we have distinct data values, tests on them do not
“interfere” with each other. We can extend this observation further: given data
words u and v such that the data values in u are pairwise disjoint from those in
v, if we have a run from (q, h) on u to (q, h1) and on v from (q, h1) to (q′, h2),
then there is a configuration (q′, h′) and a run from (q, h) on v to (q′, h′). This
will be useful in the following.

Example 1. The language Lfd(a) = “Data values under a are all distinct” is
accepted by a CCA. The CCA accepting this language is the automaton A =
(Q,Δ, q0, F ) where Q = {q0, q1}, q0 is the only initial state and F = {q0}. Δ
consists of:

– (q0, a, (=, 0), q0, [+1]); (q0, a, (=, 1), q1, [0]);
– (q0, b, (≥, 0), q0, [0]); (q1, Σ, (≥, 0), q1, [0]).

Since the automaton above is deterministic, by complementing it, that is, setting
F = {q1}, we can accept the language Lfd(a) = “There exists a data value
appearing at least twice under a”. On the other hand, since every data word
can mention only finitely many data values, trivially every word has a value
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q0 q1

a, (=, 0), [+1]
b, (≥, 0), [0] Σ, (≥, 0), [0]

a, (=, 1), [0]

Fig. 1. Automaton in the Example 1

that appears less than twice under a (namely zero times). Hence the statement
above can be strengthened to saying that the language L∃a, �= n = “ There exists
a data value whose multiplicity under a is not 2” is recognizable. But as we
show below, its complement language, L∀,= n = “All data values under a occur
exactly twice” is not recognizable. Thus, CCA- recognizable data languages are
not closed under complementation.

Proposition 1. The language Lforall,= n = “All data values under a occur ex-
actly twice” is not recognizable.

Proof. Suppose there is a CCA A with m states accepting this language. Con-
sider the data word

w = (a, d1)(a, d2)!... (a, dm+1)(a, d1)(a, d2).. (a, dm+1)

Clearly, winL∀,= n. Therefore, there is a successful run of A on w. Then there
is a state q repeating in the suffix of length m + 1. Let us say this splits w as
u·v ·v′, where the configurations at the repeating state after u with configuration
(q, h) to (q, h1) on v and to (q′, h2) on v′. Then by the remarks we made earlier,
we can find a run from (q, h) to a configuration (q′, h′) on v′ as well. Thus we
have “chopped” off a part of the run so that we have an accepting run on a word
u · v′. But then u · v′ is not in Lforall,= n. 
�

The following statement is easily proved:

Proposition 2. CCA-recognizable data languages are closed under union and
intersection but not under complementation.

The following observation will be useful for decision questions that follow. Given
a CCA A = (Q,Δ, q0, F ) let m be the maximum constant used in Δ. We define
the following equivalence relation on N, c �m+1 c

′ iff c < (m+1)∨c′ < (m+1) ⇒
c = c′. Note that if c �m+1 c

′ then a transition is enabled at c if and only if it is
enabled at c′. We can extend this equivalence to configurations of the CCA as
follows. Let (q1, h1) �m+1 (q2, h2) iff q1 = q2 and ∀d ∈ D, h1(d) �m+1 h2(d).

Lemma 1. If C1, C2 are two configurations of the CCA such that C1 �m+1 C2,
then ∀w ∈ ((Σ × D))∗, C1 �∗

w C′
1 =⇒ ∃C′

2, C2 �∗
w C′

2 and C′
1 �m+1 C

′
2.
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Proof. Proof by induction on the length of w. For the base case observe that
any transition enabled at C1 is enabled at C2 and the counter updates respects
the equivalence. For the inductive case consider the word w.a. By induction
hypothesis C1 �∗

w C′
1 =⇒ ∃C′

2, C2 �∗
w C′

2 and C′
1 �m+1 C

′
2. If C′

1 �a C
′′
1 then

using the above argument there exists C′′
2 such that C′

2 �a C
′′
2 and C′′

1 �m+1 C
′′
2 .

In fact the lemma holds for any N ≥ m+ 1, where m is the maximum constant
used in Δ. This observation paves the way for proving the decidability of the
emptiness problem (in the next section).

3 Decision Problems

Since the space of configurations of a CCA is infinite, reachability is in general
non-trivial to decide. We now show that the emptiness problem is elementarily
decidable.

Theorem 1. The non-emptiness problem for CCA is expspace-complete.

3.1 Upper Bound

We reduce the emptiness problem of CCA to the covering problem on Petri nets.
For checking emptiness, we can omit the Σ × D labels from the configuration
graph; we are then left with counter behaviour. However since we have unbound-
edly many counters, we are led to the realm of vector addition systems.

Definition 2. An ω-counter machine B is a tuple (Q,Δ, q0) where Q is a finite
set of states, q0 ∈ Q is the initial state and Δ ⊆ (Q× C × Inst× U ×Q), where
C is a finite subset of C and U is a finite subset of N.

A configuration of B is a pair (q, h), where q ∈ Q and h : N → N. The initial
configuration of B is (q0, h0) where h0(i) = 0 for all i in N. A run of B is a
sequence γ = (q0, h0)(q1, h1) . . . (qn, hn) such that for all i such that 0 ≤ i < n,
there exists a transition ti = (p, c, π,m, q) ∈ Δ such that p = qi, q = qi+1 and
there exists j such that h(j) |= c, and the counters are updated in a similar
fashion to that of CCA.

The reachability problem for B asks, given q ∈ Q, whether there exists a run
of B from (q0, h0) ending in (q, h) for some h (“Can B reach q?”).

Lemma 2. Checking emptiness for CCA can be reduced to checking reachability
for ω-counter machines.

Proof. It suffices to show, given a CCA, A = (Q,Δ, q0, F ), where F = {q}, that
there exists a counter machine BA = (Q,Δ′, q0) such that A has an accepting
run on some data word exactly when BA can reach q. (When F is not a singleton,
we simply repeat the construction.) Δ′ is obtained from Δ by converting every
transition (p, a, c, π,m, q) to (p, c, π,m, q). Now, let L(A) �= ∅. Then there exists
a data word w and an accepting run γ = (q0, h0)(q1, h1) . . . (qn, hn) of A on w,



Counting Multiplicity over Infinite Alphabets 147

with qn = q. Let g : N → D be an enumeration of data values. It is easy to see
that γ′ = (q1, h0 ◦ g)(q1, h1 ◦ g) . . . (qn, hn ◦ g) is a run of BA reaching q.

(⇐) Suppose that BA has a run η = (q0, h0)(q1, h1) . . . (qn, hn), qn = q. It can
be seen that η′ = (q0, h0 ◦ g−1)(q1, h1 ◦ g−1) . . . (qn, hn ◦ g−1) is an accepting run
of A on w = (a1, d1) . . . (an, dn) where w satisfies the following. Let (p, c, π,m, q)
be the transition of BA taken in the configuration (qi, hi), and dk such that
hi(dk) |= c. Then by the definition of BA there exists a transition (p, a, c, π,m, q)
in Δ. Then it should be the case that ai+1 = a and di+1 = g(dk).

Proposition 3. Checking non-emptiness of ω-counter machines is decidable.

Let s ⊆ N, and c a constraint. We say s |= c, if for all n ∈ s, n |= c.
We define the following partial function Bnd on all finite and cofinite subsets

of N. Given s ⊆fin N, Bnd(s) is defined to be the least number greater than all the
elements in s. Given s ⊆cofinite N, Bnd(s) is defined to be Bnd(N\s). Given an ω-
counter machine B = (Q,Δ, q0) let mB = max{Bnd(s) | s |= c, c is used in Δ}.

We construct a Petri net NB = (S, T, F,M0) where,

– S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ mB}.
– T is defined according to Δ as follows. Let (p, c, π, n, q) ∈ Δ and let i be such

that 0 ≤ i ≤ mB and i |= c. Then we add a transition t such that •t = {p, i}
and t• = {q, i′}, where (i) if π is ↑+ then i′ = min{mB, i+ n}, and (ii) if π
is ↓ then i′ = n.

– The flow relation F is defined according to •t and t• for each t ∈ T .
– The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if
p �= q0 then M0(p) = 0.

The construction above glosses over some detail: Note that elements of these sets
can be zero, in which case we add edges only for the places in [mB] and ignore
the elements which are zero.

Let M be any marking of NB. We say that M is a state marking if there exists
q ∈ Q such that M(q) = 1 and ∀p ∈ Q such that p �= q, M(p) = 0. When M is
a state marking, and M(q) = 1, we speak of q as the state marked by M . For
q ∈ Q, define Mf (q) to be set of state markings that mark q. It can be shown,
from the construction of NB, that in any reachable marking M of NB, if there
exists q ∈ Q such that M(q) > 0, then M is a state marking, and q is the state
marked by M .

We now show that the counter machine B can reach a state q iff NB has a
reachable marking which covers a marking in Mf (q). We define the following
equivalence relation on N, m �mB n iff (m < mB) ∨ (n < mB) ⇒ m = n. We
can lift this to the hash functions (in ω-counters) in the natural way: h �mB

h′ iff ∀i (h(i) < mB) ∨ (h′(i) < mB) ⇒ h(i) = h′(i). It can be easily shown that
if h �mB h′ then a transition is enabled at h if and only if it is enabled at h′.

Let μ be a mapping B-configurations to NB-configurations as follows: given
χ = (q, h), define μ(χ) = Mχ, where

Mχ(p) =

⎧⎨
⎩

1 iff p = q
0 iff p ∈ Q\{q}
|[p]| iff p ∈ P\Q, p �= 0

⎫⎬
⎭
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Above [p] denotes the equivalence class of p under �mB on N in h. Now
suppose that B reaches q. Let the resulting configuration be χ = (q, h). We
claim that the marking μ(χ) of NB is reachable (from M0) and covers Mf (q).
Conversely if a reachable marking M of NB covers Mf(q), for some q ∈ Q, then
there exists a reachable configuration χ = (q, h) of B such that μ(χ) = M . This
is proved by a simple induction on the length of the run.

Since the covering problem for Petri nets is decidable, so is reachability for
ω-counter machines and hence emptiness checking for CCA is decidable.

3.2 Lower Bound

The decision procedure above runs in expspace, and thus we have elementary
decidability. We now show that the emptiness problem is also expspace-hard.
Effectively this is a reduction of the covering problem again, but for technical
convenience, we use multi-counter automata.

A k multi-counter automaton with weak acceptance is a tuple A =
(Q,Σ,Δ, q0, F ) where Q is a finite set of states, q0 ∈ Q is the initial state
and F ⊆ Q is a set of final states. The transition relation is of the form
Δ ⊆fin (Q × Σ × N

k × N
k × Q). The two vectors in the transition specify

decrements and increments of the counters.
The automaton works as follows: it has k-counters, denoted by v̄ = (v1, . . . vk)

which hold non-negative counter values. A configuration of the machine is of the
form (q, v̄) where q ∈ Q and v̄ ∈ N

k. The initial configuration is (q0, 0̄). Given a
configuration (q, v̄) the automaton can go to a configuration (q′, v̄′) on letter a
if there is a transition (q, a, ¯vdec, ¯vinc , q

′) such that v̄ − ¯vdec ≥ 0̄ (pointwise) and
v̄′ = v̄ − ¯vdec + ¯vinc . A final configuration is one in which the state is final.

The problem of checking non-emptiness of a multicounter automaton with
weak acceptance is known to be (at least) Expspace-hard ([Lip76]).

Any multicounter automaton M = (Q,Σ,Δ, q0, F ) can be converted to an-
other (in a “normal form”):M ′ = (Q′, Σ,Δ′, q0, F ) such that L(M) is non-empty
if and only if L(M ′) is non-empty and M ′ uses only unit vectors or zero vectors
in its transitions. A unit vector is of the form (b1, b2, . . . , bk) where there is a
unique i ∈ [k] such that bi = 1 and for j �= ik, bj = 0. That is M ′ decrements or
increments at most one counter in each transition.
Δ′ is obtained as follows. Let t = (q, a, ¯vdec, ¯vinc , q

′). Let ū1, ū2, . . . , ūn be a
sequence of unit vectors such that ¯vdec = Σiūi and ū1

′, ū2
′, . . . , ūm

′ be a sequence
of unit vectors such that ¯vinc = Σiūi

′. We add intermediate states to rewrite t
by the following sequence of transitions,

(q, a, ū1, 0̄, q(t,ū1)), (q(t,ū1), a, ū2, 0̄, q(t,ū2)), . . . ,

(q(t,ūn), a, 0̄, ū1
′, q(t,ū1′)), (q(t,ū1′), a, 0̄, ū2

′, q(t,ū2′)), . . . ,

(q(t, ¯um−1′), a, 0̄, ūm
′, q′)

Lemma 3. L(M) is non-empty if and only if L(M ′) is non-empty.
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Proof. By an easy induction on the length of the run. It is easy to see that for
every accepting run ρ of M we have an accepting run ρ′ of M ′, this is achieved
by replacing every transition t in the run ρ by the corresponding sequence of
transitions. For the reverse direction, we need to show that every run accepting
run ρ′ of M ′ can be translated to an accepting run ρ of M . This is possible since
the intermediate states added to obtain the transitions in M ′ are unique for each
transition t in M . Hence for every sequence of transitions taking M ′ from q1 to
q2 where q1, q2 ∈ Q there is a unique transition t which takes M from q1 to q2.
By doing an induction on the number of states occuring in ρ′ which are from Q
we can show that there is a valid run ρ which is accepting.

Next we convert M ′ to a CCA thus establishing a lowerbound of Expspace for
the emptiness problem. Let M ′ = (Q,Σ,Δ, q0, F ) be a k-multicounter automa-
ton in normal form. We construct the automaton A = (Q,Σ,ΔA, q0, F ). Let
t = (q, a, ū, ū′, q′) where ū, ū′ are either unit or zero vectors. If ū is a i-th unit
vector and ū′ is a zero vector, we add a transition tA = (q, a, (x = i), (↓, 0), q′)
to ΔA. If ū is a i-th unit vector and ū′ is j-th unit vector, we add a transition
tA = (q, a, (x = i), (↓, j), q′) to ΔA. If ū is a zero vector and ū′ is a j-th unit
vector, we add a transition tA = (q, a, (x = 0), (↓, j), q′) to ΔA.

Lemma 4. L(M ′) is non-empty if and only if L(A) is non-empty.

Proof. The proof is by induction on the length of the run. First we define a
mapping from configurations of A to configurations of M ′ in the following man-
ner, μ((q, h̄)) = (q, v̄) where vi = |{j | h̄(j) = i}|. We show, by induction on
the length of the run, that for every configuration χ reachable by A there is a
configuration ψ of M ′ such that μ(χ) = ψ and conversely for every configuration
ψ reachable by M ′ there is a configuration χ reachable by A such that μ(χ) = ψ.

For the base case, it is evident that μ((q0, h̄0)) = (q0, 0̄).
Suppose that χ = (q, h̄) is a configuration reachable in l steps, and that the

transition t = (q, a, x = j, (↓, i), q′) is enabled at χ. Therefore there is a counter
holding the value j. By induction hypothesis there exists a configuration ψ such
that μ(χ) = ψ = (q, v̄) such that vj > 0. After the transition t, the number
of counters holding the value j decreases by one and the number of counters
holding the value i increases by one(if i �= 0). This is achieved by the transition
(q, a, ūj, ūi, q

′) in Δ′, preserving the map μ.
Conversely, suppose a configuration ψ = (q, v̄) is reachable by M ′ in l steps.

Then by induction hypothesis we have a configuration χ reachable by the au-
tomaton A such that μ(χ) = ψ. Suppose a transition t′ = (q, a, ūi, ūj, q

′) is
enabled in ψ resulting in ψ′.

Consider the case where ūi �= 0̄ and ūj �= 0̄. By construction t′ is obtained from
a transition t = (q, a, (x = i), ↓, j, q′). We choose the smallest counter holding
the value zero and apply the transition t, resulting in ξ′ such that μ(ξ′) = ψ′.
The remaining cases are similar.
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3.3 Inclusion and Word Problem

The next interesting algorithmic question is that of checking inclusion among
accepted languages. It turns out that this problem is undecidable, which can be
shown by reduction from the Post Correspondence Problem. We postpone the
discussion on this until we discuss alternation later.

Since emptiness checking is of such high complexity, one may wonder whether
the model is complex enough to render even the word problem to be hard: the
simplest algorithmic question of how one can check whether a given word is
accepted or not. The important thing to note is that during a run, the size of
the configuration is bounded by the length of the input data word. Therefore
a nondeterministic Turing machine can easily guess a path in polynomial time
and check for acceptance. Hence the word problem is easily seen to be in NP.
Interestingly, it turns out to be NP -hard as well.

Theorem 2. The word problem for CCA is NP -complete.

The proof is by reduction of the satisfiability problem for 3-CNF formulas to the
word problem for CCAs. Given the 3-CNF formula, we code it up as a data word,
where data values are used to remember the identity of literals in clauses. We
use a two letter alphabet with +,− indicating whether a propositional variable
occurs positively or negatively. Data values stand for the propositional variables
themselves. Thus a pair ((+, d1) asserts that the first boolean variable occurs
positively.

We show the coding by an example, let ϕ ≡ (p1 ∨¬p3 ∨ p4) ∧ (¬p2 ∨ p5 ∨ p1) ∧
(¬p3 ∨¬p4 ∨ p5), we construct the corresponding word w = (+, d1)(−, d3)(+, d4)
(#, d) (−, d2)(+, d5)(+, d1) (#, d) (−, d3)(−, d4)(+, d5)(#, d) ∈ ({+,−,#}×D)∗.

The nondeterministic automaton checks satisfiability in the following way.
Every time the automaton encounters a new data value (representing a proposi-
tional variable), the automaton nondeterministically assigns a boolean value and
stores it in the counter (1 for ⊥ and 2 for �) corresponding to the data value,
in the future whenever the same data value occurs the counter is consulted to
obtain the assigned value to the propositional variable. The automaton evaluates
each clause and carries the partial evaluation in its state. Finally the automaton
accepts the word if the formula evaluates to �.

4 Discussion

We first observe that the model admits many extensions, without substantially
affecting the main decidability result.

4.1 Extensions

1. Instead of working with one bag of counters, the automaton can use sev-
eral bags of counters, much as multiple registers are used in the register
automaton. It is easy to formally define CCA with k-bags, using k-tuples of
constraints on guards.
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2. Another strengthening involves checking for the presence of any counter
satisfying a given constraint and updating it.

3. The language of constraints can be strengthened: any syntax that can specify
a finite or co-finite subset of N will do. Indeed, we can work with constraints
specifying semilinear sets without affecting the technical results, and the
syntax can be any formula in Presburger arithmetic.

On the other hand, some natural extensions of the model do affect the decid-
ability of non-emptiness problem. One such is alternation. However, we then
find that the non-emptiness problem for the class of alternating class counting
automata is undecidable. The proof of this proceeds by reduction of the Post Cor-
respondence Problem to this one in a manner similar to the one in [BMS+06].
From this, we can show that the inclusion problem for CCAs is undecidable
as well.

Other interesting extensions relate to the kind of updates allowed and to
acceptance conditions. While adding decrements to counters in CCA leads to
undecidability of the emptiness problem, we can add resets to counters preserving
decidability. A reset operation sets the corresponding counter value to zero.
The acceptance condition we have in CCA is global in the sense that it relates
only to the global control state rather than multiplicities encountered. We can
strengthen the acceptance condition as follows: A = (Q,Δ, q0, F, C) where (Q,
q0, Δ, F are as before, and C ⊂f in N . We say a final configuration (q, h) is
accepting if q ∈ F and ∀d ∈ D, h(d) ∈ C or h(d) = 0.

We then find that the non-emptiness problem (for CCAs with reset and
counter conditions) continues to be decidable but becomes as hard as Petri net
reachability, which is not even known to be elementarily decidable.

4.2 Other Automata Models

CCA are situated among a family of automata models that have been proposed
for data languages. The simplest form of memory is a finite random access read-
write storage device, traditionally called register. In finite memory automata
[KF94], the machine is equipped with finitely many registers, each of which can
be used to store one data value. Every automaton transition includes access
to the registers, reading them before the transition and writing to them after
the transition. The new state after the transition depends on the current state,
the input letter and whether or not the input data value is already stored in
any of the registers. If the data value is not stored in any of the registers, the
automaton can choose to write it in a register. The transition may also depend
on which register contains the encountered data value. Because of finiteness
of the number of registers, in a sufficiently long word the automaton cannot
distinguish between all data values. On the other hand, register automata have
the capability of keeping the “latest information”, a capability that deterministic
CCA do not have.

In class memory automata (CMA, [BS07]), a function assigns to every data
value d the state of the automaton that was assumed after reading the previous
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position with value d. We can think of this as using hash tables, with values
coming from a finite set. On reading a (a, d), the automaton reads the table
entry corresponding to d and makes a transition dependent on the table entry,
the input letter a and the current state. The transition causes a change of state
as well as updating of the table entry.

We can show that the class of CCA-recognizable languages is strictly con-
tained in the class of CMA-recognizable languages, but when we add resets and
counter acceptance conditions as above, the class becomes exactly as expres-
sive as CMAs. Indeed, we see CCA as a natural restriction of CMAs yielding
elementary decidability of the non-emptiness problem.

Another simple computational model, based on transducers is the data au-
tomaton model introduced in [BMS+06], and [BS07] shows that this model is
exactly as expressive as CMA.

4.3 Restrictions

With anNP -hard word problem, Expspace-hard non-emptiness question and un-
decidable language inclusion, working with data languages does seem daunting.
However, given the need for verifying properties of systems with unboundedly
many processes, the abstraction of infinite alphabets is yet worth preserving.
What we need to look at are restrictions that are meaningful for systems of
unbounded processes, and we are studying some proposals in this regard.
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